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Abstract. We obtain a characterization of non-negative double sequences V (V(n 1 , rz 2 )),, 
and U = (U(n i , n 2 )), 1 ,, 2 for which the two-dimensional discrete Hardy operator H is bounded 
from 9(V) into £5 (U) whenever 1 <p < q < oo. 
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1. Introduction 
The discrete two-dimensional Hardy operator is defined by 

(H1P)(ni,n2) = E E J 112	(ni,n2 e N0). 
i i =0 i2=0 

For the sake of simplicity and as in the continuous case, the non-negative double se- 
quence Fi, i, is merely denoted by (i 1 , i2). 

Our purpose in this work is to derive necessary and sufficient condition on non-
negative double sequences U(n i , n 2 ) and V(n i , n2 ) for which there is a constant C > 0 
such that 

	

(

oo no	 no no (HF)(nI,n2)U(nI,n2))	c(	> 11'(n i n 2 )V(nn)) '	(1.1)


	

n 1 0 n 2 0	 n,=0 n2=0 

for all double sequences (,.) > 0 and with 1 < p	q < co. As in the continuous 
setting, U( . ,.) and V( . ,.) will be called weights. As a rule, the boundedness (1.1) will 
be also denoted by H :	-+ 

Inequality (1.1) is involved in many parts of Analysis as in questions of convergence 
and summability of double series, and in analysis of random walks on infinite graphs [2, 
5, 7]. 
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According to B. Pachpatte [7], the boundedness H : £, —' £ is true for V(n i ,n2 ) = 
1 and U(n 1 , n 2 ) = n'n' with I <p < . Later D. Y. Hwang [2] proved that H : £, - 
ep whenever U(n i ,n2 ) = A i (n i )A(n2 )[A 1 (1) + ... + A i ( n i )][A 2 (1) + ... + A2(ri2)]P 
and V(n i ,n2 ) = [A 1 (n 1 )A 2 (n2 )]' P with A i (n i ) and .X 2 (n2 ) > 0. So for this case the 
inequality in question is a two-dimensional version of the well-known Copson inequality 

k 00 

{	

A	(P)" 
>	 (p(k) > 0) 

k=1 1=1	[Ai+...+At)P	1 k=I 

Recently Z. Németh [6] proved that H £, — £, whenever V(n i , n 2 ) = vi(ni)v2(n2) 
and v i ( n 1 ), v2 (n2 ) are quasi-geometrically decreasing. 

For all of these quoted results in [2, 6, 7] the weights are of product types in 
the sense that V(n i ,ri 2 ) = v 1 (ri 1 )v2 (n2 ) and U(n i ,n 2 ) = u 1 (n 1 )u 2 (n2 ). These two-
dimensional results with weights of product types are actually consequences of the 
one-dimensional ones [4]. And the crux of the matter is about weights not of prod-
uct types like W(n i ,n2 ) = (n 1 + n2)3(flh+02) and W(n j ,n2 ) = (n i + n2)_(fli+fl2). A 
first investigation in this direction was done by A. Kamaly and the author in [4]. 

In this work we find a necessary and sufficient condition on weights U( . ,.) and V(.,.) 
for which H t, —+ £. Indeed, until this paper, a characterization result seems not 
available in the literature. However, the analogue integral inequality 

1. 

J

C'0	Ij q (100
.L I 1Y21Th(i12] u(xix2)dxidx2)

	

(Vf(.,.)>O)	(1.2) 

<C(jffP(xi,x2)v(xi,x2)dxidx2) 

was already solved fifteen years ago by E. Sawyer [8]. Consequently, the present work 
aims to fill this gap between the discrete inequality (1.1) and its continuous version 
(1.2): To derive the characterization for H £, — £, as in [3] (see Section 3), our idea 
will make use of the fact that there is some equivalence between (1.1) and (1.2) for some 
judicious choice of the weights u( . ,.) and v(.,.). 

Our results are stated in the next Section 2, and their proofs will be performed in 
Section 3. 

