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Abstract. Looking for m state variables and n control variables such that the sum of the 
distance functions between the state variables and the control variables becomes minimal is 
called control-approximation problem. This problem is investigated under constraints. More-
over, the distances between the control variables themselves are taken into account. Powers 
of several gauges are chosen as distance functions. The considerations happen in Hausdorif 
locally convex topological real vector spaces. 
In particular, location problems of very general type (e.g. so-called multifacility problems) 
turn out to be special cases of such control-approximation problems. 
After the formulation of the primal control-approximation problem some considerations con-
cerning gauges follow. Then a dual problem is given and weak and strong duality assertions 
are obtained. 
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1. Introduction 
In this paper convex programming problems of the type of so-called control-approx-
imation problems with respect to Hausdorif locally convex topological real vector spaces 
and with several control and state variables are considered. So m state variables 
a 1 ,... ,am and n control variables xi,... ,x,, will be considered. 

The distances between the control and the state variables are measured as typical 
for control-approximation problems. Here additionally, distances between the control 
variables themselves are included into the objective function which represents in general 
a function of these distances and has to be minimized. Location problems (cf. [131) 
can be considered as special cases of such problems. In this case the state variables are 
substituted by fixed location points and the control variables are the wanted location 
points. 

In Section 2 a general control-approximation problem will be formulated. The occur-
ring distances between the images of the control and the state variables are measured by 
powers of so-called gauges (cf. Section 3 concerning the introduction of gauges). Norms 
are special symmetric gauges, but gauges open the possibility to consider non-symmetric 
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distance measures as it is of interest also from a practical point of view (cf. [15]). Con-
sidering gauges instead of norms recently plays an increasing role in approximation and 
location theory (cf. [3, 4, 14, 15]). Different from location problems, which from their 
practical background are to be considered in finite (mostly even, in two) dimensional 
spaces, it is reasonable for approximation and control-approximation problems to per-
mit general and in particular infinite dimensional spaces. For example, the control 
variables (and also the state variables) occurring in boundary control problems for par-
tial differential equations are elements of general function spaces. Moreover, in order to 
approximate elements in spaces (also in function spaces) which are not equipped with 
a norm topology it is opportune to exploit seminorms or gauges for the approximation 
or for the optimal control of the control-approximation process. This is one reason to 
examine the control-approximation problems in this paper for general Hausdorif locally 
convex spaces. 

Approximation in general spaces has been tr ,eated for a long time. The first articles 
have handled this topic in Hilbert spaces. Approximation in topological vector spaces is 
studied in [2] and approximation in locally convex topological vector spaces in [9]. For 
the control-approximation problem considered in this paper the control operators are 
general linear and continuous operators. Certain boundary control problems for partial 
differential equations may be considered as special cases of the investigated control-
approximation problem. Such problems are analyzed for elliptic differential equations in 
[6, 7, 21, 25, 27] and for parabolic differential equations in [26]. As concrete realizations 
of the control operators (cf. operators 5,, in the problem formulation (P) in Section 2) 
turn out in these cases the so-called Green operators mapping the boundary controls 
into the solution of the boundary value problems. Control-approximation problems in 
complex normed spaces with linear and continuous operators in the objective functions 
and in the constraints are explored in [23]. Multiobjective approximation problems in 
general spaces are considered in [1].	 - 

Duality statements for location problems as special cases of the considered control-
approximation problem are treated in a variety of papers. It has been given a dual 
problem for the classical Fermat-Weber problem in [12]. The articles [8, 11) deal with 
duality for multifacility location problems. Duality for generalized location problems 
in reflexive Banach spaces with norms as distance functions and with constraints is 
considered in [19]. For an overview of conjugate duality in location together with geo-
metric programming duality is refered to [16] where a lot of further relevant references 
concerning location duality can , be found. Vector duality for multiobjective control- 
approximation problems with norms as distance measures has been investigated e.g. in 
[18, 20, 22, 24]. Duality statements for multiobjective location problems in reflexive 
Banach spaces with constraints and with gauges as distance functions are investigated 
in [17]. The scalar location problem as a special case of the considered scalar control-
approximation problem without powers of gauges and without considerations of the 
distances between new location points among themselves is also a special case of the 
problem treated in [17] for reflexive Banach spaces. 

