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Abstract. Let u : ci -* R r ' be the solution of the nonlinear elliptic system 

- ôF(x,Vu) = f  + 

where ci C Rn is a bounded domain with a piecewise smooth boundary (e.g., ci is a polyhedron). 
It is assumed that a mixed boundary value condition is given. Global regularity results in 
Sobolev and in Nikolskii spaces are proven, in particular W' 2 (ci)]'-regu1arity (s < ) of IL. 
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0. Introduction 
We treat the nonlinear elliptic system 

—01 F1 (x,Vu) = 1(x) +ôf(x)	in ci 

U(X) = 0	 on rv	(0.1) 

on 

where ci C R'3 (n 2 3) is bounded, u ci - R i" is a vector-valued function, ô, = 
aQ = r, U r where rD is the Dirichlet boundary and Fg is the Neumann boundary, 
and ii is the outward normal of dci. We suppose that ôci is piecewise smooth (e.g., ci 
is a polyhedron or has a Lipschitz boundary). 

In this paper we investigate the regularity of the solution u of (0.1). Refining the 
method of [81 we obtain regularity results in Nikolskii spaces and in Sobolev spaces 
[W'2(ci)]", especially [W32(ci)Ireguiarity (s < ) of u up to the boundary. 
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Solutions of mixed boundary value problems in non-smooth domains may have sin-
gularities on the boundary at such points where the boundary condition is changing or 
where ôci is not smooth. 

In the case of a linear elliptic equation various authors have investigated the regu-
larity of the solution. They have given a decomposition of the solution u into a regular 
and a singular part.In particular, for ci C R2. this provides an explicit description of the 
behaviour of u near the boundary (cf. [4, 7, 9, 11]). In the case when ci C R' (n 2 3) 
there are difficulties by finding such a decomposition which describes all the singularities 
of u (see [2, 3, 10, 14, 17]). 

In the case of nonlinear equations there are only few results. Semilinear Dirich-
let problems on corner domains are treated in [12, 15] and in [5, 61, where results in 
weighted Sobolev spaces are given. Further, nonlinear mixed boundary value problems 
are investigated in [8]. Regularity results in Sobolev spaces are proven. 

In this paper we generalize some results given in [8]. Let the boundary of ci consist 
of smooth (n - 1)-dimensional manifolds with piecewise smooth boundaries such that 
each boundary manifold is either a Dirichlet or a Neumann boundary manifold. Let 
us fix some point P € au. Then we suppose that there is a ball B(P) and a smooth 
mapping which maps ci onto a domain ci such that B(P)flci is the intersection of B(P) 
and a polyhedron. In contrast to [8] we consider the case that B(P) fl Ôu contains more 
than one Dirichlet boundary manifold. Further, we admit that B(P) fl ci is probably 
not convex. But we assume that each inner angle between a Dirichlet and a Neumann 
boundary manifold is not greater than ir. 

We suppose that there is a function F(x,p) such that F(x,p) is the partial deriva-
tive of F(i, p) with respect to the component corresponding to p (here F"(x, p) denotes 
the r-th component of the vector F(x,p)). Hence, we deal with the variational case. 

The aim of this paper is to show that u € [W32(ci)]N for .s < 1 . This result is the 
best possible, for we admit that ci can be a polyhedron where the inner angle between a 
Dirichlet and a Neumann boundary manifold is equal to 7r. Otherwise, if all such angles 
are less than it, we prove that u E 12(ci) where 1-13P (ci) denotes a Nikolskii space. 
Moreover, in the case when N = 1 the solution u of equation (0.1) is Holder continuous. 
Then we show that u € LP (Q) for some p> 3. 

This paper is organized as follows. In Section 1 we state the assumptions on the 
data and the main results. Section 2 contains notations. In Section 3 the proofs of the 
main results are given. Finally, in Section 4 we explain the proofs with examples of 
tree-dimensional domains. 

1. Assumptions on the data and main results 

We need the following assumptions on the data. 

(Al) ci C R' (n 2 3) is a connected open domain with Lipschitz boundary. 