2. The results 
Throughout this paper it is always assumed that 

l<pq<oo,	 q'=-1--

	

p—i	q-1 
and

are weight functions defined on N. 

To simplify and avoid some inconsistencies, it will be supposed that V(n i , ri2 ) 0 0.
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Recall that our purpose in this work is to derive a characterization of weights 
U(n j ,ri2 ) and V(n i ,ri2 ) for which H: £, —+ £. This last means that for some constant 
c>o 

( 
 1 

' (H1)(ni,n2)U(ni,n2))	c(	1J'(nin2)V(nin2))	(2.1) 
n 1 =0 n 2 =0	 n, =0 n2=0 

for all double sequences F( . ,.) > 0. 

Our main result reads as follows. 

Theorem 2.1. Suppose that H : ep —* £. Then for some constant A > 0 the three 
conditions	 -	- 

(

co	oc( U(nI,fl2))>	> V'"(rnim2))" 
n j =N 1 n 2 N2	 ,n10 m2=0	 (2.2) 

A for all integers N 1 , N2 ^! 0 

(jj[J

R1 R2 	x2 	 q XI

 j 
V1 X2

	tz(xi,x2)dxidx2)	

23 
 ^ A(IR, fR 2

 
v 1_7'(x i ,12 )dx I dx 2)	forallRi,R2>0 

00 00 (00Z00	 P 

/	 u(yi,y2)dyidy2	v1'(xi,x2)dxjdx2
R1 	Z1	 2	 /	

(24) 
7(00 

JR2

00
A( / 	u(x i ,x 2 )dxdx 2 )	fr allR1,R2>0. 

\JR 1 	 I 

are satisfied with weights u(x i ,x 2 ) and v(x i ,x 2 ) defined by 

00 00 

	

u(x 1 ,x2) = E E U(m i , m2) lI lm i ,mi+1)x[m2,m2+1)(X1, :1:2)	(2.5) 
M 1 =0 m2=0 

00	00 

v(x i , x 2 ) = 	E V(rn i , m2)l[[mi ,mi+1)x(m2,m3+I)(11 , x 2 -).	(2.6) 
m 1 =0 m2=0 

Here 1I[m1,ini+1)x[m2,m2+1) denotes the characteristic function of the rectangle [rni,mi+ 
1)x[m 2 ,m2 +1). And actually in these conditions, A = C provided that C is the constant 
involved in (2.1). 

Conversely, the bound edness H : t,.
—*

 £q -does hold whenever all conditions (2.2) — 
(2.4) are satisfied. Precisely, (2.1) remains true with C = c(p,q)A where c(p,q) > 0 
depends only on the indexes p and q.
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However, it is still an open problem whether conditions (2.3) and (2.4) respectively 
can be replaced by 

1 N1 N2	n1	n2 ] q 
V'"(m i ,m2 ) U(nin2)) 

n 1 =0n 2 =0 m,=O m2=0	 .	
.	(2.7) 

:5 A(	V1'(mim2))	for all integers N1 , N2 ^! 
m 1 =O m2=O 

and

(	>; [	
U(mi,m2)]V1_P'(ni,n2))" 

n,=N, n 2 =N2 m,=n 1 m2=n2	
(2.8) 

A(	 U(mi,m2))	for all integers N1 , N2 ^! o. 
m,=N, m2=N2 

Although a characterization result is theoretically of great interest, it would be noted 
that a necessary and sufficient condition as the one obtained in Theorem 2.1 is not in 
general easy to handle in explicit computations. It means that other investigations on 
sufficient conditions (easily computable) for H £, - deserve to be done. This will 
be achieved by the author in a forthcoming paper. 