The purpose of this paper is to establish some duality assertions to the general 
control-approximation problem formulated in Section 2. So in Section 4 a dual problem 
is derived by means of the Fenchel-Rockafellar concept of conjugate duality. Before 
that, in Section 3 some basic facts about gauges are presented. Section 5 is devoted to
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weak and strong duality assertions as well as optimality conditions followed in Section 
6 by some concluding remarks. 

At the end of the Introduction a few remarks will be made about symbols, notations 
and definitions. 

The set of real numbers is abbreviated by R, and the set of non-negative numbers 
is denoted by R+. The extended set of real numbers is R, and R = R U {+oo} U {—oo}. 
If P is a linear and continuous operator mapping a real topological vector space C into 
a real topological vector space H, then it is denoted by P E L(G - H). The space 
H' is the algebraic dual space to H, i.e. the space of linear functionals on H. And the 
space Ht is the topological dual space to H, i.e. the space of linear and continuous 
functionals on H. Thus Ht C H'. A cone K in a real vector space H is a subset from 
H, K ç H, with the property [3k E K for all k E K and for all /3 E R+. For any convex 
cone K a partial ordering is defined by x y if x K y, i.e. y - x E K. The dual cone 
Kt to a cone K is defined by K = {h E Ht l(ht , h ) ^! 0 for all h E K}. A subset 
N of a real vector space H is called absorbent if for each h E H there exists an a such 
that [0, a] . h C N. If for a subset N of a real vector space H it is valid A N c N for all 
A E R with J AI < 1, then the set N is named circled. 

2. The control-approximation problem 

It is given a certain number of different Hausdorff locally convex topological real vector 
spaces Vi , Xi , Yi and Z, (i = 1,... ,m; j = 1,... ' ii). In each space Y an element 
a 1 which can be interpreted as a state variable is considered. In each space X3 an 
element x3 which can be interpreted as a control variable is searched. Each pair (a 1 , x3) 
and each pair (x,x 3 ) (1 I < j n) is associated with a distance by means of a 
corresponding distance function. It is looked for the infimum of the objective function 
which consists of different distances under certain constraints. So the primal scalar 
control-approximation problem is given by 

inf	S(x,a) 
(z,a,v)EM 

with

S(x,a) =	(A'	_a)]" + (l,xi)) 
i=l j=I 

+	 I' [,(T,x 1 - xi )]	. 
1=1 j=1+1 

The set Mis defined by

a 1 E W1 , Xj ^!Kx . 0 1 V ^!Kvj 0 
M = (x, a, v) E (X, Y, V) A 1 a 1 + B, j x j + C1 v3 + f) K

'

ii 0 
(i=1,...,m;j=1,...,n)

(P)
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The following holds: 

	

•	(xi,... , xn)T,a= (ai,... , a m )T ,v = (v 1 ,. .. , vn)T.


• (X,Y,V) = (Xi,...,Xn;Yi,...,Ym;Vi,...,Vn). 

• -x.7 and 1j are gauges in the spaces Y and X3 , respectively. 
• Aij> 0 and A 1 ^! 0. 
• aii> 1 and & 3 > 1. 
• Sji E L(XJ - Y1 ) and T13 E L(X, -* X2 ) are linear bounded operators mapping 

between the indicated spaces. 
• 1 E X, and (.,.) : X x X3 - R is a bilinear form (duality pairing between 

and X3). 

• W, c Y2 is closed and convex, Kx, c X, Ks,, ç V and Kz,, ç Zij are closed and 
convex cones. 

• A13 E L(Y, - Z,), Bij E L(XJ - Z13 ), C, E L(V - Zn,), f, E Z. 

