A Characterization of a Two-Weight Inequality for Discrete Two-Dimensional Hardy Operators

Y. Rakotondratsimba

Abstract. We obtain a characterization of non-negative double sequences $V = (V(n_1, n_2))_{n_1, n_2}$ and $U = (U(n_1, n_2))_{n_1, n_2}$ for which the two-dimensional discrete Hardy operator **H** is bounded from $\ell^p(\mathcal{V})$ into $\ell^q(\mathcal{U})$ whenever $1 < p \le q < \infty$.

Keywords: *Inequalities, weights, discrete Hardy operators* AMS subject classification: *26 D 15*

1. Introduction

The discrete two-dimensional Hardy operator is defined by

mnensional Hardy operator is defined by

\n
$$
(\mathbf{H}\mathcal{F})(n_1, n_2) = \sum_{i_1=0}^{n_1} \sum_{i_2=0}^{n_2} \mathcal{F}_{i_1 i_2} \qquad (n_1, n_2 \in \mathbb{N}_0).
$$

For the sake of simplicity and as in the continuous case, the non-negative double sequence $\mathcal{F}_{i_1 i_2}$ is merely denoted by $\mathcal{F}(i_1, i_2)$.

Our purpose in this work is to derive necessary and sufficient condition on nonnegative double sequences $\mathcal{U}(n_1,n_2)$ and $\mathcal{V}(n_1,n_2)$ for which there is a constant $C>0$ such that

$$
(\mathbf{H}\mathcal{F})(n_1, n_2) = \sum_{i_1=0}^{n_1} \sum_{i_2=0}^{n_2} \mathcal{F}_{i_1 i_2} \qquad (n_1, n_2 \in \mathbb{N}_0).
$$

For the sake of simplicity and as in the continuous case, the non-negative double sequence $\mathcal{F}_{i_1 i_2}$ is merely denoted by $\mathcal{F}(i_1, i_2)$.
 Our purpose in this work is to derive necessary and sufficient condition on nonnegative double sequences $\mathcal{U}(n_1, n_2)$ and $\mathcal{V}(n_1, n_2)$ for which there is a constant $C > 0$ such that

$$
\left(\sum_{n_1=0}^{\infty} \sum_{n_2=0}^{\infty} (\mathbf{H}\mathcal{F})^q(n_1, n_2) \mathcal{U}(n_1, n_2)\right)^{\frac{1}{q}} \leq C \left(\sum_{n_1=0}^{\infty} \sum_{n_2=0}^{\infty} \mathcal{F}^p(n_1, n_2) \mathcal{V}(n_1, n_2)\right)^{\frac{1}{p}} \quad (1.1)
$$

for all double sequences $\mathcal{F}(\cdot, \cdot) \geq 0$ and with $1 < p \leq q < \infty$. As in the continuous setting, $\mathcal{U}(\cdot, \cdot)$ and $\mathcal{V}(\cdot, \cdot)$ will be called *weights*. As a rule, the boundedness (1.1) will

setting, $U(\cdot, \cdot)$ and $V(\cdot, \cdot)$ will be called *weights*. As a rule, the boundedness (1.1) will for all double sequences $\mathcal{F}(\cdot)$
for all double sequences $\mathcal{F}(\cdot)$
setting, $\mathcal{U}(\cdot,\cdot)$ and $\mathcal{V}(\cdot,\cdot)$ will
be also denoted by $\mathbf{H}: \ell_{\mathcal{V}}^p \to$
Inequality (1.1) is involve

Inequality (1.1) is involved in many parts of Analysis as in questions of convergence and summability of double series, and in analysis of random walks on infinite graphs [2, 5, 7].