For many problems in analysis in product spaces, it is useful to consider variants of 
the operator H like

00	00 

	

(HF)(n 1 , 722) =	.F(ii, i2) 

	

l	T1 272 

(H 1 .))(n i , n 2 ) = E  
i j =O '22 

	

(H i F)(n i , n 2 ) =	 .F(i, i2). 
s i =n i t2=O 

A characterization for H. £, - can be immediately obtained by using the above 
Theorem 2.1. Indeed, by duality arguments, the former boundedness is equivalent to 
H where pi = q', qi = p' (so pi :^ qi) and Vi(ni,n2) = U1_'(n1,n2), 
Ui (n i , n 2 ) = V1_P'(n1,n2)., 

Our next result is related to the boundedness H 1 : fp- 
Theorem 2.2. Suppose that H 1 : £, - £7,,. Then for some constant A > 0 the 

three conditions

/ N2	 '	N, 

	

U(n,fl2))(	
V'(rnim2)) (2.9) 

n,=N, n 2 0	 mj=Q m2=N2 

< A for all integers N1 , N2 > 0
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(10	

p
v1 	(yj,y2 )dy i dy2 u(xi,x2)dxidx2 

 2	Jo Jz 2	 /	
(2.10) 

<A
 (1

R1 

0 	R2 v1_P(xi,x2)dxidx2)	for all Ri,R2>0


UR

00 R2	.00 	

P/	/J

Z2
u(y i ,y2 )dy i dy2 v1'(xix2)dxidx2)

1 0	
(2 11) 

<A(J
oo j u(x i x 2 )dx i dx 2)	for all R1,R2>0


are satisfied with weights u(x 1 ,x 2 ) and v(x j ,x 2 ) defined as in (2.5) and (2.6). And 
actually, in these conditions, A = C provided that C is the constant involved in H1. 

Conversely, the boundedness H 1 , : £, —+ £ does hold whenever all the conditions 
(2.9) —(2.11) are satisfied. Precisely, the constant involved in the bound edness takes the 
form C = c(p,q)A where c(p,q) >0 only depends onthe indexes p and q. 

A characterization for H.. 1 : RP —	can be deduced (by duality argument) from 
this last result, since this boundedness is equivalent to H 1 . :	—	where p, q i and

U i (n i ,n2 ),V i (n i ,n 2 ) are defined as above. 

3. Proofs of results 

In this section we will give the details of the proof of Theorem 2.1 and sketch the 
arguments for Theorem 2.2. 

Proof of Theorem 2.1. For convenience the inequality 

	

(1 00 1 00	(ZI fZ2	

9 j J f(yi,y2)dyidy2u(xi,x2)dxidx2 

	

  ° 	 (31 

	

(10,
C

	
f(xj,x2)v(xi,x2)dxidx2 )	for allf( .. ) ^0


 0	 / 

will be denoted by H	—	Our plan is to prove Theorem 2.1 as follows. 
A) First we show that the boundedness H : __+ £ implies condition (2.2) and 

H : LP -, L where the weights u(x i ,x2 ) and v(x i ,x 2 ) are defined from U(ni,n2) 
and V(n j ,n 2 ) as in identities (2.5) and (2.6). Thus conditions (2.3) and (2.4) follow 
readily from the boundedness H L —* as it is well-known in [8]. Consequently, 
the necessary part in the theorem is verified: 

B) Next we check that condition (2.2) implies 

	

IR,

00 p 00	 \ f 1R, pR

/u(xi,x2)dxidx2 ) (J	J	v 1 '(x 1 ,x2 )dx i dx2 	<A	(3.2)


	

 JR2	 / \ 0	o
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for all R 1 , R2 > 0. Then, because of [8: Theorem 11, the boundedness H : LP -+ 
does hold under conditions (2.3), (2.4) and (3.2). 

C) Finally, we prove that condition (2.2) and H : LP -+ L q lead to the boundedness 
H : £, - £. Therefore steps B) and C) yield the proof of the sufficient part in the 
theorem. 

