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Abstract. For I E C([O,no)) fl C'((O,00)) and b > 0, existence and uniqueness of radial 
solutions u = u(r) of the problem Au + f(u) = 0 in R' (n > 2), u(0) = b and u'(0) = 0 are 
well known. The uniqueness for the above problem with boundary conditions u(R) = 0 and 
u'(0) = 0 is less known beside the cases where limr_oo u(r) = 0. It is our goal to give some 
sufficient conditions for the uniqueness of the solutions of the problem D0 u + f(u+) = 0 (r > 
0),u(p) = 0 and u'(0) = 0 based only on the evolution of the functions f(t) and 
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1. Introduction 

Let the function f E C([O,00)) fl C'((O,00)) be such that it remains positive, or it 
has a finite number of positive zeros and changes its sign accross any of them. For 
a=n-1>1 (neN) and any uo>0, the problem 

D0 u := u" + u' = —f(u+) 

u(0) = Uo	 (E)

u'(0) = 0 

is known to have a unique solution u E C 2 ([0, no)) which is positive in some interval 
[0, p) [3, 6]. For p > 0, finite or not, we will investigate some uniqueness conditions for 
the associated problem

Dau+f(u+)0 (r>0)) 

u(p)=0	 .	 (BV)

J 

For ease writing, the following notations will be used: 

1) u+(r) = max{0,u(r)} and F(t) = ff(s)ds. 
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2) 1+ = It > 01 1(t) > 01 and F = {t > 01 F(t) > 0}. 

3) V(t ) =j	and A denotes any zero of . 
4) (t) = 1,	= It >01 (t) <0) and + = It >01 (t) > 0). 
5) For connected components of 0, define	= {(t,,t 1 + 1 ) C 010 < t 1 < t;+' and 

= 0(t 1 + 1 ) = 01 and similarly f,. 
6) For s	t, {s, t} will denote the elements lying between s and I. 
7) f will be said to satisfy the condition lf';I or Ill ;	if there exists & and C > 0 

or B > 0 such that If'I > C and /'+ > B or b < —B, respectively, in (0,&]. 
will have the same definition where IC IR+ replaces (0,&]. 

2. Main results 

Let p > 0 be finite or not. 

Theorem 1. If f(t) is decreasing in t > 0, then problem (BV) has at most one 
solution. 

Theorem 2. If 4i!1 > 0 or	<0 in t > 0, then -problem (BV) has at most 
one solution. 

Theorem 3. Assume that 4LS! >0 in (0,A) and L!1< 0 in (A,c,o). If f' <0 
in some interval (0, &] or condition If'; holds, then problem (BV) has at most one 
solution. 

Theorem 4. 
(i) Assume that = (0, A), = (A, ), f is strictly monotone in (0, A + k) 

for some k > 0 and condition If';II holds. Then problem (BV) has at most one 
solution.

(ii) Assume that /) has a finite number of zeros, f is strictly monotone in any 
and condition If';I or f';jI holds. Then problem (BV) has at most one solution. 

3. Preliminaries 

Let u be a solution of problem (E), -positive on I = (ro,r2 ). After multiplying the 
equation in problem (E) by u', integration on I leads to the identity 

+F(u(r2))+a u'(s)2 J	ds=F(u(ro))+	
0)2.	

(1) 
U' 

2	 'S 
To 

Lemma 1. Let u be a solution of problem (E), non-constant in some interval 
(R,R+r) with R>0 andT>0. 

u'(R) = 0	u(r) 54 u(R) for all r E (R, R + r),	 (2)
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then the solutions of problem (BV) are strictly decreasing in (0, p) 

(ii) If tL is a solution of problem (BV), then F(u(0)) > 0 and u(0) E f fl Ft 

Proof. (i) It suffices to notice that for r0 = R and r2 > R in (1), one cannot have 
u(r) = u(R) for r > R. Let u be a solution of problem (BV). Then from (2), u has 
to be decreasing in some interval (0,r), u' < 0 and decreasing as long as 1(u) > 0 in 
(0,r). From the equation, if u'(r i ) = 0 for some r 1 > 0 (r i being the first such r), 
u"(r i ) = —f(u(r i )). Identity (1) and (2) imply that u(r i ) cannot be a local minimun 
and obviously nor a local maximun. This reaches a contradiction as f has only simple 
zeros. Thus u'(r i ) = 0 cannot hold. 

