Zeitschrift fir Analysis und ihre Anwendungen
Journal for Analysis and its Applications
Volume 18 (1999), No. 3, 539-555

Mixed Boundary Value Problems for
Nonlinear Elliptic Systems
in n-Dimensional Lipschitzian Domains

C. Ebmeyer .

Abstract. Let v : @ — R”" be the solution of the nonlinear ellipticrsystem
- aF(z,Vu) = f(z) + Y _ 8:fi(=),
i=1 =1

where Q C R™ is a bounded domain with a piecewise smooth boundary (e.g., Q is a polyhedron).
It is assumed that a mixed boundary value condition is given. Global regularity results in
Sobolev and in Nikolskii spaces are proven, in particular (W*2(Q))V -regularity (s < 2) of u.
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0. Introduction

We treat the nonlinear elliptic system

_ZaiF,'(z,vVu) = f(z) + Y 8ifi(z) in Q
i=1 . =1

u(z) =0 o on I'p (0.1)

- i Fg(z,Vu)ui = if;u,- ' on Iy
=1 i=1

where & ¢ R® (n > 3) is bounded, u : @ — R¥ is a vector-valued function, 9; = 5%,
90 = I'p UT nr where I'p is the Dirichlet boundary and Iy is the Neumann boundar'y,
and v is the outward normal of Q. We suppose that dQ is piecewise smooth (e.g., Q
is a polyhedron or has a Lipschitz boundary).

In this paper we investigate the regularity of the solution u of (0.1). Refining the
method of [8] we obtain regularity results in Nikolskii spaces and in Sobolev spaces
[W*2(Q)]V, especially [W*?(2)]V-regularity (s < £) of u up to the boundary.
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Solutions of mixed boundary value problems in non-smooth domains may have sin-
gularities on the boundary at such points where the boundary condition is changing or
where 0 is not smooth.

In the case of a linear elliptic equation various authors have investigated the regu-
larity of the solution. They have given a decomposition of the solution u into a regular
and a singular part.In particular, for @ C R2 this provides an explicit description of the
behaviour of u near the boundary (cf. [4, 7, 9, 11]). In the case when Q C R™ (n > 3)
there are difficulties by finding such a decomposition which describes all the singularities
of u (see [2, 3, 10, 14, 17)).

In the case of nonlinear equations there are only few results. Semilinear Dirich-
let problems on corner domains are treated in [12, 15] and in [5, 6], where results in

weighted Sobolev spaces are given. Further, nonlinear mixed boundary value problems
are investigated in [8]. Regularity results in Sobolev spaces are proven.,

In this paper we generalize some results given in [8]. Let the boundary of Q consist
of smooth (n — 1)-dimensional manifolds with piecewise smooth boundaries such that
each boundary manifold is either a Dirichlet or a Neumann boundary manifold. Let
us fix some point P € 9N. Then we suppose that there is a ball B(P) and a smooth
mapping which maps Q onto a domain  such that B(P)N L is the intersection of B(P)
and a polyhedron. In contrast to [8] we consider the case that B(P)NdQ contains more
than one Dirichlet boundary manifold. Further, we admit that B(P)Nn Qis probably
not convex. But we assume that each inner angle between a Dirichlet and a Neumann
boundary manifold is not greater than =.

We suppose that there is a function F(z,p) such that F!(z,p) is the partial deriva-
tive of F(z, p) with respect to the component corresponding to p! (here F{(z,p) denotes
the r-th component of the vector Fj(z,p)). Hence, we deal with the variational case.

The aim of this paper is to show that u € [W*?(Q)}V for s < 3. This result is the
best possible, for we admit that 2 can be a polyhedron where the inner angle between a
Dirichlet and a Neumann boundary manifold is equal to 7. Otherwise, if all such angles
are less than 7, we prove that u € 7'(%’2(9), where H*P(Q) denotes a Nikolskii space.
Moreover, in the case when N = 1 the solution u of equation (0.1) is Holder continuous.
Then we show that u € LP() for some p > 3.

This paper is organized as follows. In Section 1 we state the assumptions on the
data and the main results. Section 2 contains notations. In Section 3 the proofs of the
main results are given. Finally, in Section 4 we explain the proofs with examples of
tree-dimensional domains.