Proof of Part A. Suppose that H : £, — £. It means that inequality (2.1) is 
true for some constant C > 0. Consider integers N1 , N2 ^! 0. Applying (2.1) for any 
non-negative (double) sequence .F(n i ,n2 ) whose support is {0,. . . ,N1 } x 10,.. . ,N21, 
then

(

NiN2 

F(mi,m))( 
m 1 =O m 2 =0	 n,=N, n2=N2	

(3.3)
N1 N2
P(mim)V(nn)) 

m,=0m2=O 

This last inequality implies immediately condition (2.2) (with A = C) by taking (nj, 
n2 ) = V' P' (n i ,n2 ) in its support {0,.. . , N1 } x {O,. .. , N2 } and by using the identity 
0 — p')p + 1 = 0 - p'). 

Next the boundedness H : LP - L is implied by H : £, -'	as the following

chain of computation shows: 

1000L00 [f1
	

dxj 

00 00 ,ni+1 f n 2+ 1 	fZ2	 q
 j	

[JZI
f(yi,yz)dyidy2 u(xj,x2)dxdx2 

n,=O n2=O flj   
00 00	,nj+1,n2+1	 q (In,+ 1 ,n2+1

 f(yi,y2)dyidy2 
	J	u(xi,x2)dx1dx2 

	

n 1 =0 n2=0 00	 j	T12 

	

= >; >2; [t	.F(mi,m2)}U(ni,ri2) 
n 1 =0 na=O m 1 =0 m2=0 

(by using (2.5) and setting Y(m j ,m2)=f" +1 f 24 f(vi , y2) dyidy2) 

FP(n1n2)V(n1,n2)) 
n 1 =O n,0 

(due to the boundednes H: -Iu' with the constant c>o) 
/ 00 00 (In,+1 

C 	
jn2+1 

f(xi,x2)v(xj,x2)dx1dx2 

	

ni=O n20	 1	 2 

/ r fl l+ I jn 2+ 1	
,x V(ni n 2 )(J

	
v'_P(i2)dy1dy2)	

) 
(by the definttion of Y(m 1 ,m 2 ) and using the Holder inequality)



Inequalities for Two-Dimensional Hardy Operators	563 

= 
cq(f00j00fP(x11x2)v(x1,x2)dx1dx2) 

(since V(ni ,2 f:,'" f:: +l v' ' (y, ,y) dy,dy2)''=1) 

Proof of Part B. To check inequality (3.2), let us consider R 1 , R2 > 0 such that 
Ni :S R <N 1 + 1 and N2 112 <N2 + 1 for some integers N 1 , N2 ^! 0. Then condition 
(2.2), with the constant A > 0, leads to the test inequality (3.2) with the same constant 
since

(00

I JR'020
u(xi,x2)dxidx2 

	J u(xi,x2)dxidx2 R 1 	 N, N2 

	

O	

Co 

jnj+1 n2+1

 J	
u(x1,r2)dxidx2 

n i =N 1 n2=N2 

	

00	00 

=

	

	U(ni,nz) 
n,=N, n2=N2 

and
H1 H 2 	N2+1

j j 
v1_P'(x11x2)dx1dx2 

IN^+i

 S j	
v1P'(x1,x2)dx1dx2 

N i N2   

	

=	> 
jn,+1 jn2+1 

v1_'(x1,x2)dx1dx2 

ni=0 n20 ''	l2 

N i N2 

	

=	V"(ni,n2). 
n 1 0 n20 

Proof of Part C. First some remarks can be done. For instance, (2.2) implies 
that for some A > 0 

/00	 \I1NI 

	

U(n i N2 ))	V'" (M I 1 N2 )) <A	(3.4) 
M1=0 

/ 
co	 (\i/N2	, 

	

U(Nin2)) (\	V'" (NI M2)<A	(3.5) 
n 2 ''N2	 m2=0 

for all N1 , N2 E N0 . It is well-known that condition (3.4) implies the one-dimensional 
discrete weighted Hady inequality 

co	fli	 q	 / 00 

	

p ' (rn) U(n i N2 ))	coA(	c(ni)V(niN2) 	(3.6) 
n,0 m,0	 n,=0 

for all	0, where CO = co(p,q) = (1 + 2 )(1 +	71 . Similarly, from condition 
(3.5) then 