Statement (ii) is a direct consequence of identity (1) I 
Lemma 2. Let u and v be two distinct solutions of problem (E) which are positive 

in the interval I = (R, p). Then 

	

{ra v(r)2'} = f s 0uv{(v) - (u)}ds.	 (3) 

Consequently, if u and v are two distinct solutions of problem (E) strictly positive in 
I = (R, r), with u > v in I and (u'v - uv')(R) = 0, then: 

(i) u(I) U v(I) C	 11 is strickly decreasing on I. 

(ii) u(I) U v(I) C	 R is strickly increasing on I. 

Note that the condition (u'v - uv 1 )(R) 0 can be replaced by (u'v - uv')(R) 5 0 for the 
case (i) and by (u'v - uv')(R) ^: 0 for the case (ii). 

Proof. It is enough to notice that the function W = u'v - uv' v 2 ()' satisfies 

1 f(v) 

	

(r°W)' = r°uv{(v) -, (u)} = r uv	- 1(-u) 1
 uJ 

in (R, p). For statement (i), it is enough to notice that '11 (v) - '11 (u) < 0 on I by (3) 
whence W < 0 on I. Statement (ii) follows from a similar argument U 

Lemma 3. Let u and v be two distinct solutions of problem (E) which are non-
negative in I = (r,r2). 

(i) If (u'v - uv')(r i ) = (u'v - uv')(r2 ) = 0 and u'v - uv' 54 0 in I, then either t,& 

has a zero in {u(r),v(r)} for r E I or u(r) = v(r) has a solution in I. 

(ii) If u(r j ) = v(r i ) and u(r2 ) = v(r2 ), then has a zero in {u(r),v(r)} for r < r2. 

Proof. (i) From identity (3),

f(v)	1(u) 
V	 U 

changes the sign at some R E I and either u(R) = v(R) or there exist R 1 , R2 E I such 
that

	

	
f(u(Ri)) - f(v(R2)

u(R I ) - v(R2)
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The later case implies that 0 has a zero in {u,v} for r E {R 1 ,R2 } by the mean value 
theorem.	

•0 

(ii) Without loss of generality, suppose that u > v in I. For z(r)	u(r) - v(r), 
there exists R i E I such that

z'(Ri ) =u'(Ri ) - v'(Ri ) = 0. 

As u > v and u' < 0 in I, we have 

(u'v - uv')(R i ) = u'(Ri )(v - u)(Ri ) > 0 

whence u(r2 ) = v(r2 ) holds only if there exists R2 E (R 1 , r2 ) such that (u'v - uv')(R2 ) = 
0. The conclusion follows from statement (i) as (u'v - uv')(0) = 01 

If u and v are two distinct solutions of problem (E) and s > 0 is such that 

U(r) = u(r) + s, V(r) = v(r) + s, Z(r) = u(r) - s, Y(r) = v(r) - s 

are positive, then

X"+X'—f(X—s)	for X=U,V	 (4)a 

for =Z,Y.	 .	(4) 

The next lemma is easy to verify. 

