On Uniqueness Conditions for Decreasing Solutions of Semilinear Elliptic Equations

Tadie

Dedicated to my uncle Toam Chatue J.B. (†14/08/1997)

Abstract. For $f \in C([0,\infty)) \cap C^1((0,\infty))$ and b > 0, existence and uniqueness of radial solutions u = u(r) of the problem $\Delta u + f(u_+) = 0$ in \mathbb{R}^n (n > 2), u(0) = b and u'(0) = 0 are well known. The uniqueness for the above problem with boundary conditions u(R) = 0 and u'(0) = 0 is less known beside the cases where $\lim_{r\to\infty} u(r) = 0$. It is our goal to give some sufficient conditions for the uniqueness of the solutions of the problem $D_{\alpha}u + f(u_+) = 0$ (r > 0), $u(\rho) = 0$ and u'(0) = 0 based only on the evolution of the functions f(t) and $\frac{d}{dt} \frac{f(t)}{t}$.

Keywords: Semilinear elliptic equations, comparison results for nonlinear differential equations

AMS subject classification: 35 J 65, 34 B 15

1. Introduction

Let the function $f \in C([0,\infty)) \cap C^1((0,\infty))$ be such that it remains positive, or it has a finite number of positive zeros and changes its sign accross any of them. For a = n - 1 > 1 $(n \in \mathbb{N})$ and any $u_0 > 0$, the problem

$$\begin{array}{c}
D_{a}u := u'' + \frac{a}{r}u' = -f(u_{+}) \\
u(0) = u_{0} \\
u'(0) = 0
\end{array}$$
(E)

is known to have a unique solution $u \in C^2([0,\infty))$ which is positive in some interval $[0,\rho)$ [3, 6]. For $\rho > 0$, finite or not, we will investigate some uniqueness conditions for the associated problem

$$\begin{array}{c}
D_a u + f(u_+) = 0 & (r > 0) \\
u(\rho) = 0 & \\
u'(0) = 0.
\end{array}$$
(BV)_{\rho}

For ease writing, the following notations will be used:

1)
$$u_+(r) = \max\{0, u(r)\}$$
 and $F(t) = \int_0^t f(s) ds$.

Tadie: Matematisk Institut, Universitetsparken 5, 2100 Copenhagen, Denmark

- 2) $f^+ = \{t > 0 | f(t) > 0\}$ and $F^+ = \{t > 0 | F(t) > 0\}$.
- 3) $\psi(t) = \frac{d}{dt} \frac{f(t)}{t}$ and λ denotes any zero of ψ .
- 4) $\Psi(t) = \frac{f(t)}{t}, \ \psi^- = \{t > 0 | \ \psi(t) < 0\} \text{ and } \psi^+ = \{t > 0 | \ \psi(t) > 0\}.$
- 5) For connected components of ψ , define $\psi_i^{\pm} = \{(t_i, t_{i+1}) \subset \psi^{\pm} | 0 < t_i < t_{i+1} \text{ and } \psi(t_i) = \psi(t_{i+1}) = 0\}$ and similarly f_i^{\pm} .
- 6) For $s \neq t$, $\{s, t\}$ will denote the elements lying between s and t.
- 7) f will be said to satisfy the condition $|f'; \psi^+|$ or $|f'; \psi^-|$ if there exists α' and C > 0or B > 0 such that |f'| > C and $\psi^+ > B$ or $\psi^- < -B$, respectively, in $(0, \alpha']$. $|f'; \psi|_I$ will have the same definition where $I \subset \mathbb{R}_+$ replaces $(0, \alpha']$.

2. Main results

Let $\rho > 0$ be finite or not.

Theorem 1. If f(t) is decreasing in t > 0, then problem $(BV)_{\rho}$ has at most one solution.

Theorem 2. If $\frac{d}{dt} \frac{f(t)}{t} > 0$ or $\frac{d}{dt} \frac{f(t)}{t} < 0$ in t > 0, then problem $(BV)_{\rho}$ has at most one solution.

Theorem 3. Assume that $\frac{d}{dt} \frac{f(t)}{t} > 0$ in $(0, \lambda)$ and $\frac{d}{dt} \frac{f(t)}{t} < 0$ in (λ, ∞) . If $f' \leq 0$ in some interval $(0, \alpha']$ or condition $|f'; \psi^+|$ holds, then problem $(BV)_{\rho}$ has at most one solution.

Theorem 4.