ISSN 0232-2064 / 8 2.50 © Heldermann Verlag Berlin

Y. Rakotondratsimba: Institut Polytechnique St-Louis, E.P.M.I., 13 bd de l'HautiI, *95092* Cergy-Pontoise cedex, France

According to B. Pachpatte [7], the boundedness $H : \ell_{\mathcal{V}}^p \to \ell_{\mathcal{U}}^p$ is true for $\mathcal{V}(n_1, n_2) =$ According to B. Pachpatte [1], the boundedness $\mathbf{H}: \mathcal{E}_{\mathcal{V}} \to \mathcal{E}_{\mathcal{U}}$ is true for $\mathcal{V}(n_1, n_2) = 1$ and $\mathcal{U}(n_1, n_2) = n_1^{-p} n_2^{-p}$ with $1 < p < \infty$. Later D. Y. Hwang [2] proved that $\mathbf{H}: \ell_{\mathcal{V}}^p \to$ $\ell_{\mathcal{U}}^{p}$ whenever $\mathcal{U}(n_1, n_2) = \lambda_1(n_1)\lambda_2(n_2)[\lambda_1(1) + ... + \lambda_1(n_1)]^{-p}[\lambda_2(1) + ... + \lambda_2(n_2)]^{-p}$ and $V(n_1, n_2) = [\lambda_1(n_1)\lambda_2(n_2)]^{1-p}$ with $\lambda_1(n_1)$ and $\lambda_2(n_2) > 0$. So for this case the inequality in question is a two-dimensional version of the well-known Copson inequality Rakotondra

ing to B. I
 $\sum_{n=1}^{\infty} n_1 n_2 = n_1$
 $\sum_{n=1}^{\infty} \lambda_1 \varphi(n)$
 $\sum_{l=1}^k \lambda_l \varphi(l)$

Németh [7], the bound $1 < p < \infty$.
 $\frac{1}{\lambda_2(n_2)} \left[\lambda_1 \right]$
 $\frac{p_1 - p}{\lambda_1}$ with λ_2
 $\frac{1}{\lambda_2 + \lambda_2} \left[\lambda_1 + \lambda_2 \right]$
 $\frac{1}{\lambda_1 + \lambda_2}$ $\mathbf{H}: \ell_{\mathcal{V}}^p \to \ell_{\mathcal{U}}^p$ is the $\lambda_1(n_1)|^{-p}[\lambda_2(1)]$
 $\lambda_2(n_2) > 0$. So the well-known
 $\sum_{k=1}^{\infty} \varphi^p(k)\lambda_k$

henever $\mathcal{V}(n_1)$, Y. Rakotondratsin

cording to B. Pacl
 $\ell(n_1, n_2) = n_1^{-p} n_2^{-p}$

inever $\mathcal{U}(n_1, n_2) =$
 $\left[n_1, n_2\right) = \left[\lambda_1(n_1)\right]$
 $\text{div } \text{in } \text{question is}$
 $\sum_{k=1}^{\infty} \left[\sum_{l=1}^{k} \lambda_l \varphi(l)\right]^p$
 dy Z. Németh [6]
 $\left(n_1\right), v_2(n_2)$ are q nba
 P with $1 < p < \infty$. Later 1
 P with $1 < p < \infty$. Later 1
 $\lambda_1(n_1)\lambda_2(n_2)[\lambda_1(1) + ...$
 $\lambda_2(n_2)]^{1-p}$ with $\lambda_1(n_1)$ a

a two-dimensional version
 $\frac{\lambda_k}{[\lambda_1 + ... + \lambda_k]^p} \leq \left(\frac{p}{p-1}\right)$

proved that $\mathbf{H} : \ell_V^p \to \ell_V$

$$
\sum_{k=1}^{\infty} \left[\sum_{l=1}^{k} \lambda_{l} \varphi(l) \right]^{p} \frac{\lambda_{k}}{[\lambda_{1} + \ldots + \lambda_{k}]^{p}} \leq \left(\frac{p}{p-1} \right)^{p} \sum_{k=1}^{\infty} \varphi^{p}(k) \lambda_{k} \qquad (\varphi(k) \geq 0).
$$

Recently Z. Németh [6] proved that $H: \ell_{\mathcal{V}}^p \to \ell_{\mathcal{V}}^p$ whenever $\mathcal{V}(n_1, n_2) = v_1(n_1)v_2(n_2)$ and $v_1(n_1)$, $v_2(n_2)$ are quasi-geometrically decreasing.

