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On Uniqueness Conditions for Decreasing Solutions
of Semilinear Elliptic Equations
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Abstract. For f € C([0,00)) N C'((0,0)) and b > 0, existence and uniqueness of radial
solutions u = u(r) of the problem Au + f(ut) = 0in R® (n > 2), u(0) = b and ©'(0) = 0 are
well known. The uniqueness for the above problem with boundary conditions u(R) = 0 and
u'(0) = 0 is less known beside the cases where lim,_.o u(r) = 0. It is our goal to give some
sufficient conditions for the uniqueness of the solutions of the problem Dou <4 f(uy) =0 (r >
0),u(p) = 0 and u'(0) = 0 based only on the evolution of the functions f(t) and & f-(-)-
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1. Introduction

Let the function f € C([0,00)) N C}((0,00)) be such that it remains positive, or it
has a finitée number of positive zeros and changes its sign accross a.ny of them. For
a=n-1>1 (n € N)and any up > 0, the problem

Dau:=u" + —u' = —fluy) _
r
u(0) = uo (E)
u'(0)=0
is known to have a unique solution u € C?%([0,00)) which is positive in some interval

[0,p) [3, 6]. For p >0, finite or not, we will investigate some umqueness conditions for
the associated problem

D,u+ fuy)=0 (r>0)
u(p) =10 ‘ _ (BV),
uw'(0)=0
For ease writing, the followmg notations will be used

1) u4(r) = max{0,u(r)} and F(t) = fo f(s)ds.
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2) ft ={t>0] f(t) >0} and F* = {t > 0] F(t) > 0}.

3) P(t) = £ "(") and A denotes any zero of 1.

4) (1) = #2, ¥~ = {t > 0] P(t) < 0} and ¥+ = {t > 0] %(t) > 0}.

5) For connected components of 1, define 1/),-* = {(ti ti+1) C ¥*|0 < t; < t;4, and
$(t:) = ¥(ti+1) = 0} and similarly f*.

6) For s #t, {s,t} will denote the elements lying between s and ¢.

7) f will be said to satisfy the condition [f'; 1| or |f'; %] if there exists o’ and C > 0
or B > 0 such that |f'| > C and ¥+ > B or %~ < —B, respectively, in (0, ).
|f';%]; will have the same definition where I C R replaces (0,a'].

2. Main results

Let p > 0 be finite or not.

Theorem 1. If f(t) 1s decreasing in t > 0, then problem (BV), has at most one
solution.

Theorem 2. If 1, 4 f(') >00 :t f(t') <0int>0, thenproblem (BV), has at most
one solution.

Theorem 3. Assume that %#') >0 in (0,)) and ﬁf—(}l <0 in () 00) Iff' <0
in some interval (0,a'] or condition |f';y*| holds, then problem (BV), has at most one
solution.

Theorem 4.

(i) Assuinc that ¥~ = (0,A), YT = (A,00), f is strictly monotone in (0,A + k)
for some k > 0 and condition |f';9*| holds. Then problem (BV), has at most one
solution.

(i) Assume that 3 has a finite number of zeros, f is strictly monotone in any '
and condition |f';¢F| or [f';4~| holds. Then problem (BV), has at most one solution.

3. Preliminaries
Let u be a solution of problem (E), positive on I = (ro,r2). After multiplying the
equation in problem (E) by ', integration on I leads to the identity

r

+Pura) +a [ X 4 = Flur) + (’;’) 1)

'(1‘2)2
2

To

Lemma 1. Let u be a solution of problcm (E), non- constant in some interval
(R,R+ 1) with R>0 and 7 > 0.

(i)._If — _ e

u(R)=0 = u(r)# u(R) for allr € (R R+71), (2)
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then the solutions of problem (BV), are strictly decreasing in (0, p).
(ii) If u is a solution of problem (BV),, then F(u(0)) > 0 and u(0) € f* N F*.

Proof. (i) It suffices to notice that for 7o = R and r > R in (1), one cannot have
u(r) = u(R) for r > R. Let u be a solution of problem (BV),. Then from (2), u has
to be decreasing in some interval (0,7), u' < 0 and decreasing as long as f(u) > 0 in
(0,r). From the equation, if u'(r;) = 0 for some r; > 0 (r; being the first such r),
u"(r1) = = f(u(r1)). Identity (1) and (2) imply that u(r;) cannot be a local minimun
and obviously nor a local maximun. This reaches a contradiction as f has only simple
zeros. Thus u'(r;) = 0 cannot hold.

Statement (ii) is a direct consequence of identity (1) il

Lemma 2. Let u and v be two distinct solutions of problem (E) which are positive
in the interval I = (R,p). Then : :

{rﬂu(r)z';"}; = /s“uv{‘ll(v) — U(u)}ds. 3)
R

Consequently, if u and v are two distinct solutions of problem (E) strictly positive in

I=(R,r), withu >v in I and (u'v — uv')(R) =0, then:
i) v(Huv(I) cypt =
i) v(Huv(I) Cyp~- =

Note that the condition (u'v—uv')(R) = 0 can be replaced by (u'v — uv')(R) <0 for the
case (i) and by (u'v — uv')(R) > 0 for the case (ii).