(i) Assume that $\psi^- = (0, \lambda)$, $\psi^+ = (\lambda, \infty)$, f is strictly monotone in $(0, \lambda + k)$ for some k > 0 and condition $|f'; \psi^+|$ holds. Then problem $(BV)_{\rho}$ has at most one solution.

(ii) Assume that ψ has a finite number of zeros, f is strictly monotone in any $\overline{\psi_i}$ and condition $|f'; \psi^+|$ or $|f'; \psi^-|$ holds. Then problem $(BV)_{\rho}$ has at most one solution.

3. Preliminaries

Let u be a solution of problem (E), positive on $I = (r_0, r_2)$. After multiplying the equation in problem (E) by u', integration on I leads to the identity

$$\frac{u'(r_2)^2}{2} + F(u(r_2)) + a \int_{r_0}^{r_2} \frac{u'(s)^2}{s} \, ds = F(u(r_0)) + \frac{u'(r_0)^2}{2}. \tag{1}$$

Lemma 1. Let u be a solution of problem (E), non-constant in some interval $(R, R + \tau)$ with R > 0 and $\tau > 0$.

$$u'(R) = 0 \implies u(r) \neq u(R) \text{ for all } r \in (R, R + \tau),$$
 (2)

then the solutions of problem $(BV)_{\rho}$ are strictly decreasing in $(0, \rho)$.

(ii) If u is a solution of problem $(BV)_{\rho}$, then F(u(0)) > 0 and $u(0) \in f^+ \cap F^+$.

Proof. (i) It suffices to notice that for $r_0 = R$ and $r_2 > R$ in (1), one cannot have u(r) = u(R) for r > R. Let u be a solution of problem $(BV)_{\rho}$. Then from (2), u has to be decreasing in some interval (0,r), u' < 0 and decreasing as long as f(u) > 0 in (0,r). From the equation, if $u'(r_1) = 0$ for some $r_1 > 0$ $(r_1$ being the first such r), $u''(r_1) = -f(u(r_1))$. Identity (1) and (2) imply that $u(r_1)$ cannot be a local minimun and obviously nor a local maximun. This reaches a contradiction as f has only simple zeros. Thus $u'(r_1) = 0$ cannot hold.

Statement (ii) is a direct consequence of identity (1)

Lemma 2. Let u and v be two distinct solutions of problem (E) which are positive in the interval $I = (R, \rho)$. Then

$$\left\{r^a v(r)^2 \frac{u'}{v}\right\}_R^{\rho} = \int_R^{\rho} s^a uv \{\Psi(v) - \Psi(u)\} ds.$$
(3)

Consequently, if u and v are two distinct solutions of problem (E) strictly positive in I = (R, r), with u > v in I and (u'v - uv')(R) = 0, then:

- (i) $u(I) \cup v(I) \subset \psi^+ \implies \frac{u}{v}$ is strickly decreasing on I.
- (ii) $u(I) \cup v(I) \subset \psi^- \implies \frac{u}{v}$ is strickly increasing on I.

Note that the condition (u'v - uv')(R) = 0 can be replaced by $(u'v - uv')(R) \le 0$ for the case (i) and by $(u'v - uv')(R) \ge 0$ for the case (ii).

Proof. It is enough to notice that the function $W = u'v - uv' = v^2(\frac{u}{v})'$ satisfies

$$(r^a W)' = r^a uv \{\Psi(v) - \Psi(u)\} = r^a uv \left\{\frac{f(v)}{v} - \frac{f(u)}{u}\right\}$$

in (R, ρ) . For statement (i), it is enough to notice that $\Psi(v) - \Psi(u) < 0$ on I by (3) whence W < 0 on I. Statement (ii) follows from a similar argument

Lemma 3. Let u and v be two distinct solutions of problem (E) which are nonnegative in $I = (r_1, r_2)$.

(i) If $(u'v - uv')(r_1) = (u'v - uv')(r_2) = 0$ and $u'v - uv' \neq 0$ in *I*, then either ψ has a zero in $\{u(r), v(r)\}$ for $r \in I$ or u(r) = v(r) has a solution in *I*.

(ii) If $u(r_1) = v(r_1)$ and $u(r_2) = v(r_2)$, then ψ has a zero in $\{u(r), v(r)\}$ for $r < r_2$.