Now, it is easy to see that the following multifacility location problem turns out to 
be a special case of the stated general control-approximation problem. In particular, 
the gauges are replaced by norms and the linear operators are the identity operators. 
Further, the elements a 1 are fixed and for the sake of simplicity the constraints are 
removed:

inf - a +>	—x11 
z=1 .7=1	 1=1 j=l+1 

with A ij > 0 and A,3 > 0. 

3. Gauges 

The distance functions y, (i = 1,... ,m; j = 1,... ,n) and 5'j (1 < I < j < n) in 
problem (P) are different gauges. Now a few remarks to the introduction of gauges with 
using assertions from 10] follow. 

Let H be a real vector space and G a non-empty subset of H, G c H. The functional 
yc: H — R with

(oo
	

for {.\>0Ih AG) =Ø 
7G( h)	. 1inf{.X>0IhE)G} else 

is called Minkowski functional of the set G. Now define GE = 10, 11 . G (then G = GE 
if G is circled or G is convex with 0 E G) and assume G to be absorbent. Then the 
functional

	

YG(h) = inf {A > O l h E AGE)	 (3.1) 

is well-defined, that means dom(7G) = H.
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Henceforth, the subset G is specified. The set C is assumed to be absorbent and 
convex, i.e. G = GE . And the space H is even a topological real vector space for the 
rest of the section. Then, according to definition (3.1), for the functional i'c 

7G( h) O for all hEH	 (3.2) 
.YG( 0 ) = 0	 (3.3) 

	

P. 7G( h) = 7G(ph) for all ,u E R and h E H	 (3.4) 

	

7G( h l + h 2 ) 15 7G( h l)+7G( h2) for all h l , h2 E H	 (3.5)

holds. Here 7G is said to be a gauge. If additionally the property 

	

III7G( h )	for all j E Rand h  H 

is fulfilled, that happens if the set G is circled, then the gauge is named seminorm. 
Finally, the seminorm becomes a norm if -y ( h ) = 0 is sufficient for h = 0. 

An example for a proper gauge yc that is a gauge which is not a norm and not a 
seminorm is given by the set G = { ( x,y)T e R21x E [-1,2) and Y  R}. The gauge ycj 
in H = R2 is then defined by (3.1) with the help of G. 

For the set G

{hEHI7G(h)<l}cGc{hEH G (h)<1}	 (3.6)


holds. If the set C is even closed, then (3.6) becomes 

C = {h E HIyG(h) < 11. 

Now the dual gauge y* to the gauge 7G in the algebraic dual space H' is introduced 
by means of the polar set G° of the set G. With the bilinear form (.,.) : H' x H —p R 
the definition of G° is given by 

G° = {h E H' sup (h*,h) <i}. 
!IEG 

And the dual gauge is given by

-y(h) = sup(h,h).	 (3.7)

hEG 

The generalized Cauchy-Schwarz inequality holds in the following manner for gauges in 
the subspace H* of H': 

	

(h*, h) 7G( h) . 7(h)	for all h E H and h	H.	(3.8) 

So the gauges yc and	which are dual to each other can also be given by 

sup (h,h) 
h EG 

= inf{ > 01 h* E AGO). 

The different gauges in the space Y1 in problem (P) are defined by different 
absorbent, closed and convex sets Gii C Y. The dual gauges -y, are built with 
definition (3.7). The same assertions hold for the gauges j jj (1 1 <j n) within the 
definition of problem (F).
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4. The dual problem 
Similar to the investigations in [19] and following the Fenchel-Rockafellar approach of 
duality by means of the perturbation of the given optimization problem a dual control-
approximation problem can be assigned to problem (P). Thereby the derivation in [19] 
must be changed in the following way. 

A perturbation function .4) is introduced by 

(x, a, v, p, q) =

	

	(A' [7 J (Sx - a +	+	xi)) 
i=I j=I 

+	 ' [(Tjx, - x 

1=1 j=I+1 

for A 1 a 1 + B 1 x + Cjj vj + fjj _<K qtj where a i E W, x 3 ?Kx, 0 and v ^:Kv, 0, and


(x, a, v, p, q) = oo	else. 