(A2) aci = UI<I<M "i ' where [', are open (n— djmsjpalmanifolds,and__ 
rnTh	0 holds for 1 j.
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(A3) or (1 i M) are (n - 2)-dimensional Lipschitz continuous manifolds. 
(A4) r 1 ,.. . , r C I'v and r + 1,. . . , rM C fAr. 
(A5) P E (lEA Of 1 implies that JAI 
(A6) To each point P E O1 there exists a mapping 4 and a ball BR(cb(P)) such that: 

(i) BR(c'(P)) fl (0) is the intersection of BR(q!(P)) and a polyhedron. 
(ii) BR(c(P)) fl q5(Ol) is simply connected. 

(iii) 0, —i E W,
2
0 (R ) and the Jacobian of 0 is positive definite. 

(iv) If F 1 E fp, f2 E rAf, and Of, n ari $ 0, then angle(q(F.), o(r)) it. 
(v) At most one pair of boundary manifolds f, r 3 (i $ j, or, n or, 0 0) satisfies 

angle((f),.(f)) = 

Remark.	 -	 -	 -	 - 
(i) By angle(q(f 1 ), o(f)) we denote the inner angle between q(f 1 )flBR (q(P)) and 

(r)nBR((P)) where it is assumed that q5(r)flBR (qf(P)) 0 0 and (Fj)flBR((P)) 
0.

(ii) We assume that the inner angle between a boundary manifold of q'(Fv) and 
another one of q(fg) is not greater than it (cf. assumption (A6)/(ii)). But it is admitted 
that the inner angle between two boundary manifolds is greater than it if there is no 
change of the boundary value condition. 

(iii) It is also possible to treat domains with a slit. Then instead of assump-
tion (A6)/(v) we need the assumption that at most one pair of boundary manifolds 
r 1 , r, (z 54 j,Brnar	0) satisfies angle((f),(f)) =r, P e {1,2}. 

Let x E	and p E RnN with components x, (1 i n) and p,r (1	r ç N), 
respectively. We suppose that there is a C 2-function F(x,p) :Q x IR nN - R such that 

vF(x,p) = F17 (x,p) for all 1 <i n and 1 <r N, where Fr (x , p) denotes the r-th 
component of F1 (x,p) E R h'. We set 

F1, (x 1 p) = —x,p), Fj,z k (x,p) = -P--F1(x,p), F(x,p) = ±Fr(xp) 
TiOx	 19Xk	 W 

for 1 < i, k	n and 1 r, .s	N. Furthermore, we suppose that there are functions 
go, g, g 1 and g,	(1	i,k	n) such that: 
(Hi) co + c I p I 2 <F(x,p) go(x) + dpi2 for go E L(1l) and c > 0. 

(H2) 1F1 ,(x,p)l	g,(x) + dpi2 for g, E L1(1l). 

(H3) F1 (x,p) :5 g(x) + d pi for g 1 E L2(l). 

(H4) IFI,xk (x,p)i	g 1, (x) + d pi for g ,,. e L2(l). 

(H5) I F(x,p)l	c. 

(H6) There is a constant k0 > 0 independent of x and p such that for all E 

Fr(P)r 
r,3=1 i,k1 

(H7) fr(x) E L2 (1l) and fir(x) E W 1,2 (l) fl L(Q) for 1 <i <n and 1 <r < N.
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Remark. Hypothesis (116) can be replaced by the weaker condition 
(H6') There are constants k0 > 0 and k 1 independent of x and p such that for all 

E [H 1
 (Q)JN 

k0 f lVI 2 dx - k1 le12dx 
<j E E F[(x, VU)a(ake3dX. 

Let us note that the changes to be made in the proofs are obvious. 

Under the above hypotheses there exists a unique weak solution u e [W"2 (l)]" of 
problem (0.1) (see [161). 