Proof. (i) From identity (3),

.

$$\frac{f(v)}{v}-\frac{f(u)}{u}$$

changes the sign at some $R \in I$ and either u(R) = v(R) or there exist $R_1, R_2 \in I$ such that

$$\frac{f(u(R_1))}{u(R_1)} = \frac{f(v(R_2))}{v(R_2)}.$$

The later case implies that ψ has a zero in $\{u, v\}$ for $r \in \{R_1, R_2\}$ by the mean value theorem.

(ii) Without loss of generality, suppose that u > v in I. For z(r) = u(r) - v(r), there exists $R_1 \in I$ such that

$$z'(R_1) = u'(R_1) - v'(R_1) = 0.$$

As u > v and u' < 0 in I, we have

$$(u'v - uv')(R_1) = u'(R_1)(v - u)(R_1) > 0$$

whence $u(r_2) = v(r_2)$ holds only if there exists $R_2 \in (R_1, r_2)$ such that $(u'v - uv')(R_2) = 0$. The conclusion follows from statement (i) as (u'v - uv')(0) = 0

If u and v are two distinct solutions of problem (E) and s > 0 is such that

$$U(r) = u(r) + s$$
, $V(r) = v(r) + s$, $Z(r) = u(r) - s$, $Y(r) = v(r) - s$

are positive, then

$$X'' + \frac{a}{r}X' = -f(X - s)$$
 for $X = U, V$ (4)_a

$$\Phi'' + \frac{a}{r}\Phi' = -f(\Phi + s) \qquad \text{for } \Phi = Z, Y.$$
(4)_b

The next lemma is easy to verify.

Lemma 4. For 0 < s < t, define $f_{\pm s}(t) = \frac{f(t \pm s)}{t}$. Then

$$\frac{\partial}{\partial t}f_s(t) = \frac{(t+s)^2\Psi'(t+s) - sf'(t+s)}{t^2}$$

$$\frac{\partial}{\partial t}f_{-s}(t) = \frac{(t-s)^2\Psi'(t-s) + sf'(t-s)}{t^2}.$$
(5)

Consequently, for $I_s(t) = [t, t+s]$ and $I_{-s}(t) = [t-s, t]$,

$$I_{r}(t) \subset \psi^{+} \cap \{f' \leq 0\} \implies \frac{\partial f_{s}(t)}{\partial t} > 0$$
(5)_a

$$I_{-r}(t) \subset \psi^+ \cap \{f' \ge 0\} \implies \frac{\partial f_{-s}(t)}{\partial t} > 0$$
(5)_b

$$I_{r}(t) \subset \psi^{-} \cap \{f' \ge 0\} \implies \frac{\partial f_{s}(t)}{\partial t} < 0$$

$$(5)_{c}$$

$$I_{-\tau}(t) \subset \psi^{-} \cap \{f' \le 0\} \implies \frac{\partial f_{-s}(t)}{\partial t} < 0 \tag{5}_{d}$$

for $0 < s < \tau$.

Lemma 5. Let u and v be two distinct solutions of problem (E) with meas $\{r > 0 | u(r) = v(r) > 0\} = 0$.

(i) As long as u and v remain in the same connected component of ψ , the problem u(r) = v(r) > 0 has at most one solution.

(ii) Suppose that $\psi^+ = (\lambda, A)$ and $\psi^- = (0, \lambda)$. For u and v two solutions of problem (E) with $u(A) > v(A) > \lambda$ and $(u'v - uv')(A) \le 0$, if $u(r_1) = v(r_1) \le \lambda$, then u(r) = v(r) > 0 does not hold for $r > r_1$. If in addition $f' \ge 0$ in some interval $[0, \alpha']$, then $u(r) = v(r) \ge 0$ cannot hold for $r > r_1$. Consequently, if ψ has a finite number of components, then $u(r) = v(r) \ge 0$ has a finite number of solutions.

Proof. (i) The claim follows from the fact that remaining in the same component ψ , if u - v has two distinct zeros, then $\frac{u}{v}$ is strictly monotone between them with the same value 1 in both ends. That cannot hold.