Further,
N(p,q) =	inf (x,a,v,p,q), 

(z a v) E ( X ,Y, V) 

where
p(p1I,pI2,p13,...,pmn,12)I3,.,n—I,n) 

q = (qII,q12,...,qmn) 

are the perturbation variables with p ' , E Y, q13 E Z, and j3,, E X,. The product space 
(r',], Z) is defined by

(p, q) E ([,X],Z). 

Then N(0,0) = irlf(zav)EM S(x,a) = inf(P) holds. 
The dual problem (P) to the primal probem (F) is defined by (cf. [5]) 

sup	[_4*(0,0,0,p*,q)] 
(p,q)E([Y	1, Z-) 

where the conjugate function to 

(x,a,v,p,q) E (X,Y,V,[Y,X],Z) - 4(x,a,v,p,q) ER 

is denoted by 

and is defined by 

(x' , a', v' , p', q')
 

*' '	

r4 

=	sup	
{	

((x j ) + (v,vj )) + 
(X,Y.V,(i',).Z) 

+	((p*j,pij) + (qj, qjj)) +	(,'j) - 

	

1=1 j=1	 1=1 j=I+1
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The result of the calculation of	(cf. [19] for analogous calculations with norms

as distances) yields the dual problem

sup	R(p,q)	 (PS) 
( p• ,q)EM 

with

R(p5 , q 5 ) =( 1 - 
i=1 j=I 

>1 

t SUP 
j=1 aiEWi - 

and

n—i	n	 -. 

	

—U—	 - 
—i +
	

( 1 -	 ã, —1 

1=1 j=l+I 
'sli>1 

	

(
E (iiii +	- 
j=i	 1=1 j=i 

1 for a 17 = 1 

<1 for &j, = 1 

M5 = (p,q) E 

The following notations hold:

q j	0,	C1jq'j K, 0 

1:(B * q -	S;iPj - 1) + 

E 0 
1=1	 I=j+I

T 
• (pt ,q) =	 , P	 .. ' 1	i,n,qi,q2,•••	, Pj E 

E Z,,,	E X'. 

• The dual product space to ([Y, X], Z) is defined by 

= ( 1 ,... ,,. . . Yi* I 	, y ,. .. , y	V5 m • ' m, 

	

nx	 nx	 fix 

	

x*x •	x*x*x*	x* 2'	3' ••• '	fl,	3,	4,..., 

z1Si,z1*2,...,zi*n,z2*1,z2*2,...,z*	 zS 2n,, mi,	mn) 

where 1'7, X,,	are the topological dual spaces to Y1 , X, Z,. 
•	and	are the dual gauges to	and	in the spaces Y and X,, respectively; 

at that	and	are defined by (3.7), depending on the definition of	and

respectively.
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• S, € L(Y' - X,') and	E L(X,' - Xi') are the adjoint operators to	and T,1,

respectively. 

• K. c x;, K, C V' and K. C Z,' are the dual cones to Kx,, K, and Kz,,, 
respectively. 

• A €	- Y)' B,', € L(Z,', -^ X;) and C,', € L(Z,', -	are the adjoint

operators to A 13 , B,, and C,,, respectively. 

The other occurring symbols were explained after the definition of M. 

5. Duality assertions 

This section is devoted to duality assertions. At first, a weak duality assertion is given. 
Although the weak duality turns out to be a consequence of the considered conjugate 
duality approach to construct the dual problem, it seems to be interesting to find a 
more direct proof which does not make use of conjugate functions and of the general 
results of conjugate duality by means of the perturbation approach. Such a direct 
derivation of the weak duality is given in the following considerations. Moreover, this 
direct proof is shorter than the extensive evaluations necessary for the construction 
of the dual problem by means of perturbation and which therefore have been omitted 
above. Further, this direct proof gives a close and clear connection between problem 
(P) and its dual problem (P') by means of a chain of estimations in order to come from 
the primal objective function to the dual objective function. 

Theorem 1. For the objective functions S and R and the constraint sets M and 
M' from problems (P) and (P') 

	

S(x,a) > R(p',q')	for all (x,a,v) E M and (p',q') € M'	(5.1) 

holds. 