We use the usual Sobolev spaces W 3 ' P (IZ) and the Nikolskii spaces 7-1 3P (Q) (cf. [11). 
In detail, let s be no integer, let z E R', s = in + a where 0 < a < 1 and in is an 
integer, Q, = {x E Q : dist(x,ö1) ^! q}, and 1 p < oo. The spaces W-P(l) and 
W'(1?) consist of all functions u for which the norms 

l u ll W ,P ffl) = (llu .9 () +
	

inflôu(x) - ô°u(y)lP

IaI=m 	lx - ylfl+	dxdY) 

and

ll u llW.P(fl) = (11 11 11 PL,(n ) +	 f la°( + z) - Ou(x)l dx) 
I I=m o<ii< 

are finite. 
We will prove the following results: 
Theorem 1.1. 
a) The solution u of equation (0.1) satisfies 

U E [W _,,2(p)jN.	for all s <
2	

(1.1) 

b) If angle(r 1 , ci ) 0 it for each pair of boundary manifolds F 1 , I'3 (i 3, ar1nar 
0), then

E [fl2(c)]N	 (1.2) 
holds. 

Remark. 

(I) By assumption we consider the case when n 3. But our proofs of (1.1) and 
(1.2) also hold when n = 2. 

(ii) angle(I'1 ,r,) 54 it implies that angle((F 1 ),(F1 )) 96 it, for 0 is smooth. 
Using the Sobolev imbedding theorem and (1.1) we get u E [W"(l)]' for s < 

Let us note that s< 3 for rz>3. _The . nexttheorem  improves-this -result  in- the- case_ 
when N = 1.
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Theorem 1.2. Let N = 1 and let the functions g,, gj, g,, 2 , I and 1k given in 
hypotheses (Hi) - (H7) satisfy 

g 1 e L t1 (Tl),	gX,,g1Z,f,ôfk E L 7 (1l)	 (1.3) 

for 1 < i, k < n and some 6 > 0. Then there exists a constant Eo > 0 independent of n 
such that the solution u of equation (0.1) satisfies 

VuEL 3 (cl)	for s=3+eo.	 (1.4) 

Remark. The results of Theorem 1.1 and Theorem 1.2 also hold for solutions 
u(x,t) of parabolic systems. Let tL(x,0) € [ W 12 (l)] N . Then we get the results (1.1), 
(1.2), and (1.4) in the spaces [L2(0,T; W3,P(l))IN and [L2(0,T;7131)(fl))]'. 

2. Notations 

Let BR( X) = {y € R' : Ix - l < R}. The boundary of Q is piecewise smooth. By 
assumption to each point P E c9l there is a constant R0'> 0 and a W2'°°-mapping 

x -+ 

such that BR0 ( P) fl l is the intersection of BR0(P) and a polyhedron. (We use the 
denotations P = qS*(P) , 1 = *() etc. and we will write B R instead of B8(P).) 

In the sequel we suppose that P and R0 € (0, 1] are fixed such that P is the only 
vertex of B R0 (P)fl 311 or that there is no vertex of 311 in BR0 (15). Further, let P € ark 
for some kE {1,...,M}. 

We need appropriate basis vectors {(',. . . ,(') in Bj0 (P). Let A 1 , A 2 , and A3 be 
disjoint index sets (some of them possibly empty) such that U .. 1 A 1 = { 1,. . . ,n}. Let 

>0, ( = 1 for 1 i < n, and angle(( 1 ,Q) >	for 1 i < j n. We assume the 
following: 
1) y+s( 1 € ( fl U311)fory€(311flBR0 ),0<s<Ro, and 1in. 

2) If fv n B80 0, then (' ( i € A 1 ) is parallel to l'p fl B80. 

3) IfrvflB80 =0, then Ai={1,...,n}. 

4) IfiEA 1 ,y€([' D flBR0 ),s>0, and y+s('EBR0 , then y+s('Erv. 

5) If f'g fl B80 54 0, then (' (i E A2 ) is parallel to f', ( n B80. 

6) Iff'gfl BR, =O, then A2{1,...;n}. 

7) (' (i E A 2 ) satisfies 
i) angle((',rv fl BR,,) > a 
ii) y—s( 1 (11Uocl)foryE(rvflB80 ), and 0<s<Ro. 

8) If angle(red',) = r (i 54 j, f i n r, fl B8,, 0), then A 3 = { n}, otherwise A3 = 0. 