1. Assumptions on the data and main results

We need the followihg assumptions on the data.
(A1) Q CR" (n 2 3) is a connected open domain with Lipschitz boundary.

(A2) 89 =|J,¢;cpTi, where T; are open (n — 1)-dimensional manifolds, and——. . —

[iNT; =0 holds for i # ;.
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(A3) OIy (1 <i< M) are (n — 2)-dimensional Lipschitz continuous-manifolds.
(A4) It,..., T, cI'pand Tgyy,...,['pp C T
(A8) P €();ep O implies that [A] < n.
(A6) To each point P € 99 there exists a mapping ¢ and a ball Br(¢(P)) such that:
(i) Br(¢(P)) N $(30) is the intersection of Br(#(P)) and a polyhedron.
(ii) Br(#(P)) N ¢(9N) is simply connected.
(iii) ¢, 07 € Wﬁm‘”(ﬂ(") and the Jacobian of ¢ is positive definite.
(iv) IfT; € Tp, T'j € T, and OT; N AT # @, then angle(¢(I';), ¢(T;)) < =.
(v) At most one pair of boundary manifolds I';,T'; (i # 7,8 N 3T; # 0) satisfies
angle(¢(T':), ¢(F ) =m.
Remark. - o T

(i) By angle(¢(T';), ¢(T';)) we denote the inner angle between ¢(I';)NBr(4(P)) and
%)(Fj)ﬂBR(dJ(P)) where it is assumed that ¢(I';,)NBr(¢(P)) # 0 and ¢(T;)NBr(4(P)) #

(i) We assume that the inner angle between a boundary manifold of ¢(I'p) and
another one of ¢(I"xr) is not greater than = (cf. assumption (A6)/(ii)). But it is admitted
that the inner angle between two boundary manifolds is greater than = if there is no
change of the boundary value condition.

(iii) It is also possible to treat domains with a slit. Then instead of assump-
tion (A6)/(v) we need the assumption that at most one pair of boundary manifolds

[i,Tj (i #3,0T:NOT; # 0) satisfies angle(¢(T';), #(T;)) = pur, p € {1,2}.

Let z € Q and p € R™V with components z; (1 <i < n)andp! (1 <r < N),
respectively. We suppose that there is a C2-function F(z,p) : @ x R®M — R such that
a F(z p) = F/(z,p)forall1 <:<nand 1l <r <N, where F](z,p) denotes the r-th

component of Fi(z,p) € RN. We set

Fulan) = 3P0 Fn@p) = 5Fen) Fian) = g Fl(zp)
for1 < i,k <nandl<rs< N. Furthermore, we suppose that there are functions
90, §z;, gi and giz, (1 < i,k < n) such that:
(H1) ¢ + ch|p|? < F(z,p) < go(z) + c|p|? for go € L=(RN) and ¢} > 0.
(H2) |F;,(z,p)| < g2:(z) + clp|? for gz, € L}(9).
(H3) |Fi(z,p)| < gi(z) + clp] for gi € L*(Q).
(H4) |Fiz(2,P)| < giz.(2) + clpl for gi,z, € L2(D).
(H5) |Fi(z,p)] << |
(H6) Thereisa constant ko > 0 independent of z and p such that for all £ € R*V
N. n : ’
kole? < D > Fliz,p)ErR
ro=1ik=1

(H7) f7(z) € L*(®) and f7(z) € W'A(Q) N L®(Q) for 1<i<nand1<r< N.
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Remark. Hypothesis (H6) can be replaced by the weaker condition

(H6') There are constants ko > 0 and k, independent of z and p such that for all
§e [H (@Y

N n
ko/ |V{|2dx—k1/ |E|2dr§/ YN Flilz, Vu)aierouelda.
Q Q Q

rs=14,k=1
Let us note that the changes to be made in the proofs are obvious.

Under the above hypotheses there exists a unique weak solution u € (WHEQ)V of
problem (0.1) (see [16]).