Lemma 4. For 0 < s <t, define f±.,(t) =	Then 

•	ô	- (t + s)2 "(t + s) - .sf'(t + s) 

a	- (t—s)2i'(t_s)+sf'(j_s) 
t2

5 

Consequently, for 13 (t) = [t, t + s] and I_ 3 (t) = [t - s, 

Ir(t) c	n {f'	0} ah(t) > 0 (5)a 

'-) C	{f'	01 : aft) 
>0 (5)b 

Ir(t) c r n {f > 0} 3f3(t) 
<0 at (5) 

I_r(t) c	n {f'	0} : af(t) 
<0 (5)d 

for 0 < s < T. 
--	 _5Ldp_c two distinct soluiion& of problem .(E)_wiihmeas{r_>._..__ 

O u(r) = v(r) > 01 = 0.
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(i) As long as u and v remain in the same connected component of 0, the problem 
u(r) = v(r) > 0 has at most one solution. 

(II) Suppose that	= (A, A) and 4' = (0,.,\). For u and v two solutions of 
problem (E) with u(A) > v(A) > A and (u'v - uv')(A) 0, if u(r i ) = v(r i ) A, then 
u(r) = v(r) > 0 does not hold for r > r 1 . If in addition f' > 0 in some interval [0, ci'], 
then u(r) = v(r) ^: 0 cannot hold for r > r 1 . Consequently, if has a finite number of 
components, then u(r) = v(r) > 0 has a finite number of solutions. 

Proof. (i) The claim follows from the fact that remaining in the same component 
/, if u - v has two distinct zeros, then is strictly monotone between them with the 
same value 1 in both ends. That cannot hold. 

(ii) Let u >- v > A in some subset of	Suppose that u(R) = v(R)	A and 
0< u <v in some interval I = (R, r). Then 

(u'v - uv')(R) = u(R)(u - v)'(R) < 0 

as u' < v' at R. Therefore 11 is increasing-in some r > R with the value 1 at R. We 
have v > u as long as u > 0. If u(p) = v(p) = 0 and f' ^! 0 in some interval [0, a'], then 
with Z(r) = v(r) + .s and Y(r) = u(r) + s for some small s > 0 and X = Y or X = Z 
we have DX + f(X - s) = 0 in some interval J = (R, p) and Y(p) = Z(p) = s. From 
(4 )a and (5)b, (i. )' > 0 in J conflicting with the fact that ()(R) > 1 and 	= 1. 
Now statement (ii) follows from the fact that no component of	neither any of 
can have more than two solutions of the problem u(r) = v(r) ^: 01 

Lemma 6. Let u and v be two distinct solutions of problem (E), A = u(I) U v(I) 
for I = (ro,r i ) and some J = [t 0 , t 1 ] C A with 10 > inf A. 

(I) Suppose that A C	and 

(a) u > v and u'v - uv' <0 at r0 

(8) f' < 0 in J or condition If';bIj holds. 

Then u(r) = v(r) > inf A has a solution r 1 in I with u'(r i ) 54 v'(r i ). If in addition 
to_-0,thenuvforr>r i as long asu,v>OMA. 

(ii) Suppose that A C iIi' and 

(a) u > v and u'v - uv' > 0 at ro 

(3) f' < 0 in j or condition If';'Ii holds. 

Then u > v > 0 in I. 

Proof. (i) From identity (3),	is decreasing in ib+ as long as u > v > 0 there.
Assume that u>v?A:inf. Let s>O and t>.Obe such that t+sEJand 
let v(R') = s < u(R') for some The functions Y = v - s and Z = u - s satisfy 
Y(R') = 0 and Z(R') > 0; for X = Y and X = Z we have D. X = —f(X + s) in 
(ro,R'). From (5) and (5)a, if f' 0 in J, then ( 1 )f,(t) >0. Applying Lemma 2 to 



522	Tadie 

and Z we find that Z is decreasing in (ro, R') which conflicts with their values at R'. 
The assumption cannot hold. So there is an R" E I such that u(R") = v(R"). As 

(u'v - uv')(R") = u(R")(u - v)'(R") < 0, 

we have u'(R") < v'(R"). 
The second part of statement (i) follows the same process as for s E (0, t2 f) and 

.sE (0,f),

f3(t) > t 2 t 2 
4

- sC} > 0. 