9) (" (n € A 3 ) satisfies angle( (",(F u1')nB8 0 ) & where i,j are given in 
Assumption 8).
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Remark. 
1) Let us note that there is such a basis. Some examples how to choose the basis 

vectors are given in Section 4. 
ii) We can find a constant a depending only on n and on the geometry of 31k. 


	

In the sequel let h > 0. We define Ey = y +	Ef(y) = f(y .+ a(), 

D,hf(y) = Ef(y)— t)	and	D1"f(y) = f(i) — 

and we will write Ef(y)g(y) instead of (Ef(y))g(y). 
We set R=,B=BR fll,B'=B4R fl, and 

= { Y E BR0 y 54 x + h(',x E Bno} 

= fy E BR,, \ :y = x - h(',x E BR, n 
Let TO be a cut-off function with ro	1 in B, supp7-0 = B4R, and IVroI < c, where c

depends only on R0 . By r we denote the restriction of r0 onto U 3^. 

Moreover, we need appropriate extensions of functions into 1h for i e A 2 . Let the 
function g(y) be defined on a Let z0 E ö^ fl BR,, and z0 - A E ç1-h for 0 < .\ < h. 
Then we set

g(zo -	g(zo + (').	 (2.1) 

This is an W' 2 -extension if g E W 12 (cl). In particular, it holds that 1I9IIwI.2 ( 7' ) S 
cII9II WI2(() , where the constant c depends only on the data, for a* , depends only on n 
and on the geometry of aQ.	 . 

Next, we define an appropriate extension of v = u o ()_1 into 1' for i E A 2 . Let 
yE31lflô	0< \< h, and y—( 1 E	We set 

	

v(y - A( 1 ) = 0.	 (2.2) 

This provides an W"2 -extension of v, for i E A 2 implies that (ô fl 3f") C 1'v• In 
particular, it holds for 1 r N that 

v 'lI	cv'' .2(ç_h) 

where e and c depend only on the data and v' is the r-th component of v. Thus, 
extension (2.2) is an 'H I 2 2 -extension (cf. [81).

n	 N In what follows we will write >jkl and >1r3 instead of	kl and	respec-
tively. Further, Vv is an R'-vector and 1 Vv 1 2 = E r >, Iai2 . The point denotes 
the Euclidean scalar product and c denotes a constant which will be allowed to vary 
from equation to equation.
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3. The regularity of the solution 

In this section we prove Theorem 1.1 and Theorem 1.2. 
Let A be the matrix whose elements are defined by aik= *k), where g' 

denotes the k-th component of 0'(x). Let y = i. In the sequel we only deal with 
functions defined onto ci. For simplicity we will write f(y) instead of f(()'(y)) etc. 
The function v = u o (*)_1 is the weak solution of 

-	ôj F(y, Vv) =	+	f(y)	 (3.1) 

where 6.v(y)	k alk(y)ôkV(Y). 
In detail, A is positive definite, the smallest eigenvalue A 0 > 0 depends only on the 

geometry of Oil, and

	

aik(y) EW"°°@l)	 (3.2) 

holds. Further, let us note that v(y) e [W12(cl)I1V. 

We need several propositions. 

Proposition 3.1. It holds that 

	

sup f ThID'VVI 2 dy < c	for i E A 1	 (3.3) 
0<h<4" B' 

where the constant c depends only on .R 0 and the data. 

Proof. Let 0 < h < 4R. First, we suppose that 1 E A 1 and we prove (3.3) for 
= 1. The Taylor expansion of F(y,p) (p E R N ) entails 

(p' - p)Fr (y , p) = F(y,p') - F(y,p) 

1	 (3.4) 

—p)(p' -)J (1— t)F[(y,tp' +(1 —t)p)dt. 
r,3 i,k	 0 

Let
m(h) = j(1 - t)F[(y, tE Vv + (1— t)Vv)dt 

for 1 <i,k < ri and 1 <r,s N. We set p = Vv and P' = EVv. Thus, (p' — p) = 
hDO1 v r	, hD(a i Oi v') and 

>r(	v)D(ajOjvr) = F(y, EVv)— F(y, v) 

rrs -	h (
	

D(aiiOivT)) (
	

D(akI OI v 3 )) m(h).	