Proof. It is enough to notice that the function W = u'v — uv’ = v*(2)' satisfies

2 15 strickly decreasing on I.
¥

1s strickly increasing on I.
v

(r*wy = r*uv{¥(v) = ¥(u)} = r*uv {@ - Lu).}

u

in (R, p). For statement (i), it is enough to notice that ¥(v) — ¥(u) < 0 on I by (3)
whence W < 0 on I. Statement (ii) follows from a similar argument §

Lemma 3. Let u and v be two distinct solutions of problem (E) which are non-
negative in I = (r1,72).

(i) If (v'v —uwv')(r1) = (v'v — uv')(r2) = 0 and u'v — uv' # 0 in I, then either ¢
has a zero in {u(r),v(r)} for r € I or u(r) = v(r) has a solution in I.
(i) Ifu(r) = v(fl) and u(ry) = v(r2), then ¢ has a zero in {u(r),v(r)} forr < r,.
Proof. (i) From identity (3),
flv) _ f(v)
A v u
changes the sign at some R € I and either u(R) = v(R) or there exist Ry, R; € I such

that
| Fu(R)) _ fo(Ra)
u(Ry) v(R2)
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The later case implies that 1 has a zero in {u,v} for r € {R;, R2} by the mean value
theorem.

(1i) Without loss of generality, suppose that u > v in I. For 2(r) = u(r) — v(r),
there exists R, € I such that

2(R) = w/(Ry) - o'(Ry) = 0.
Asu >vand v’ <0in I, we have
(u'v - uv')(Ry) = u'(Ry)(v ~ u)(Ry) > 0

whence u(r2) = v(r2) holds only if there exists R, € (R,,r;) such that (u'v—uv')(Ry) =
0. The conclusion follows from statement (i) as (u'v — w')(0)=001

If u and v are two distinct solutions of problem (E) and s > 0 is such that
Ur)y=u(r)+s, V(r) =‘v(r) +s, Z(r)=u(r)—s, Y(r)=v(r)-s

are positive, then

a

X'+-X'=~f(X-s) forX=UV (4)a
" 4 ;(1)' =—f(®+3s) for ® =2Y. . (4)s

The next lemma is easy to verify.

Lemma 4. For 0 < s <t, define fi,(t) = ﬂ“i—’) Then

' %f,(t): (t+s) ‘Il'(t-i-t:)—sf'(t+s) o
7] _ (=)W't —s)+sf'(t—s) o
ét‘f—s(t) - 2 . )

Consequently, for I,(t) = [t,t + s] and I_,(t) = [t — s, ],

L)ycytn{f <0} = %>0 (5)a

O
2 <o BN

I_.(t)cy™n{f <0} af—;,;@ <0 (5)a

I.(tycy™n{f >0}

L) cy™n{f >0}

L1l

for0<s<r.

Lemma 5. Let u and v _be two distinct solutions_of_problem (E)_with-meas{r—>_ ... __

Ou(r) = v(r) >0} = 0.
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(i) As long as u and v remain in the same connected component of i, the problem
u(r) = v(r) > 0 has at most one solution.

(ii) Suppose that ¥+ = (A, A) and = = (0,A). For u and v two solutions of
problem (E) with u(A4) > v(A4) > X and (v'v — wv')(A4) <0, if u(r;) = v(r1) < A, then
u(r) = v(r) > 0 does not hold for r > ry. If in addition f' > 0 in some interval [0,a'],
then u(r) = v(r) > 0 cannot hold for r > ry. Consequently, if 1 has a finite number of
components, then u(r) = v(r) > 0 has a finite number of solutions.

Proof. (i) The claim follows from the fact that remaining in the same component
¥, if u — v has two distinct zeros, then ¥ is strictly monotone between them with the
same value 1 in both ends. That cannot hold.

(ii) Let w > v > XA in some subset of ¥+. Suppose that u(R) = v(R) A and
0 < u < v in some mterval I = (R,r). Then '

(u'v — uv')(R) = u(R)(u —v)'(R) <0

as u' < v' at R. Therefore ¥ is increasing in some r > R with the value 1 at R. We
have v > u as long as u > 0. If u(p) = v(p) = 0 and f’ > 0 in some interval [0, a'], then
with Z(r) = v(r) + s and Y(r) = u(r) + s for some small s >0and X =Y or X = Z
we have D, X + f( —5) = 0 in some interval J = (R, p) and Y(p) = Z(p) = s. From
(4)a and (5)s, (£)' > 0 in J conflicting with the fact that (£)(R) > 1 and Z(p)=1.
Now statement (11) follows from the fact that no component of 1t neither any of ¥~
can have more than two solutions of the problem u(r) = v(r) > 01

Lemma 6. Let u and v be two distinct solutions of problem (E), A = u(I)Uv(I)
for I = (ro,71) and some J = [to,t;] C A with to > inf A.
(i) Suppose that A C 3t and

(@) u>vandu'v—uv' <0 atrg -

(B) f' <0 in J or condition |f';%™* | holds.