We use the usual Sobolev spaces W*?(Q) and the Nikolskii spaces H*?(2) (cf. [1]).
In detail, let s be no integer, let 2 € R®, s = m + o where 0 < 0 < 1 and m is an
integer, 2, = {z € Q : dist(z,0Q) > 1}, and 1 < p < co. The spaces W*?(Q2) and
H*P(Q2) consist of all functions u for which the norms

1

r
_ P [0%u(z) — 0“u(y)|?
lullwe.r () = (”""wm,p(n)_'*‘ E /Q/{; o = g dzdy

lal=m
and
L
. P
[0%u(z + 2) — 8*u(z)|?
lelbense = | Il + 3 sup [ o da
|al=m o<"|x>|<q 2 .
are finite. -

We will prove the following results: -

Theorem 1.1.
a) The solution u of equation (0.1) satisfies

L w € W)Y forall s< g (1.1)
b) If angle(T;,T;) # = for each pair of boundary manifolds I';, T; (& # 7,00N0T; #

0), then .
u € [HI2(Q)N (1.2)
holds. '

Remark.

(i) By assumption we consider the case when n > 3. But our proofs of (1.1) and

(1.2) also hold when n = 2. :
(ii) angle(T';,T';) # = implies that angle(¢(T;), #(T';)) # =, for ¢ is smooth.

Using the Sobolev imbedding theorem and (1.1) we get u € (Wha(Q)]V for s < %‘1
Let us note that s < 3 for n > 3. The_next_theorem improves_this_result_in_the.case—— .- -

when N = 1.
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Theorem 1.2. Let N = 1 and let the functions gz;, 9i, 9iz., f and fr given in
hypotheses (H1) - (H7) satisfy

G €LTH(R),  geiGivess r0ifx € LTF(Q) (1.3)

for 1 < i,k < n and some § > 0. Then there ezists a constant €9 > 0 independent of n
such that the solution u of equation (0.1) satisfies

Vu € L*(Q) for s =3+¢o. (1.4)

Remark. The results of Theorem 1.1 and Theorem 1.2 also hold for solutions
u(z,t) of parabolic systems. Let u(z,0) € [W' 2(Q)]~ Then we get the results (1.1),

(1.2), and (1.4) in the spaces [L2(0,T; W””(Q))] and [L?(0,T; H* ”(Q))]

2. Notations

Let Br(z) = {y € R" : |z — y| < R}. The boundary of Q is piecewise smooth. By

assumption to each point P € 99 there is a constant Ry > 0 and a W?2:°.mapping
¢tz o1

such that BRO(P) N €0 is the intersection of Bg,(P) and a polyhedron. (We use the

denotations P = ¢*(P), Q = ¢*() etc. and we will write Bg instead of Bgr(P).)

In the sequel we suppose that P and Ry € (0, 1] are fixed such that P is the only
vertex of BRO(P) N A or that there is no vertex of 8 in Bg,(P). Further, let P e ary
for some k € {1,...,M}.

We need appropriate basis vectors {C!,...,("} in Bro(P). Let A, Az, and A3 be
disjoint index sets (some of them possibly empty) such that U}_;A; = {1,...,n}. Let
o* >0, |¢'| =1for 1 <i<n,and angle(¢!,(’) > a* for 1 <i < j < n. We assume the
following:

1) y+s¢ e (Qua) for y € (AN Br,), 0 < s < Ry,and 1 <i < n.
2) If I'p N Bg, #0, then {* (i € A) is parallel to I'p N Bg,.
3) f 'p N Bg, =0, then A; = {1,...,n}.
4) Ifi€ Ay, y€(FpNBg,),s>0,andy+sC € Bp,, then y +s¢' € I'p.
5) If PN Br, # 0, then ¢* (i € A;) is parallel to [y N Bg,.
6) If ['arN Br, =0, then Ay = {1,...;n}.
7) ¢' (i € A2) satisfies
i) angle(¢*,I'p N Bg,) > a*

i)y —s¢ ¢ (QU D) for y € (Tp N Bg,), and 0 < s < Rq.

8) If angle(Ti,L;) =7 (i # 5, 0inT;NBg, # ), then A3 = {n}, otherw1se Az =0.