(3.5) 

r,s i,k	I
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The function = rD'v is an admissible test function. Multiplying (3.1) by yields 

f Fi (y,'^v)   0,(a,r)Dv +	J, F(y, Vv) (a,r)5,Dv 
B 

= 'B' 
rf . Dv -	IB' fi . a, (a,7-Dv) 

where the point denotes the Euclidean scalar product in RN . Applying (3.5) we obtain 

(I) 
= f r	h (

	
D(aiiOivT)) (

	
D(akl0lv)) m(h)ik 

B' 

= fB' 
F(y,Ev) - F(y,Vv) - 

1:IB, rF1 (y,v) DajO,Ev h 

+ >	F1(y, Vv) . 0,(air)Dv -
	

rf . Dv + E IBI f . 0 (a1jrDv) 
ij 

=(II)+...+(VI). 

The identity D(g) D I gE + gD yields 

(I) 
=

T	h (
	

(D'a,O,E'v' + aiiD0iv')) 

x (
	

(Dak ,01 Ev + akiD0f v 3 )) m(h). 

By (3.2) and hypothesis (H5) it follows that 

r	h ( DaiI0:Evt) ( DaklOIEv 3) m(h) 

2 :5chIIVEvIIL2(B) 

and

fF3' 

r	h (
	

Dihaii0iEiIvt) (
	

(2klDlhalV3) M rs
ik 

< 
ch 

IIVEvI 2	+ 71h
JBI

 r IDVvI 2 -	1 IL2(B)
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for i > 0. Hypothesis (H6) entails 

L,T1h (a
iiDOi v r) ( akIDô1 v 5) m(h) 

2 

 LO I r>>haizD'ôivt'
2B' r i 

ko =	I 
2 J8 ,	r 

>J rhlDVvI2. 

	

- 2	B' 
Altogether we obtain

(I)  
JB I	

I -ch 

for a sufficiently small 77 > 0. Further, using Taylor expansion and summation by parts 
we get

= 'B'F(y,
'	

—F(Ey,EVv) +
	rDF(y,v) 

f ,T(1kJ0'Fx&(ty+(1_t)y,vv)dtd1y 

	

+D(rF(y,Vv)) - L	'	' 
BI	 . 

DrF(Ey,EVv) 

= (11)1' + (11) 2 + (11)3 

where (1/C denotes the k-th component of the basis vector (. Hypotheses (112) and 
(Hi) entail 

I(II) i I <5: c (1: su II g ( y + th(')II L I (B) + IIEVvII2(B.)) < c 

(11)2 = —h' f rF(y,Vv)	 (3.6) 

h	
12 

1(11 )315 C 	( 	+ EVv) 

By (3.2) and hypotheses (H3) and (H7) we get 

1(111)1	
(	

II gdIL 2 () + IIIIL 2 (B) + IIVEv II 2 ( B ) ) <c 

	

I(IV)I	c (
	

II gdII 2 (B) + I VV Il 2 (B) + IIDv II2 ( B )) <c 

	

I(V)I	(IIfII 2 ( B . ) + IIDvIIz(B)) <
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Next, summation by parts yields 

(VI) =	fBI	
ô,(ra1j)D'v-	D(ra1if) 9jE'v +	f D(ia g 1fj . ôjv) 

= (VI) 1 + ( VI) 2 + ( VI)3. 

Due to (3.2) and hypothesis (H7) we obtain 

(VI)1 1:5c
 (	

IIfiIIL 2 (B) + IIDvII2(B.)) 

2	 h2	 h2 (VI)21	
(	

IIfiIIL 2 (B') +	lI D 1 fillL 2 (B') + JIVEIVI1 L'I(B')) 

Applying hypothesis (Hi) we get for 77 > 0 

l(Vfl 3 1 =	I raf 
I,:	 I 

< 
-C --- 

- i7h 	iiii ll L o (Q h ) + if rVv
2	 (3.7)


iji 

c + -- J rF(y, Vv). 