For all of these quoted results in [2, 6, 7] the weights are of product types in the sense that $V(n_1, n_2) = v_1(n_1)v_2(n_2)$ and $U(n_1, n_2) = u_1(n_1)u_2(n_2)$. These twodimensional results with weights of product types are actually consequences of the one-dimensional ones [4]. And the crux of the matter is about weights not of product types like $W(n_1, n_2) = (n_1 + n_2)3^{-(n_1+n_2)}$ and $W(n_1, n_2) = (n_1 + n_2)^{-(n_1+n_2)}$. A first investigation in this direction was done by A. Kamaly and the author in [4].

In this work we find a necessary and sufficient condition on weights $\mathcal{U}(\cdot, \cdot)$ and $\mathcal{V}(\cdot, \cdot)$ for which $H: \ell_{\mathcal{V}}^p \to \ell_{\mathcal{U}}^q$. Indeed, until this paper, a characterization result seems not available in the literature. However, the analogue integral inequality investigation in this direction was done

(In this work we find a necessary and sufficient in the literature. However, the analytical in the literature. However, the analytical $\left(\int_{0}^{\infty}\int_{0}^{\infty}\left[\int_{0}^{x_1}\int_{0}^{x_2}f(y$

Table in the literature. However, the analogue integral inequality
\n
$$
\left(\int_0^\infty \int_0^\infty \left[\int_0^{x_1} \int_0^{x_2} f(y_1, y_2) dy_1 dy_2\right]_1^q u(x_1, x_2) dx_1 dx_2\right)_1^{\frac{1}{q}}
$$
\n
$$
\leq C \left(\int_0^\infty \int_0^\infty \int_0^\infty f^p(x_1, x_2) v(x_1, x_2) dx_1 dx_2\right)_1^{\frac{1}{p}}
$$
\n
$$
\left(\forall f(\cdot, \cdot) \geq 0\right) \tag{1.2}
$$

was already solved fifteen years ago by E. Sawyer [8]. Consequently, the present work aims to fill this gap between the discrete inequality (1.1) and its continuous version (1.2). To derive the characterization for H : $\ell_V^p \to \ell_U^q$, as in [3] (see Section 3), our idea will make use of the fact that there is some equivalence between (1.1) and (1.2) for some judicious choice of the weights $u(\cdot, \cdot)$ and $v(\cdot, \cdot)$. *l*₀
 *l*₀ **c** $\left(\frac{p}{q}\right)$ **c f** act that there is some equivalence between (1.1)

the Equality (1.1) and its
 $p_p^p \rightarrow \ell_q^q$, as in [3] (see

invalence between (1.1)
 ℓ_p^q .
 ℓ_q^q , and their proofs
 ℓ_p^q .
 $\ell_p^q = \frac{q}{q-1}$
 $\ell_p^q = \frac{q}{q-1}$
 $\ell_p^q = \frac{q}{q-1}$
 ℓ_p^q

Our results are stated in the next Section 2, and their proofs will be performed in Section 3.

2. The results

Throughout this paper it is always assumed that

$$
1 < p \le q < \infty, \qquad p' = \frac{p}{p-1}, \qquad q' = \frac{q}{q-1}
$$

and

 $\mathcal{U}(n_1,n_2), \mathcal{V}(n_1,n_2)$ are weight functions defined on \mathbb{N}_0^2 .

To simplify and avoid some inconsistencies, it will be supposed that $V(n_1, n_2) \neq 0$.

Recall that our purpose in this work is to derive a characterization of weights *U(n₁, n₂)* and *V(n₁, n₂)* for which H: $\ell_V^p \to \ell_U^q$. This last means that for some constant $C>0$