9) (" (n € Aj3) satisfies angle(¢™, (F ul; jYN Bpr,) 2 a* where ¢, are given in
Assumption 8).
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. Remark.

i) Let us note that there is such a basis. Some examples how to ¢hoose the basis
vectors are given in Section 4.

ii) We can find a constant o* depending only on n a.nd on the geometry of on.

In the sequel let. h > 0. We define Efy=y+0(', E?f(y) = f(y.+ oC'),

E?f-(yl I a by =

—E~h
fo(y) _ f(y) 1}‘:’ f(y)
and we will write EY f(y)g(y) instead of (EY f(y))g(y)-

We set R=%°-,B=‘BROQ, B' = B4pN (), and
O ={veBr,:y#z+h( e B}

Qrh {yeBRO\Q y=z— h(’, xeB;{oﬂQ}

Let 79 be a cut-off function with ¢ = 1 in B, suppry = Byp, and |VT0| < ¢, where ¢
depends only on Ry. By 7 we denote the restriction of 79 onto Quaf.

Moreover, we need approprlate extensions of functions into Q horie Az. Let the

function g(y) be deﬁned on Q Let 2 € N N Bpr, and zp — A(' € Q ~h for 0 < A< h
Then we set

9020 = AC) = glz0 + ACH). R (2.1)
This is an W' ?-extension if g € W12(). In particular, it holds that {|g|| .. 2@hy S

cllgll . :2(qy)> Where the constant ¢ depends only on the data, for a* dcpends only onn
and on the geometry of 99).

Next, we define an appropriate extension of v = u o (¢*)7! into Q R for i € A,. Let
yeannan-'* 0<A<h,andy~ A € Q7" We set

oy =AY = 0. | (22

ThlS provides an W!:2.extension of v, for i € A2 implies that (89 N BQ M c Pp In
particular, it holds for 1 <r<N that

-
llv ”HQ.z(Q:A) <

where ¢ and ¢ depend only on the data and v" is the r-th component of v. Thus,
extension (2.2) is an H32-extension (cf. [8]).

In what follows we will write 3=, , ; and > ., insteadof 3_7 k1= and E, s=1> Fespec-
tively. Further, Vv is an R"M-vector and |Vv|2 DD |6v |2 The point - denotes
the Euclidean scalar product and ¢ denotes a constant which will be allowed to _vary
from equation to equation.
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3. The regularity of the solution

In this section we prove Theorem 1.1 and Theorem 1.2.

Let A be the matrix whose elements are defined by aix = ‘ain(qS"‘), where ¢**
denotes the k-th component of ¢*(z). Let y = z. In the sequel we only deal with
functions defined onto 2. For simplicity we will write f(y) instead of f((¢*)~(y)) etc.
The function v = u o (¢*)~! is the weak solution of

=D O F(y, Vo) = f(y) + 3 _0ifily) (3.1)

where 9; v(y) =3, a.k(y)akv(y)

In detail, A is positive deﬁmte, the smallest eigenvalue A\g > 0 depends only on the
geometry of 90, and

aix(y) E’W_1'°°(fl) ' : (3.2)
holds. Further, let us note that v(y) € [W!2(Q)]V.
We need several propositions.
Proposition 3.1. It holds that

sup /rh|D,'~’Vv|2dy§c for 1€ A (3.3)
0<h<4R JB o _ A

where the constant ¢ depends only on Ry and the data.

Proof. Let 0 < h < 4R. First, we suppose that 1 € A; and we prove (3.3) for
i = 1. The Taylor expansion of F(y,p) (p € R*V) entails

22 (0 - P F(v,p) = F(y,P) - F(y:p)
T (3.4)

S0 - - Pl / (1= OF (v, 15’ + (1 — t)p) dt

re i,k
Let ; :
mi3(h) =/ (1-t)F, ;(y,zE"vu+(1 — t)Vv)dt

for1<i,k<nandl1<rs<N. Weset p= Vv and p' = EFNVv. Thus, (p' - p)l =
hD23v" = 5, hD%(aidv") and

~ . R, _ Y, :
Z Z F(y,Vv)D}(audw") = Fly, E‘{ Vv)h F(y, Vo)

roql

=2 2k (Z D} (audv") ) (Z D{‘(ak,a,v’)> mik(h)-
1 |

ns ik

(3.5)
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The function ¢ = erv is an admissible test function. Multiplying (3.1) by ¢ yields