Let u(ri)=v(ri)aridu>vin(r1,p). Ifu=v=Oatp,forWr=UwjthU_u+sand 
W = V with V = v + s we have D0 W = —f(W - s) in (r 1 + s,p) and (r1) = 
As condition If';,1'Ij holds,	is monotone in (r i ,p) and this cannot hold from their 
values at the both ends. 

(ii) Identity (3) implies that (f)' > 0 as long as u > v in I whence they cannot 
intersect there norintersect at some r 1 with u(r i ) = v(r j ) > 0. Assume that u(r i ) = 
v(r 1 )= 0. Lets >O and t> Osuch that i—sE J. ThefunctionsU =u+s and V =v+s 
satisfy for some R 1 > r i and W = U or W = V the relation DaW = —f (W - s) in 
(RI , r i ) = K with W(r i ) = s. If 1' 0 in J, is increasing in K with a value greater 
than 1 at R 1 . This conflicts with their values at r1. 

The last part follows the same process as before. In fact, for s  (0 1 01 

(I - s) 2 (t - s) + sf'(t - s) < _j2 +s sup f' 
I 

and it suffices to take .s E (0,t2) for (5) and (5)d to apply 

Lemma 7. Let A < A < B,	= (A, A), & = (A, B),, u and v two distinct
solutions of problem (E) such that for some 0 r 1 < r2 

(i) u(ri ), v(r 1 ) > A and (u'v - uv')(r i ) < 0 

(ii) u(r2 = v(r2 ) <A with u > v in (ri,r2). 

Then if f' is strictly monotone in	we have u'(r2 ) < v'(r2). 

Proof. Let v (rA) = A. As u'v — uv' = u'(v—u)+u(u—v)', (u—v)' <0 and strictly 
decreasing in (r I ,rA ) (see (3)). If (u - v)'(r2 ) = 0, then by the mean value theorem, 
there is RE (r ,\ , r2) such that (u - v)"(R) = 0. In that case, from the equations of U 
and v,

a(u - v)'(R) = R{f(v(R)) - f(u(R))} <0 

and this cannot hold if f' < 0 in 00 whence (u - v)'(r2 ) < 0 in this case. If I' > 0 in 
00 , then (ra (u - v)')'.< 0 in (R, r2 ) and (u - v)'(R) <0 which leads to- (u - v)'(R2') 
(U—v)'(R)<OI	-
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4. Proof of the theorems 

The lemmae established in Section 3 enable us to prove now the theorems. 

Proof of Theorem 1. Let u and v be two solutions of problem (E), with u > v 
in some interval [0, r), say. From the equations, 

r 

(u - v)'(r) 
= J (5 {f(v) - f(u)} ds > o 

\rI 
0 

whence u(r) - v(r) ^! u(0) - v(0) > 0. Therefore they cannot intersect as long as v 0 U 

Proof of Theorem 2. 1. In any of the cases, if  > v in [0, p) and u(p) = v(p) = 0, 
then the left-hand side of identity (3) is 0 while the right-hand side is non-zero as the 
integrand there does not change sign. So u(p) 54 v(p) = 0. 

2. If there is R € (0, p) with u(R) = v(R) > 0 and R 1 E (R, p1 with u(R I ) = 

then there is R2 € (R, R I ) with (u'v - uv')(R2 ) = 0 and this cannot hold following 
similar an argument as in part ii 

Proof of Theorem 3. Let u and v be two distinct solutions of problem (E). If 
there is r < p such that u(r) = v(r), then u(r) < A. Lemma 6/(i) implies that r 54 p  

Proof of Theorem 4. 1. Let u and v be two distinct solutions of problem (E). 
The problem u(r) = v(r) > A has at most one solution by Lemma 5/(i). Lemmae 61(u) 
and 7 imply that u(p) 0 v(p). 

2. Lemmae 61( i ) and 7 imply that u - v changes sign accross any r where u(r) = 

v(r) > 0. The ends of Theorems 2 and 3 complete the proof U 
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