Proof. Let be given (x,a,v) € M and (p',q') € M* . Because of the statement of 
problem (P),

	

S(x,a) =	(A'	- a)]' + (l,', x)) 
;=1 3=1	

(5.2) 

	

+	 'J [j(T1x, - 
1=1 j=I+1 

is valid. For a,b € R the Young inequality ab <	+	( + 1	1) is fulfilled. If — p	q 'p	q 
a > 1, then it is appointed p := a17 , a :=.A1, y j(Sj xj —a 1 ) and b : = y,',(p,',) and with 
inequality (3.8) 

a j A ij (p,', Sjj Xj — a) + (1 — a) [,'(p,')J'	" [(Sx — a)]'	(5.3)
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follows. If aij = 1, then from inequality (3.8) and because of (p*, q*) E M* , i.e. 
1, the inequality

- a)	 - a1 )	 (5.4) 

follows. For the gauge j3 and its dual gauge 5' there are analogous inequalities as (5.3) 
and (5.4). They can be produced also by using the Young inequality and inequality (3.8). 

Inequalities (5.3) and (5.4) allow to estimate the primal objective function S(x, a) 
as

m n 

S(x,a) 	(1 - 
i=1 j=1 

'	>1 

+ E E (jjpj, Sx - a) + (l, xi)) 
i=1 j=1 
fl—i n	 (5.5) 

+
1=1 j=1+I 

+ E 
1=1 j=1+I 

>1 

The assumptions (x,a,v) E M and (p,q) e M induce the inequalities 

(q j ,A j a 1 +Bx, +C,v3 +f) ^ 0.	 (5.6) 

By means of some technical calculations the following identity can be pointed out: 

n	 n	)) n-1 n 

1 ((''	-	 =	 &,jij,xj —T,x,). 
j=I	1=1	 1=j+1	 1=1 j=l+i 

Inequalities (5.5) and (5.6) and this identity imply 

In fl 

S(x,a) 	(1 

1: ( 1: Aijqtj. 

i=1 j=1 

	

-	 + 

	

-	 - 

	

i=1 j=I	 i=1 j=i
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+ E	1!1. - Bjqj) 

+	 (5.7) 

	

l=I+j	 1=1 

n-I n 

+
1=1 j=I+I 

>1 

Finally,

(cqivi) o 
iml 

and

(B j q j — aA jSp j - l) +	 - 
1=1	 1=1	 I=j+1 

holds because of (x,a,v) E M and (p* , q * ) E M* . So inequality (5.7) becomes 

S(x,a) 	
+	> (1 _&,)[7)]' 

1=1 j=I	 1=1 j=i+I 
oil>' 

—	sup	(jijpj + A j q j), ai) -	(qj,f) 

	

j1 aEW.	j=I	 i=I j=1 
R(p*,q*). 

The proof of Theorem 1 is completed I 

The next theorem makes a strong duality assertion. 

Theorem 2. Let be -oo < inf(P) = inf( ,0, )eM S(x, a) < +00 and there exists an 
admissible element (, a, ii) E Ai with 

A ii a +	+ Cij bj + fij E int(—Kz11)	
(i=li...irn)	

(5.8) 

Then there is a solution (*, ) E M of the dual problem (P) satisfying the strong 
duality assertion

inf	S(x,a)=	max R(p,q)=R(jS,4).	 (5.9) 

	

(r,a,v)EM	(p g)EM 

Remark 1. Condition (5.8) is a regularity condition, the so-called Slater condition.
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Proof of Theorem 2. According to the assumption inf(P) is finite and 

inf 
(x,a,v)EM 

S(x, a) 
= ( r,vfEM {	

- at)]	+ ( 1* , ) ) 
1=1 )1 

	

+	]' [(Tjj xj - x)}°" } 
1=1 3=1+1 

= inf(P) 

holds. If problem (P) is stable, then there is a solution (7*,*) E M* of problem (P) 
according to the Fenchel-Rockafellar duality theory fulfilling (cf. [51) 

inf S(x,a) = max R(p,q) = 

	

(za,v)EM	 (p,g)EM 

Indeed, because of the Slater condition (5.8) the stability of problem (P) can be proved. 
For this the fulfilment of two criteria for the stability of problem (P) will be shown: 
1. -oo < inf(X,O,V)EM S ( x , a) <+ 00. 