> / Fi(y,Vv) - di(aur)Div + Y / Fi(y,Vv) - (aq7)8, Dty
il VB B

= / Tf- D{'v - Z/ fi- o (a;,rD;'v)
B il 7B

where the point - denotes the Euclidean scalar product in RY. Applying (3.5) we obtain

()= /B RO (Z Df(aualv')) (Z D{'(akzaiv’)) m3i (k)
] {

s i,k

AT, _ Y, ~
=/ rF(y’E‘ vvl Fly, Vv) —Z/ TFi(y,Vv) - D*ay8 EMv
' i /B

+ Z,/B' F}(y,ev) - O(ayt)Dhv — /B, f -Dho+ Z, /B’ fi o b(auTva)

=(II)+...+(VI).

The identity D?(gg) = D*gE}G + gD"§ yields

I = /B Y D h (Z (DaudEfv" + a.-,D;'a,v'))
1 X .

rns i,k

x (Z (DtaxdiE}* + auu,“a,v’)> mif(h)
!

By (3.2) and hypothesis (H5) it follows that

/ rz Z h (Z DfaualE{'v') <Z DfakzalEf'v'> mig(h)
, - -

rs i,k

< Ch”VEfv"iz(B')

and .

_/, T Z Z h (Z D;‘ai,alE{'v'> (Z leDfalU’> m",‘:(h)
i {

rs ik

ch s \ 2
< SIVE ol + 0 [ DIV
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for n > 0. Hypothesis (H6) entails

/ T Z Z h (Z a.',Dfalv') (Z alefalv’> miz(h)
1

rs i,k ]

2
’;_0 / | ZZh (zl; a;,D{'@;v')

k r
= —;-/‘rzr:hD{'Vv" (AT A) D Vv

v

ko A2 '
> %/Irhw;'vvl".

Altogether we obtain
I = c/ Th |D{'Vv|2 —ch
BI

for a sufficiently small 7 > 0. Further, using Taylor expansion and summation by parts

we get
h<7.,) _ A I3V, -
an= | P B - BB By [ +DbF(w, Bv)

l -~
=/ TZ(”‘/ Fz.(ty+(1—t)Efy,Eva)dtdy
’ k o

+ / D (r F(y, 9v)) / D! rF(Eby, EMv)
B! B!

=)y +(II) + (U)s
where ('* denotes the k-th component of the basis vector (!. Hypotheses (H2) and
(H1) entail

I < e[S sup llgea(y + thC)llzr(ay + IEFVv]|22(p | < c
b 0<i<t

(II); = —h~"! /Q TRy, ) '(3.6)

~ |2
(i< (|E,hgo| + |Ers| ) <e.
BI

By (3.2) and hypotheses (H3) and (H7) we get
|(JIT)| < ¢ (Z I9ill32¢py + VO Z2¢pr) + HVE:'UMR(B')) <c
(V)] <c (Z ”'95“13(8') + ||6vl|§,5(3') + ||va||_§,=(a'))_ Sc

V1< e (1 + DY oI s1) < e
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Next, summation by parts yields

(V1) = Z; /E fi - di(raq) Dt — zl: /B DMraqfi)- AEM + zl: /B Dh(raaf; - )

=(VI) +(VI): + (V).

Due to (3.2) and hypothesis (H7) we obtain
(VIn|<c (Z I £ill32m0y + ||D:'v||§,=(3')> <c
(VI <c (Z ||fi||§,2(3') + Z ||D{'fi||3,=(3') + ”VEfv”i?(B')) <ec
Applying hypothesis (H1) we get for n > 0
1 Z/ Tajfi - 0
RZ an iWfi - O

c h 7,12

<c+ (,‘g_h\/ﬁ:.TF(y’vv).