Let i = . Then (3.6), (3.7), and hypothesis (Hi) yield 

1 f	
-	 I (11) 2 + l(VI)31 <c—	rF(y,Vv)	Co 

2h I 
hI 
'I 

Altogether we obtain assertion (3.3) for i = 1. Finally, let us note that the proof of 
(3.3) for arbitrary i E A 1 follows in the same way  

Proposition 3.2. There exists a constant c depending only on R 0 and the data 
such that

	

sup f rh ID Vt, 2 dy c	for i E A 2 .	 (3.8) 
O<h<4R B' 

Proof. Let 0 < h <4R. We give the proof of (3.8) for some fixed number i E A2, 
say 

First, we extend v into 1j' by using (2.2), and the functions F( . ,p), g, r, a (1 < 
i,k n) by using (2.1). Now, let us verify that W = —rD'v is an admissible test 
function. The conditions on (' (i E A 2 ) imply that y - h(' Vf U 311 for y E r7, n B'. 
Hence, the extension (2.2) yield 

v(y—h()=0	for yervflB',
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thus

(y) = rh (v(y - h(') - v(y)) = 0	for Y  r1, n B'. 

Multiplying (3.1) by cc and integrating over we get 

-	 Tf. Dv +	J f ô,(aürDv) +	F(y, v) fw
F(y, Vv) . (ra,)51Dv	 (39) 

=	rF1(y, Vv). [- DI 
h (ait alv) + DI h  

where we have used the identity Dj(g) = D I 
hgE 	 -i-gDj". The Taylor expansion 

of F(y,.) yields 

>>(' _p)Fr(y,p) 

= F(y,p') - F(y,p) 

-	(' - p)(p' - p) I ( i - i)(y,tp' + (1— t)p) di. 
r,,	k	 0 

We set

m(—h) = J ( i - t)'(y,tE'?v +(1 - t)Vv) di 

for 1 i,k n and 	r,s N. Let us put p= Vv and p' =EVv. Then we obtain 

-	F(y, Vv)Dj" (a1ia,vr) 

= 3(F(y,Ej'1v) - F(y,Vv)) 

-	 D (aii0ivt)) (
	

D(aktOlv3))m(_h). 

Thus, (3.9) yields 

(I) = J 7-h(> D (aiOivr)) (> D(ak:az v s )) m(—h) 
B	r,s
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=rh' (F(y, EVv) — F(y, v)) 

+ > 'B' 
7-F1 (y, 'v) . D"aj5jEv 

—	/ F(y, v) ô1(a1jr)Dv 

rf . D 1 V 

-
	I

f ô,(a1irDv) 
B'  

= (III) + ... + (VI). 

Hypothesis (HG) entails 

(I) 
^, L T hD 1 h VV D I "Vv = JB' rh	D1"(AVv'2. 

We use

'B' 
T hAD I h VV r . ADVv r	

IB' Th 
DVv2 

J T-h(Dj h A)VEj h V r . (D h A)VEj h V r Cf rh VEvnI2 

2/ h(DA)VEv T . ADV	rh VEvn l 2 + 
'B' 

Th DVvnI2 

for Y7 > 0. Putting q =	it follows that 

/c0A0 J rh Dj Vv I 2 — C. 

- 4	 B' 

Next,

	

(II) 
= - B,(	v) 

+ fB	(F(y, EVv) — F(Ey, E_ Vv) 

= (II) i + (11)2. 

Summation by parts entails 

(II)j 
=

D I h 

	

B'uB"	 S 

= -f S D I (rF(y,Vv)) +J	D I h 

	

B'uB"	 B'uB" 

= (II) + (11)12
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where
B" = { E Bft0 \B' y = x +h(',x E B'}. 

The extensions (2.1) and (2.2) entail 

1(11)111 
=	f	TF(Y,VV)	 Igol ^ IlgoII L OO ( h ) J l I <C. 