2. The subdifferential of the function N at the point (p, q) = (0,0) is non-empty, 
ÔN(0, 0) 54 0 (N is here the infimum function of the perturbation function 4' from 
Section 4, N(p,q) = lflf(xav)E(XYV) (x,a,v,p,q)). 

The first condition is an assumption of Theorem 2. The second condition is a conclusion 
from the fact that the function N is convex and continuous in (p,q) = (0,0). The 
convexity of N is easy to show because it is built by convex functions, constraints and 
perturbations. The continuity of N at (p, q) = (0,0) is implied by the Slater condition 
(5.8). So problem (P) is stable and a solution (jr , 4's ) E M* exists satisfying 

	

inf S(x, a) =(
z,aEM {

	
E
j=1(
	

H(Sx - a)]' + (1,	
) i=I  

+ E 
1=1 j=1+1 

M n 

= E (1 - 
t=1 j=1 

>1 

n—I n (5.10) 

1=1 3=1+1 
6,1>1 

-	 +	ai 

	

a,	
) 

-
i1 j=I 

The proof of Theorem 2 is completed I
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Remark 2. Let there exists a solution (! , a, ') E M of problem (F). Under the 
Slater condition (5.8) the strong duality assertion is fulfilled. So there is a solution 
(i5,4) E M for problem (P) and 

	

S(,a)=	mm	S(x,a)=	max	R(p*,q*)=R(j*,c*).	(5.11) 

	

(xa,v)EM	 (p q)EM 

With the Young inequality and inequality (3.8) the following necessary optimality con-
ditions can be derived from (5.11) in a similar way as in 1231: 

(i)c 1j ) = 0. 

(ii) ( 3 ,A& + B1 i + CiA + f) = o. 

I	[y(S, - &)]	if cx 7 > 1 
(iii) (p 1 ,S 1 x - a1 ) =

II.. y,(S31 x, - a)	 if a 13	1. 
I .X J ' [(S	- &)J" ' if a > 1 

(iv)

	

1	 if a 1 = 1. 

I AJ' -i	- 
ij)]	if &,, > 1 

(v) (p,,T1 x j - x3 ) =	-	 - 
I.. y,(T,3 x, - x3 )	 if aj, = 1. 

'.  
(vi) - (	

-& , 

	

I .X	[yij(Tjxj - 1A"	if aj3 > 1 
p,,) =

	

11	 if&13=1. 

(vii) -	 - 1 * ) +	 - >  
1=1	 1=1  

(viii) sup ^I: ( Ce jj A j jP*j +	ai = ((aii	+
1EWj=i	 3=1 

These necessary optimality conditions can be interpreted as a mixture and generalization 
of the classical Kolmogorov condition in best approximation theory and of the maxi-
mum principle in optimal control theory, and finally, of the complementary slackness 
conditions in linear programming. 

6. Conclusions and summary 

A primal control-approximation problem (P) was formulated. As distance functions 
powers of gauges were used. For problem (P) a dual problem (P) was established. By 
means of the Fenchel-Rockafellar theory of duality and former obtained results weak 
and strong duality assertions were derived. So the following results were deduced: 

1. For all elements (x,a,v) E M and (p*, q*) E M the weak duality assertion (5.1) 
holds.
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2.- If inf(P) is finite and the Slater condition (5.8) is fulfilled, then there is a solution 
(j,4) E M of the dual problem (P*) such that the strong duality assertion (5.9) is 
satisfied. If the infimum of the objective function in problem (P) is attained, then the 
strong duality assertion (5.11) and the optimality conditions (i) - (viii) are fulfilled. 

In a forthcoming paper we will apply the derived scalar duality results to the inves-
tigation of multiobjective control-approximation problems concerning vector duality. 
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