I(VI)s| =

Let n = 52;1 Then (3.6), (3.7), and hypothesis (H1) yield
(11, + (V1) |<c—i/ rF(y,90) S c - 2 |0k <c
2 NEET R Jop T =T g ] =

Altogether we obtain assertion (3.3) for i = 1. Finally, let us note that the proof of
(3 3) for arbitrary i € A; follows in the same way i

~ Proposition 3.2. There ezists a constant ¢ dependmg only on Ry and the data
such that
sup / Th |D,-_"Vv|2 dy<c for 1€ A'z (3.8)
0<h<4rJB

Proof. Let 0 < h < 4R. We give the proof of {3.8) for some fixed number i € A,
say 1 = 1. _

First, we extend v into Q,_h by using (2.2), and the functions F(-,p), go, 7y aix (1<
i,k < n) by using (2.1). Now, let us verify that ¢ = —7D;*v is an admissible test
function. The conditions on ¢* (i € A;) imply that y- ¢t ¢ Q U BQ forye'pNB'.
Hence, the extension (2.2) yield

o(y—h¢)=0 foryelpnB,
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thus
o(y) =rh~} (v(y—h(')—v(y)) =0 fory € f‘pnB’_

Multiplying (3.1) by ¢ and integrating over 2 we get
- / Tf Db + Z/ fi- Oi(aqr D7) + Z/ Fi(y, Vv) - di(aur)Di v
B! il I8 it /8
= - Z/B’ Fi(y, 6v) - (raa) Dty (3.9)
il

= Z/ rF;(y,{}v) . [— Dl""(a,-galv) + Dl"‘aglE{"alv]
i 7B

where we have used the identity D *(g§) = Dl_thl_"_(}-{-ng_hg. The Taylor expansion
of F(y,-) yields

ZZ(:)’ - p)iF{(y,p)
= F(y,p') - F(y,p)

S0 - —p>k/(1—t) L(utp' + (1 - t)p) dt.

rs i1,k

[

We set

mi(—=hk) = /(l—t) T (y tET Mo 4 (1 - £)Vv) dt

forl1 <t,k<nandl1<r,s<N.Letusputp= Vo and p' =E1’"’6v. Then we obtain

- Z Z F(y,Vv)D* (aidiv")

r gl

= L (F(y, ET*Vv) — F(y, Vv))

- ZZh(ZD A (audv") )(ZI:D;"(aklazv’))mEi(—h)-

rs ik

Thus, (3.9) yields

(5 = / | th Z (Z Dy (a-:aww) ( Zurh(aua&’)) mi3(~h)

re i,k
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= / Th"l(F(y,El_hev) - F(y,%v))
+ Z, /B' rF.-(y,%v) . Dl_ha“aIEl_hv

-Z/ Fi(y, Vv) - 8aur) Dy M
il 4B

/ vf-Df
—Z/ fi - i(aur Dy o)

= (III) ¥ + (VI).
Hypothesis (H6) entails

(I > %/ ThD*Vy . D74y = k— th|D "(AVv')|
B!

We use

/ ThAD;*Vv" - ADTM V0™ > ,\g/ Th| D Vv |
’ B’ ‘
/ Th(D* A)VE " - (D" A)VE " < c/ Th|VE | < c
Bl . B’
2/ Th(Dy* A)VE M - ADTRVYT < %/ Th|VET | +n/ rh| D7V
1 [ BI
for n > 0. Putting n = °—'\Q it follows that
koAg —h 2
(N> — 1'h|D1 Vvl —c.
4 BI .

Next,

(I ='_'/BITD;"F(y,6v)+/BI 7h~1 (F(y, ET*0) - F(E; "y, E "vv))
=(II), + (II),.
Summation by parts entails
(ID), = _/‘ r D F(y, Vo)
B'uB" .
= —/ h(TF(y,Vv)) / Di*rF(EThy, Ef V)
B’UB” B'UB"

= (IDu1 + (1D
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where )
B" = {yEBRo\B':y=z+h(l,z € B'}.
The extensions (2.1) and (2.2) entail

/Q 7F(y, Vv)

I(INn| = ¢

A—h
< %/ . g0] < "golll,oe(f):.)%lﬂl | <e
-

1
Further, using hypothesis (H1) we obtain
|(IT)12| < c/ |F(E;*y, ET* V)| < c/ (IET ol + |ET Vo) < c.
B’ B’

Let ¢'* be the k-th component of the basis vector ¢!. Hypothesis (H2) and the Taylor
expansion entail