Inequalities for Two-Dimensional Hardy Operators 559
\nRecall that our purpose in this work is to derive a characterization of weights
\n
$$
\mathcal{U}(n_1, n_2)
$$
 and $\mathcal{V}(n_1, n_2)$ for which $\mathbf{H}: \ell_V^p \to \ell_U^q$. This last means that for some constant
\n $C > 0$
\n
$$
\left(\sum_{n_1=0}^{\infty} \sum_{n_2=0}^{\infty} (\mathbf{H} \mathcal{F})^q(n_1, n_2) \mathcal{U}(n_1, n_2)\right)^{\frac{1}{q}} \leq C \left(\sum_{n_1=0}^{\infty} \sum_{n_2=0}^{\infty} \mathcal{F}^p(n_1, n_2) \mathcal{V}(n_1, n_2)\right)^{\frac{1}{p}}
$$
\n(2.1)
\nfor all double sequences $\mathcal{F}(\cdot, \cdot) \geq 0$.
\nOur main result reads as follows.
\nTheorem 2.1. Suppose that $\mathbf{H}: \ell_V^p \to \ell_U^q$. Then for some constant $A > 0$ the three
\nconditions
\n
$$
\left(\sum_{n_1=0}^{\infty} \sum_{n_2=0}^{\infty} \mathcal{U}(n_1, n_2)\right)^{\frac{1}{q}} \left(\sum_{n_1=0}^{N_1} \sum_{n_2=0}^{N_2} \mathcal{V}^{1-p'}(m_1, m_2)\right)^{\frac{1}{p'}}
$$

for all double sequences $\mathcal{F}(\cdot, \cdot) \geq 0$.

Our main result reads as follows.

Theorem 2.1. *Suppose that* $H : \ell_{\mathcal{V}}^p \to \ell_{\mathcal{U}}^q$. *Then for some constant A* > 0 *the three*

$$
\sum_{n_2=0}^{\infty} (H\mathcal{F})^q(n_1, n_2) \mathcal{U}(n_1, n_2) \Big)^{\frac{1}{q}} \leq C \bigg(\sum_{n_1=0}^{\infty} \sum_{n_2=0}^{\infty} \mathcal{F}^p(n_1, n_2) \mathcal{V}(n_1, n_2) \bigg)^{\frac{1}{p}} \quad (2.1)
$$
\nwhile sequences $\mathcal{F}(\cdot, \cdot) \geq 0$.

\nmain result reads as follows.

\norem 2.1. Suppose that $H : \ell^p_V \to \ell^q_U$. Then for some constant $A > 0$ the three

\n
$$
\bigg(\sum_{n_1=N_1}^{\infty} \sum_{n_2=N_2}^{\infty} \mathcal{U}(n_1, n_2) \bigg)^{\frac{1}{q}} \bigg(\sum_{m_1=0}^{N_1} \sum_{m_2=0}^{N_2} \mathcal{V}^{1-p'}(m_1, m_2) \bigg)^{\frac{1}{p'}} \bigg(2.2 \bigg)
$$
\n
$$
\leq A \quad \text{for all integers } N_1, N_2 \geq 0
$$
\n
$$
\bigg(\int_0^{R_1} \int_0^{R_2} \bigg[\int_0^{x_1} \int_0^{x_2} \mathcal{V}^{1-p'}(y_1, y_2) dy_1 dy_2 \bigg]^q u(x_1, x_2) dx_1 dx_2 \bigg)^{\frac{1}{q}}
$$
\n(2.2)

$$
\int \mathbf{R} \left[\int_{n_1}^{n_1} \int_{n_2}^{n_2} \int_{n_1}^{n_2} \int_{n_2}^{n_3} \int_{n_3}^{n_4} \int_{n_4}^{n_5} \int_{n_5}^{n_6} \int_{n_6}^{n_7} \int_{n_7}^{n_8} \int_{n_7}^{n_7} \int_{n_8}^{n_8} \int_{n_1}^{n_9} \int_{n_1}^{n_1} \int_{n_1}^{n_2} \int_{n_1}^{n_3} \int_{n_1}^{n_4} \int_{n_2}^{n_5} \int_{n_3}^{n_6} \int_{n_5}^{n_6} \int_{n_6}^{n_7} \int_{n_7}^{n_8} \int_{n_8}^{n_9} \int_{n_9}^{n_9} \int_{n_1}^{n_1} \int_{n_1}^{n_2} \int_{n_1}^{n_3} \int_{n_1}^{n_4} \int_{n_2}^{n_5} \int_{n_3}^{n_7} \int_{n_1}^{n_7} \int_{n_1}^{n_7} \int_{n_1}^{n_8} \int_{n_1}^{n_9} \int_{n_1}^{n_9} \int_{n_1}^{n_1} \int_{n_1}^{n_2} \int_{n_2}^{n_3} \int_{n_3}^{n_4} \int_{n_5}^{n_6} \int_{n_6}^{n_7} \int_{n_7}^{n_7} \int_{n_7}^{n_7} \int_{n_8}^{n_9} \int_{n_9}^{n_1} \int_{n_1}^{n_1} \int_{n_1}^{n_1} \int_{n_1}^{n_2} \int_{n_1}^{n_2} \int_{n_1}^{n_3} \int_{n_1}^{n_5} \int_{n_1}^{n_7} \int_{n_1}^{n_7} \int_{n_1}^{n_8} \int_{n_1}^{n_7} \int_{n_8}^{n_9} \int_{n_1}^{n_1} \int_{n_1}^{n_1} \int_{n_2}^{n_2} \int_{n_1}^{n_1} \int_{n_1}^{n_2} \int_{n_2}^{n_3} \int_{n_3}^{n_4} \int_{n_
$$