Further, using hypothesis (Hi) we obtain 

1(11)121 Cf IF(Ey,EjVv)I <cf (I E i goI + IEVvI2) 

Let 1k be the k-th component of the basis vector (1. Hypothesis (H2) and the Taylor 
expansion entail 

1(11)21	 i1 f F1 (ty + (1 - t)Ey, E l 
h

	didy 
0 

sup lI gZk( y - th(')IIL 1 (B) + IIEVvII2 

	

k 0<9<1	
L2(B)) 

C. 

By (3.2) and Hypotheses (H3) and (H7) we get 

(111)1C	11g, 112	 2	—h2 V(B' + IIII 2 (B) + IIVEvII2(B.)) 

I(IV)l	C(lIiIIi2(B) + lIIIL 2 (B) + IIDvII12(B)) 

I(V)I <c (iii 1l 2L2(B , ) + IIDvII2(B)) 

Next,
(VI) = - > L fi - Oj(a,r)D'v -	L Tailfi  . D I

 haIV 

= (VI) 1 + (VI)2. 

Due to (3.2) and Hypothesis (Hi) 

l(VI)i1	c(lIfII2(B.) + II1)lt'lIL2(B)) 

follows. Using summation by parts we obtain 

(VI)2 = -	JB I UB"
ra 11f1 .

 

= > f D_ h (raf)OE I v -
	 IB ' uB" 

 D I h 
B'uB"  

= (VI)3 + (VI)4.
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In view of hypothesis (H7) we get 

	

I(VI)31 =	
'B' 

(D(rai)f + E(ra:)Df)aiEv 
ij 

(B ) IIII IIL 2 (B') +	II D fiII2 ( B ) + II VEv I 2 L. I 2) 

C. 

The extension (2.2) yields 51 v = 0 in cZ. This implies that 

(VI) 4 = 1	 J_h ra 11f1 0,v = 0. 

Thus, the assertion follows I 
Proposition 3.3. Let A 3 = {n} and 0 < 5 < L Then there exists a constant c 

depending only on R0 , 5, and the data such that 

sup 
IBI 

h ' 6 I DVv I 2dy c. (3.10) 
O<h<4R 

The proof of this proposition follows as in [8] using (3.1), (3.3), (3.8), and Fourier 
series. 

Now, we are able to prove the main results. 
Proof of Theorem 1.1. a) Recall that Q, = {x E dist(x,acl) > i} and note 

that the basis vectors (' fulfil angle((', ( j ) > Cf for 1 i < j n, where the constant 
Cf depends only on the geometry of O1. It holds that r 1 in B. Thus, (3.3), (3.8), 
and (3.10) yield for all 6 E (0, ) 

su^[	
+	

dx < c	 (3.11) 
J((4•)(B))q 

where the constant c depends only on the data, 5, and on R0 . Further, let us note that 
Ro depends only on the shape of ôl. 

Next, there are a finite set of points { P1 ,.. . ,P} and a set of balls BR,(P) such 
that

aQ c	fl 5),	where B' = (')'(BR(P)), 

and A is the only vertex of ô in BR(PI ) or BR, (P) fl ô contains no vertex of a. 
Further, the radii R (1 i k) depend only on the data, for they are determined by 
the geometry of Q. Thus, 

u E [N_2(cl)] N	for S E (o, ) 
follows. The imbedding theorem of Nikolskii spaces into Sobolev spaces (cf. [1])


	

- W3 '()	for e > 0 
entails u E [W'2 (1)]'' for all s < . This yields assertion (1.1). 

b) Using (3.3) and (3.8) we get (3.11) for 6 = 0. Proceeding as above we obtain 
N 

	

tiE 
[ ,2( ç1)]1	 .
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Proof of Theorem 1.2. We only sketch the proof. Assumption (1.3) yields f E 
L(1l) and f, E L2 (cl) for some q >. Now, N = 1 holds. Following [13) we see that - 
u E C°'°(1) for some a > 0. Thus, we can proceed as in [8). The Holder continuity 
and the equation yield

fIVv(y)12	
dy

 Ill - 
for some e > 0. Replacing the test functions W by r	in Propositions 3.1 and 3.2 and

recalling the proof of Proposition 3.3 we get 

fB,(P)nl^
r	" hPD ' Vv I 2 <c 

for 1	i	n, 0 < r	j - and 0 < 6 < . Applying an imbedding theorem of 

Morrey-Nikolskii type we obtain the assertion I 

4. Examples 

In this section we give some explicit examples of the index sets A 1 , A2 , A3 , and the 
basis vectors (1,... 