1 ,
(11).] S/ TZI(”‘I/IFz.(tyHl—t)Ef"y,Ef"%v)ldtdy
B, k
0

< c(z sup 19n(y — th) s (s + uEr"Vvuiz(B,))
= 0<t<1

<ec

By (3.2) and Hypotheses (H3) and (H7) we get

A1) < o S lolrcon + 190l + IVE olEaca ) < <
|(TV)] < C(Z Ngillz2sy) + IVOlLpy + ||D1_hv||'i=(3')) <c

V)1 < ¢ (11 + 10T *olagan) < e
Next, '

(VI) = - Z’I L, fi- 61(a,~,r)Dl‘"v - ‘Z‘;/B/ Taufi - Dl_halv

=(VI) +(VI),.
Due to (3.2) and Hypothesis (H1)

(VI < c(z 1l + uDr“vuiz(Bl)) <e

follows. Using summation by parts we obtain

(VI)2 =— Z/ Taifi- Dl_halv
o /BruB

= Z /B,UB_“ Di*(rauf)OiEf M ~ Z,:/ D (raqfiow)

il ruB"

= (VI)s + (VD).
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In view of hypothesis (H7) we get
(VD)= / (D;'*(m“)f; + E{*(rau)Di* f,-)B,E,"‘v
il 7B

< C(Z W fillZasry + Z ID7* fillta sy + ||VE1_h”||§,2(B'))
i :

<ec
The extension (2.2) yields div = 0 in Ql_h This implies that

1
(VD) = 7 ;/ﬁl—" Ta; fiOv = 0.

Thus, the assertion follows il

Proposition 3.3. Let A3 = {n} and 0 < § < 1. Then there ezists a constant c
depending only on Ry, &, and the data such that
sup / R DAT|%dy < c. (3.10)
0<h<4RJB
The proof of this proposition follows as in [8] using (3.1), (3.3), (3.8), and Fourier
series.

Now, we are able to prove the main results.

Proof of Theorem 1.1. a) Recall that Q, = {z € Q: dist(z,8Q) > n} and note
that the basis vectors ¢* fulfil angle(¢*,¢’) > a* for 1 < i < j < n,.where the constant
a* depends only on the geometry of Q. It holds that 7 = 1 in B. Thus, (3.3), (3.8),
and (3.10) yield for all § € (0, ;)

v - Vu(z)P? :
sup / [Vu(z + 2)1—6 u(z)l dz <c (3.11)
o Jen-ruay, - 12l , ' .

o< |zl<n .
where the constant ¢ depends only on the data, §, and on Ry. Further, let us note that
R, depends only on the shape of 892.

Next, there are a finite set of points {P,..., P¢} and a set of balls Br,(P;) such
that

k
o c|J(B'noQ),  where B' = (4°)""(Br,(P.)),

=1
and P; is the only vertex of 89 in Br,(P:) or Bg,(P;)N 8Q contains no vertex of 8.
Further, the radii R; (1 <i < k) depend only on the data, for they are determined by
the geometry of Q. Thus, A
ue [HEI-82Q)]"  for 5€(0,1)
follows. The imbedding theorem of Nikolskii spaces into Sobolev spaces (cf. [1])
H*"P(Q) - W*9P(Q) for e>0
entails u € [W*?(Q)]V for all s < . This yields assertion (r1).
b) Using (3.3) and (3.8) we get (3.11) for § = 0. Proceeding as above we obtain
3 9 N
uve [H22(Q)] 1 . .
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Proof of Theorem 1.2. We only sketch the proof. Assumption (1.3) yields f €
LY(Q) and f; € L29(Q) for some ¢ > 2. Now, N = 1 holds. Following [13] we see that
u € C%(Q) for some a > 0. Thus we can proceed as in [8). The Hélder continuity

and the equation yield
v 2
/ | v(g)l'l-i-?z dy -
B, (yo)nt [¥ — vol

for some € > 0. Replacing the test functions ¢ by r~¢p in Propositions 3.1 and 3.2 and
recalling the proof of Proposition 3.3 we get

/ ries "|h D"Vv| <c
B,(P)nf

forl1 <i<n 0<r< %‘1' and 0 < 6§ < -;— “Applying an imbedding theorem of
Morrey-Nikolskii type we obtain the assertion i

4. Examples

In this section we give some explicit examples of the index sets A, Az, A3, and the
basis vectors (!,...,(". :

‘Let  C R® be a polyhedron. We consider three typical situations: an edge of
0 (Example 1), the case when angle(I'p,I'x) = 7 (Example 2), and a corner point
(Example 3).