([	
2(m2)]9U(Nj,n2))	

coA(	n2)V(NIn2))	(3.7) 
n 2 = 0 m 2 =0	 n20
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for all p2() > 0. 
Next we are now in the position to derive the boundedness H:	- £ by using 

condition (2.2) and H:	- L. To do this let us split things as 
cc ca

(H))(n1,n2)U(nj,n2) 
n 1 =O n2=0

Co	00 r fll	fl2 

= E 	I	 i F(rnim2)]U(nin2)	
(3.8) 

n,=O n,=0 'm 1 =0 m2=0 

= 51+52+53+54 
with

S =.(0,0)U(0,0) 

52 =	[ > .F(O,m2)JU(O,n2) 
n 2 =0 m2=0 

53=	[ > F(miO)]U(niO) 
n 1 =0 mj=0 
00 00 

54	> [	
.1(rnim2)JU(nin2). 

n j =1n 2 =1 m 1 0 m2=0 
Consequently, our task remains to estimate each of S i (i E 11,2,3,4}) by a term like 

(cA)9(E 
00 00

 
P(nin2)V(nin2))' 

n j =0 n20 
where c> 0 is a constant which only depends on the indexes p and q. 

Estimate of S. The conclusion follows from condition (2.2) since 

5 1 = ( P o,ovo,o)  

IU
(Oo)(V1-P'(o,o)) 

l q 

A q (P(o, 0)V(0, 0))	(by condition (2.2) with N,=N2=0) 

<A(	 P(n12)V(nn)) 
n 1 0 n20 

Estimate of 52. The main point is the Hardy inequality (3.7) (with Ni = 0). 
Indeed,

	

00
fl2	 q 

52 =	.F(0,m2) U(0, n2) 
n 2 0 m2=0 

( c0 A) 
(

FP (O , n2 )V(0, n2 )) 1: 
n2=0 

	

< (co A) (
	

FP(n1 n2 )V(n i , n2)) 
n 1 =0 n2=0
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Estimate of S3 . As for S2 , the proof is based on the Hardy inequality (3.6) (with 
N2 = 0). The details are left to the readers. 

Estimate of 54 . It can be noted that for some constant c 1 > 0, which depends 
only on q, then 

54 = 
00 ,	 ", ", .F(Ml' M')] q

U(n i , n2) <— C 1 (S41 + S42 + S43 + S44 
 [ n,=i n 2 =1 m1=0m2=O 

where 
00 co 

541 = 
n 1 1 n2=1 

00 

542 = E
00 

E

n 2 -1	 q 

(nj,m2)	U(ni,n2) 
n,1n 2 =1 m2=0 

00 

543 =

co n 1 -1	 q 

.77(m1,2)	U(ni,n2) 
[m^o n,=1 n 3 =1 

00 00 n 1 1 n 2 -1	 q 

544 =i (n2)	U(ni,n2) 
n 1 =1 n2=1 m1=0m2=0

The term 541 can be estimated just by using condition (2.2) since 

541 = 
00 C-D 

 

n 1 =1 n2=1 

_77P( n i , n2)V(nl, n2)) [U 1-	n2) (V' —P' (n^, n2)) 

co co 

Ag

	

	
('Pp(ni , n2)V(n i , n2 ))	(by (2.2)) 

n 1 =1 n2=1 

A g
(	

IP(ni , n2 )V(n j , na))	(since I ? 1). 
n,0n20 

The estimate of 542 is essentially based on the Hardy inequality (3.7). Indeed, 

542 :	:!: [t .F(ni,rn2)]U(ni,n2) 
n 1 =1 n 2 0 m2=0 

(co A
)(	

FP (n i n2 )V(n ii n2 ))	(by (3.7) with Ni=ni) 
n 1 1 n20 

<(c0A) (> FP(1 , n2 )V(n i , n2 ))	(since >i). 
n 1 0 n20 

The term 543 can be bounded similarly as 542 by using the Hardy inequality (3.6). The 
estimate of S44 makes use of the boundedness H : LP -L, say with the constant c2A 
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where c2 > 0 depends only on the indexes p and q. Indeed, 