(ii) Let $u \ge v \ge \lambda$ in some subset of ψ^+ . Suppose that $u(R) = v(R) \le \lambda$ and 0 < u < v in some interval I = (R, r). Then

$$(u'v - uv')(R) = u(R)(u - v)'(R) < 0$$

as u' < v' at R. Therefore $\frac{v}{u}$ is increasing in some r > R with the value 1 at R. We have v > u as long as u > 0. If $u(\rho) = v(\rho) = 0$ and $f' \ge 0$ in some interval $[0, \alpha']$, then with Z(r) = v(r) + s and Y(r) = u(r) + s for some small s > 0 and X = Y or X = Z we have $D_a X + f(X - s) = 0$ in some interval $J = (R, \rho)$ and $Y(\rho) = Z(\rho) = s$. From $(4)_a$ and $(5)_b, (\frac{Z}{Y})' > 0$ in J conflicting with the fact that $(\frac{Z}{Y})(R) > 1$ and $\frac{Z}{Y}(\rho) = 1$. Now statement (ii) follows from the fact that no component of ψ^+ neither any of ψ^- can have more than two solutions of the problem $u(r) = v(r) \ge 0$

Lemma 6. Let u and v be two distinct solutions of problem (E), $A = \overline{u(I) \cup v(I)}$ for $I = (r_0, r_1)$ and some $J = [t_0, t_1] \subset A$ with $t_0 > \inf A$.

(i) Suppose that $A \subset \psi^+$ and

- (a) u > v and $u'v uv' \leq 0$ at r_0
- (β) $f' \leq 0$ in J or condition $|f'; \psi^+|_J$ holds.

Then $u(r) = v(r) > \inf A$ has a solution r_1 in I with $u'(r_1) \neq v'(r_1)$. If in addition $t_0 = 0$, then $u \neq v$ for $r > r_1$ as long as $u, v \ge 0$ in A.

(ii) Suppose that $A \subset \psi^-$ and

(a)
$$u > v$$
 and $u'v - uv' \ge 0$ at r_0

(β) $f' \leq 0$ in J or condition $|f'; \psi^-|_J$ holds.

Then $u > v \ge 0$ in I.

Proof. (i) From identity (3), $\frac{u}{v}$ is decreasing in ψ^+ as long as u > v > 0 there. Assume that $u > v \ge \lambda := \inf \psi^+$. Let s > 0 and t > 0 be such that $t + s \in J$ and let v(R') = s < u(R') for some R'. The functions Y = v - s and Z = u - s satisfy Y(R') = 0 and Z(R') > 0; for X = Y and X = Z we have $D_a X = -f(X + s)$ in (r_0, R') . From (5) and (5)_a, if $f' \le 0$ in J, then $(\frac{\partial}{\partial t})f_s(t) > 0$. Applying Lemma 2 to Y and Z we find that $\frac{Z}{Y}$ is decreasing in (r_0, R') which conflicts with their values at R'. The assumption cannot hold. So there is an $R'' \in I$ such that u(R'') = v(R''). As

$$(u'v - uv')(R'') = u(R'')(u - v)'(R'') < 0,$$

we have u'(R'') < v'(R'').

The second part of statement (i) follows the same process as for $s \in (0, t^2 \frac{B}{4C})$ and $s \in (0, \frac{t}{2})$,

$$\frac{\partial}{\partial t}f_s(t) > t^{-2}\left\{t^2\frac{B}{4} - sC\right\} > 0.$$

Let $u(r_1) = v(r_1)$ and u > v in (r_1, ρ) . If u = v = 0 at ρ , for W = U with U = u + s and W = V with V = v + s we have $D_a W = -f(W - s)$ in $(r_1 + s, \rho)$ and $\frac{U}{V}(r_1) = \frac{U}{V}(\rho)$. As condition $|f'; \psi^+|_J$ holds, $\frac{U}{V}$ is monotone in (r_1, ρ) and this cannot hold from their values at the both ends.

(ii) Identity (3) implies that $(\frac{u}{v})' > 0$ as long as u > v in I whence they cannot intersect there nor intersect at some r_1 with $u(r_1) = v(r_1) > 0$. Assume that $u(r_1) = v(r_1) = 0$. Let s > 0 and t > 0 such that $t-s \in J$. The functions U = u+s and V = v+s satisfy for some $R_1 > r_1$ and W = U or W = V the relation $D_aW = -f(W-s)$ in $(R_1, r_1) = K$ with $W(r_1) = s$. If $f' \leq 0$ in J, $\frac{U}{V}$ is increasing in K with a value greater than 1 at R_1 . This conflicts with their values at r_1 .