Let P =(0,0,0)T, Br, = {y : |ly|l < 3}, and let ex (1 < k < 3) be the k-th unit
vector in R3.

Example 1. Let
Fl={y€BRo=y1 =0,ys>0}

F3={y€BR°:y3 =0,y >0}

and
_QﬂB1={y€Blzy1 >0,y3>0}.

Case 1: TpNBpr, =T and TyrN Bg, = I'2. Let us put (! = e; and (2 = e3. Then
¢! and (? are parallel to I'p N By, thus, A; = {1,2}. Next, we put A, = {3}. We must
choose (2 such that (3 is parallel to I'yr N Bg, and angle(¢®,I'p N Br,) > a* for some
suitable large constant a* > 0 (i.e., a* ~ angle(T'},I'?)). Thus, let (3 = es.

Case 2: I'p N Bg, =0 and Iy N Bg, = TTUTZ It holds that Al = {1,2,3}. We
must choose ¢* (1 < i < 3) such that

y+sCe€QforyecdNBg, and 0<s < Ry
ii) angle(¢*,¢?) 2 a* for 1 <i < j < 3 and some suitable constant a* > 0.
Thus, let (* =e; for 1 <7 < 3.

Case $: T'p N Bg, = -ITUF_Z and I'xyy N Bp, = 0. Now, it holds. that A= {1,2,3}.
The basis vectors ¢* (1 < ¢ < 3) must fulfil
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i) y+ s¢* EQ—fonyGaﬂﬂBRo and 0 < s < Ry
ii) angle(¢*,¢(’) > a* for 1 <i<j<3and a* >0
iii) angle(¢*,T'p N Bp,) > a*
where a* > 0 is suitable. Thus, let ¢! = -‘2@61 +3e3, (P = ter + 3zée3, and (% =
%62 + %(61 + e3).
Example 2. Let
QN Bg, = {yeBRO : vs >0}

and
I'p N Bg, = {yEBao ty3 =0,y 20}

Tw N Br, = {y € Br, 45 = O,m <o}.

We choose (! = e; and ¢? = e;. Theny+ s¢tepN Bpg, holds for y € I'p N Bp,,
$ >0, and y + s¢* € Bg,. Thus, A} = {1,2}. Further, A = @ and A3 = {3}. Let us
put (3 = e3.

Example 3. Let Q = [0,1)°.

Case 1: I'p = {y € 90 : y3 =0} and I'y = 92 \ I'p. The two vectors e; and e
are parallel to I'p N Bg, and e; is parallel to T'yr N Bg,. Thus, let A; = {1,2}, ¢! = e,
(*=e2, A2 = {3}, and (* = 3.

Case 2: Tp ={y€dQ:y, =0Vy; =0} and Ty = 0Q \T'p. Now, e, is pa.ra.llél to
Fp N Bp,, thus, A} = {1} and ¢! = e,;. Further, the two vectors e; and e3 are parallel
to & N Bp,, thus, A, = {2,3}. We must choose (* (i = 2,3) such that .

i) angle(¢*,Tp N Bg,) > a*
ii) angle(¢?,¢%) > o*
for some suitable constant a* > 0. 4Thus, let (2 = 32éeg + %63 and (3 = %62 + 32563.

Case §: I'p = @ and ['yy = 9Q. It holds that A, = {1,2,3}. Let ¢' = ¢; for
1<:<3.

Case §: Tp = 09 and Ty = 0. Now, it holds that A, = {1,2,3}. We choose
¢* (1<i<3)such that -

i) angle(¢',p N Bg,) 2 a*
i) angle(¢*,¢’) > a* for 1<i< j<3anda® >0
i) y+s¢' € Qfory € QN Bpr, and 0 < s < Ry

where a* > 0 is suitable.
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