Let Q C R3 be a polyhedron. We consider three typical situations: an edge of 
ac (Example 1), the case when angle(rv, rn-) = ir (Example 2), and a corner point 
(Example 3). 

	

Let P = (O,O,O)T, BR. = {y : J YI <}, and let ek (1	k	3) be the k-th unit 

vector in R3. 

Example 1. Let
= {y E BR. : y = 0,y > o} 

=	E BR,, : Y3 = 0 , Y1 > o} 
and

Q fl B1 = {Y E B 1 : y' > O, 3 > o}. 

Case 1: I'D flB R0 = l' and rgn BR. = r. Let us put (' = e 2 and (2 = e 3 . Then 
and 2 are parallel to ry n BR,,, thus, A 1 = {1,2}. Next, we put A 2 = {3}. We must 

choose (3 such that (3 is parallel to rN- fl BR,, and angle(( 3 , G n BR,) ) ^! a for some 
suitable large constant a > 0 (i.e., a ". ang1e(I',17)). Thus, let (3 = e3. 

Case 2: rv flBR O = 0 and rnBR. = F.1- ui'. It holds that A 1	{1,2,3}. We

must choose (' (1 < i < 3) such that 

i)y+s(E for yEôlfl BR, and 0<s<Ro 
ii) angle((' ( I  > a for 1 i <j 3 and some suitable constant a >0. 

Thus, let (' = ej for 1 < i < 3. 
Case S: rv fl BR,, = r i . u r2. and fAt fl BR. = 0. Now, it holds that A2 = 11, 2,3). 

The basis vectors (' (1 < i < 3) must fulfil
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i) y+s(' E for. y E OflBR0 and 0< s <Ro 
ii) angle((', Q) ^! a for 1 i <	3 and f >0 

iii) angle((, rD fl BRO) > as 

where a > 0 is suitable. Thus, let (1 =	+e3, 2 = e 1 + $ 3 , and (3 
e 2 + (c 1 + e3). 

Example 2. Let

flBRQ ={YEBR. :Y3>O} 

and
rD fl BR, = {y E BR,, : y3 0, yi > o} 

rgn BR,, = {y E BR,, : Y3 = o,y i <o}. 

We choose ( = e l and (2 = e 2 . Then y + (1 E r7, n BR,, holds for y E rv fl BR., 
s >0, and y+s( E BR,,. Thus, A 1 = {1,2}. Further, A 2 = 0 and A 3 = {3}. Let us 
put (3	e3- 

Example 3. Let Q = (0, 113. 

Case 1: rD = {y E 3l : Y3 = 01 and [' = a \ r D . The two vectors e 1 and e2 
are parallel torvflB R,, and e3 is parallel tor ( flB,,. Thus, let A 1 = {1,2},(' =e1, (2 = e 2 , A 2	(3), and (3 = e3. 

Case 2: rp = {y E = 0 V y = 01 and F.j = 5 \ r. Now, e 1 is parallel to 
177) n BR,,, thus, A 1 = {1} and (1 = Cl. Further, the two vectors e2 and e3 are parallel 
to r n BR0 , thus, A 2 {2, 3). We must choose (' (i = 2,3) such that 

i) angle((' , rD fl BR,,) > a 
ii) angle((2, (3) ? a 

for some suitable constant a > 0. Thus, let (2 =	+e3 and (3 = e2 + $e3. 
Case 3: r = 0 and r = 3. It holds that A 1 = {1,2,3}. Let ( = e j for 

1 <i <3. 
Case 4: rv	aci and rg = 0. Now, it holds that A 2 = {1,2,3}. We choose


(I
 

(1 < i < 3) such that 
i) angle((, rv fl BR,,) 

ii) angle((,(') a for 1 < i <	3 and a* >0 
iii) y+s('EciforyEOciflBR0andO<s<R 

where c > 0 is suitable.
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