The last part follows the same process as before. In fact, for $s \in (0, \frac{t}{2})$,

$$(t-s)^2\psi(t-s) + sf'(t-s) < -t^2\frac{B}{4} + s\sup_I |f'|$$

and it suffices to take $s \in (0, t^2 \frac{B}{4C})$ for (5) and (5)_d to apply

Lemma 7. Let $A < \lambda < B$, $\psi_0^- = (A, \lambda)$, $\psi_0^+ = (\lambda, B)$, u and v two distinct solutions of problem (E) such that for some $0 \le r_1 < r_2$

- (i) $u(r_1), v(r_1) > \lambda$ and $(u'v uv')(r_1) < 0$
- (ii) $u(r_2) = v(r_2) < \lambda$ with u > v in (r_1, r_2) .

Then if f' is strictly monotone in ψ_0^- , we have $u'(r_2) < v'(r_2)$.

Proof. Let $v(r_{\lambda}) = \lambda$. As u'v - uv' = u'(v-u) + u(u-v)', (u-v)' < 0 and strictly decreasing in (r_1, r_{λ}) (see (3)). If $(u-v)'(r_2) = 0$, then by the mean value theorem, there is $R \in (r_{\lambda}, r_2)$ such that (u-v)''(R) = 0. In that case, from the equations of u and v,

$$a(u-v)'(R) = R\{f(v(R)) - f(u(R))\} < 0$$

and this cannot hold if f' < 0 in ψ_0^- whence $(u - v)'(r_2) < 0$ in this case. If f' > 0 in ψ_0^- , then $(r^a(u - v)')' < 0$ in (R, r_2) and (u - v)'(R) < 0 which leads to $(u - v)'(R_2) \le (u - v)'(R) < 0$

4. Proof of the theorems

The lemmae established in Section 3 enable us to prove now the theorems.

Proof of Theorem 1. Let u and v be two solutions of problem (E), with u > v in some interval [0, r), say. From the equations,

$$(u-v)'(r) = \int_0^r \left(\frac{s}{r}\right)^a \left\{f(v) - f(u)\right\} ds \ge 0$$

whence $u(r) - v(r) \ge u(0) - v(0) > 0$. Therefore they cannot intersect as long as $v \ge 0$

Proof of Theorem 2. 1. In any of the cases, if u > v in $[0, \rho)$ and $u(\rho) = v(\rho) = 0$, then the left-hand side of identity (3) is 0 while the right-hand side is non-zero as the integrand there does not change sign. So $u(\rho) \neq v(\rho) = 0$.

2. If there is $R \in (0, \rho)$ with u(R) = v(R) > 0 and $R_1 \in (R, \rho]$ with $u(R_1) = v(R_1)$, then there is $R_2 \in (R, R_1)$ with $(u'v - uv')(R_2) = 0$ and this cannot hold following similar an argument as in part 1

Proof of Theorem 3. Let u and v be two distinct solutions of problem (E). If there is $r < \rho$ such that u(r) = v(r), then $u(r) < \lambda$. Lemma 6/(i) implies that $r \neq \rho$

Proof of Theorem 4. 1. Let u and v be two distinct solutions of problem (E). The problem $u(r) = v(r) > \lambda$ has at most one solution by Lemma 5/(i). Lemmae 6/(ii) and 7 imply that $u(\rho) \neq v(\rho)$.

2. Lemmae 6/(i) and 7 imply that u - v changes sign accross any r where u(r) = v(r) > 0. The ends of Theorems 2 and 3 complete the proof

References

- [1] Berestycki, H., Lions, P. L. and L. A. Peletier: An ODE approach to the existence of positive solutions for semilinear problems in \mathbb{R}^n . Indiana Univ. Math. J. 30 (1981), 141 157.
- Kaper, H. G. and M. K. Kwong: Free boundary problems for Emden-Fowler equations. Diff. Int. Equ. 3 (1990), 353 - 362.
- [3] Kawano, N., Yanagida, E. and S. Yotsutani: Existence of positive entire solutions of an Emden type elliptic equations. Funkcial Ekvac. 31 (1988), 121 - 145.
- [4] McLeod, K.: Uniqueness of positive radial solutions of $\Delta u + f(u) = 0$ in \mathbb{R}^n . Part II: Trans. Amer. Math. Soc. 339 (1993), 495 505.
- [5] Peletier, L. A. and J. Serrin: Uniqueness of non-negative solutions of semilinear equations in \mathbb{R}^n , $n \ge 2$. J. Diff. Equ. 61 (1986), 380 397.
- [6] Tadie: Subhomogeneous and singular quasilinear Emden type ODE. Preprint. Copenhagen University: Preprint Nr. 11, series 1996.

Received 15.05.1998