0000 n j —i n 2 —i	 q jnj+1 pn2+
S44 =	 .T(mi,rn2) 

	J	
u(xi,x2)dxidx2 

	

n 1 1 n,=1 m j =0 ,n 2 =0 	2 

(by the definition of u(z, '2) in (2.5)) 

00	00	ni+I	 2+I n j —i n2-1 

	

=>>J	
f

nnj=1n2=I flj2	M1=0 M2=0 

	

J

M 1+ 1 jm	
f(

2+I	 q

 
yi,y2)dyidy2 u(xi,x2)dxidx2 

	

(where	Y2)=kO	F(k, k2)I(k 1 k j +1)x(k2,&2+j)(Yj Y2)) 
00	00 nj+i	n2+I	nj	n 2	 q 

=
	f	

f	f f f(y 1 ,y2 )dy i dy2 u(xi,z2)dxidx2 

	

n,=1 n2=i	 j	n2	0  

	

10 1  (00	 fX2	 q

J
[111

  
f(yi,y2)dyidy2 u(xix2)dxidx2 

 a   

•< (c2A) (low 1000 
f(x i , x2)v(xi, x 2 )dx i dx2) ' (since H:L P, _L 9.  

	

/ 00 00
 

jnj+1 jn2+1
(c2A) 

 	
f'(xix2)v(xix2)dxidx2

flj=0 n2=0 j	 2 

= ( c2A ) ( jP(n1 n 2 )V(n i n2)) 
n j =0 n2=0 

by the definitions of f('j,'2) and v(zj,x2) in (2.6)). 

This way Theorem 2.1 is completely proved U 

Proof of Theorem 2.2. We will restrict to outline the main lines of the proof, 
since the arguments are the same as those used for Theorem 2.1. To do this, it can be 
noted that the boundedness H1 . : LP - L, i.e. 

U0 00 10

"o(00 q 

[fo x, I f(yi ,y2 )dy i dy2 u(xi,x2)dxidx2 
   Jr 2	 . 

	

ff00 

100
^ C( J 	f'3(xi,x2)v(xi,x2)dxidx2 for all f( .. ) > 0 

\o  

is equivalent to the three conditions 

0, J	) 
(10

0 R2 11

JR	u(xix2)dxidx2
	JR, 

v 1_ '(x i, x2 )dx 1 dx p

  
2)	

(3.10) 

A for all R1,R2>0
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(10" r"

S
I7[Jv''(y1,y2)dyidy2 u(xi,x2)dxidx2

 JR2 	J3	 /	 (3.11) 

FR2
A(f	 v1_7'(xi,x2)dxidz2)	for all Rj,R2>0 

	

I 00 JR2 	fZ2	 P

 

[100

J
u(y i , y2 )dy i dy2	v1'(xix2)dxidx2

H1 	 i	 ( 3.12) 

A( fJMR, / u(xi,x2)dxidx2 )	for all R 1 ,R2 >0.


	

\ 	JO	 / 

The proof of Theorem 2.2 will be fulfilled after doing the following three steps. 
A) First we have to show that the boundedness H 1 . : £, - £ implies condition 

(2.9) and H 1 . : LP - L where the weights u(xl,x2) and v(x i ,x 2 ) are defined from 
v U U(n i ,n2 ) and V(n i ,n2 ) as in (2.5) and (2.6). Thus conditions (2.10) and (2.11) follow 

readily from (3.11) and (3.12), respectively. These last conditions are implied by H1. 
LP -	as it is noted above. And consequently the necessary part in the Theorem is 

verified.

B) Next we have to check that condition (2.9) implies (3.10). Consequently, the 
boundedness H 1 . : LP - L does hold because of (3.10), (2.10) and (2.11). 

C) Finally, we have to show that condition (2.9) and 111 . : LP - L lead to the 
discrete boundedness H 1 . : £, -* fq 

Therefore Steps B) and C) yield the proof of the sufficient part in Theorem 2.2. 
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