Then u(r) = v(r) > inf A has a solution vy in I with u'(r1) # v'(r1). If in eddition
to=0, thenu #v forr >, as long as u,v > 0 in A,

(ii) Suppose that A C ¥~

(@) u.>v and u'v —uv' >0 at o

- (B) f' €0 in J or condition |f';%~|s holds.

Thenu>v >0l

u

Proof. (i) From identity (3), % is decreasing in %% as long as u > v > 0 there.
Assume that © > v > A := inf¢p*. Let s > 0 and ¢t > 0 be such that t + s € J and
let v(R') = s < u(R') for some R'. The functions Y = v~ s and Z = u — s satisfy
Y(R') = 0 and Z(R') > 0; for X =Y and X = Z we have D, X = —f(X +s) in
(o, R'). From (5) and (5)a, if f' < 0in J, then (&)f,(t) > 0. Applying Lemma 2 to Y
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and Z we find that % 1s decreasing in (7o, R') which conflicts with their values at R'.
The assumption cannot hold. So there is an R"” € I such that u(R") = v(R"). As

(u'v — wo')(R") = w(R")(x - v)(R") < 0,

we have u'(R") < v'(R"). .
The second part of statement (i) follows the same process as for s € (0,t2%) and
s€(0,%),

] 2 [..B '
Ef,(t) >t {t Z—SC} > 0.

Let u(ry) =v(r1)andu > vin(r;,p). Fu=v =0at p,for W=UwithU =u+s and
W =V withV =v+s we have D,W = —f(W - s) in (r; + s,p) and Y(r) = (o).
As condition |f';4%|; holds, ¥ is monotone in (ry, p) and this cannot hold from their
values at the both ends.

(i) Identity (3) implies that (%)’ > 0 as long as u > v in I whence they cannot
intersect there nor intersect at some r; with u(r;) = v(r;) > 0. Assume that u(ry) =
v(r1) = 0. Let s > 0and t > Osuch that t—s € J. The functions U = u+sand V = v+s
satisfy for some Ry > ry and W = U or W = V the relation D,W = -f(W —s) in
(Ri,m1)=K with W(r))=s. If f/<0in J, ¥ is increasing in K with a value greater
than 1 at R;. This conflicts with their values at r,. :

The last part follows the same process as before. In fact, for s € (0, )

(=L - )+ 7 (- ) < 7 +ssupl |

and it suffices to take s € (0,t2.£) for (5) and (5)4 to apply &

Lemma 7. Let A < A < B, ¢5 = (4,)), ¥ = (A, B), u and v two distinct
solutions of problem (E) such that for some 0 <1y < 1

(i) u(r1),v(r1) > A and (u'v —uv')(r;) < 0

(i) u(r) = v(r2) < A with u > v in (r1,rg).
Then if f' is strictly monotone in ¢, w:e have u'(rz2) < v'(rs).

Proof. Let v(ra) = X. As u'v—uv' = u'(v—u)+u(u—v)', (u—v)' <0 and strictly
decreasing in (ry,72) (see (3)). If (u — v)'(r2) = 0, then by the mean value theorem,

there is R € (ry,r2) such that (u — v)""(R) = 0. In that case, from the equations of u
and v,

a(u — v)'(R) = R{f(v(R)) - f(u(R))} < 0
and this cannot hold if f' < 0 in 5 whence (u — v)'(rz) < 0 in this case. If f > 0 in
¥g , then (r®(u —v)') < 0in (R,r2) and (u — v)'(R) < 0 which leads to-(u —v)'(Ry) <
(u—v)Y(R)<0W - :
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4. Proof of the theorems

B

The lemmae established in Section 3 enable us to prove now the theorems.

Proof of Theorem 1. Let u and v be two solutions of problem (E), with u > v
in some interval [0,7), say. From the equations,

r

w=of) = [ (2) 1) - ) ds 20

0

whence u(r)—v(r) > u(0)—v(0) > 0. Therefore they cannot intersect as longasv > 08

Proof of Theorem 2. 1. In any of the cases, if u > v in [0, p) and u(p) = v(p) = 0,
then the left-hand side of identity (3) is 0 while the right-hand side is non-zero as the
integrand there does not change sign. So u(p) # v(p) = 0.

2. If there is R € (0, p) with u(R) = v(R) > 0 and R; € (R, p} with u(R1) = v(&1),
then there is R, € (R, R)) with (u'v — uv')(R;) = 0 and this cannot hold following
similar an argument as in part 1 il

Proof of Theorem 3. Let u and v be two distinct solutions of problem (E). If
there is r < p such that u(r) = v(r), then u(r) < A. Lemma 6/(i) implies that r # p @

Proof of Theorem 4. 1. Let u and v be two distinct solutions of problem (E).
The problem u(r) = v(r) > A has at most one solution by Lemma 5/(i). Lemmae 6/(ii)
and 7 imply that u(p) # v(p).

2. Lemmae 6/(i) and 7 imply that u — v changes sign accross any r where u(r) =
v(r) > 0. The ends of Theorems 2 and 3 complete the proof §
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