are satisfied with weights $u(x_1, x_2)$ and $v(x_1, x_2)$ defined by

$$
\leq A \Big(\int_{R_1} \int_{R_2} u(x_1, x_2) dx_1 dx_2 \Big)^{\sigma} \quad \text{for all } R_1, R_2 > 0.
$$

with weights $u(x_1, x_2)$ and $v(x_1, x_2)$ defined by

$$
u(x_1, x_2) = \sum_{m_1=0}^{\infty} \sum_{m_2=0}^{\infty} \mathcal{U}(m_1, m_2) \mathbb{I}_{[m_1, m_1+1) \times [m_2, m_2+1)}(x_1, x_2) \qquad (2.5)
$$

$$
v(x_1, x_2) = \sum_{m_1=0}^{\infty} \sum_{m_2=0}^{\infty} \mathcal{V}(m_1, m_2) \mathbb{I}_{[m_1, m_1+1) \times [m_2, m_2+1)}(x_1, x_2). \qquad (2.6)
$$

$$
v(x_1, x_2) = \sum_{m_1=0}^{\infty} \sum_{m_2=0}^{\infty} \mathcal{V}(m_1, m_2) \mathbb{I}_{[m_1, m_1+1) \times [m_2, m_2+1)}(x_1, x_2).
$$
 (2.6)

Here $\mathbb{I}_{[m_1,m_1+1)\times[m_2,m_2+1)}$ *denotes the characteristic function of the rectangle* $[m_1,m_1+1]$ $1)\times[m_2, m_2+1]$. And actually in these conditions, $A = C$ provided that C is the constant *involved in (2.1).*

Conversely, the boundedness $\mathbf{H} : \ell_{\mathcal{V}}^p \to \ell_{\mathcal{U}}^q$ does hold whenever all conditions (2.2) – (2.4) are satisfied. Precisely, (2.1) remains true with $C = c(p,q)A$ where $c(p,q) > 0$ *depends only on the indexes p and q.*

However, it is still an open problem whether conditions (2.3) and (2.4) respectively can be replaced by **1** *Y*. Rakotondratsimba
 rever, it is still an open problem whethe
 eplaced by
 $\left(\sum_{n=1}^{N_1} \sum_{n=1}^{N_2} \left[\sum_{n=1}^{n_1} \sum_{n=1}^{n_2} \mathcal{V}^{1-p'}(m_1, m_2)\right]^q\right)$

Y. Rakotondratsimba
\nwever, it is still an open problem whether conditions (2.3) and (2.4) respectively
\nreplaced by
\n
$$
\left(\sum_{n_1=0}^{N_1} \sum_{n_2=0}^{N_2} \left[\sum_{m_1=0}^{n_1} \sum_{m_2=0}^{n_2} \mathcal{V}^{1-p'}(m_1, m_2)\right]^q \mathcal{U}(n_1, n_2)\right]^{\frac{1}{q}}
$$
\n
$$
\leq A \left(\sum_{m_1=0}^{N_1} \sum_{m_2=0}^{N_2} \mathcal{V}^{1-p'}(m_1, m_2)\right)^{\frac{1}{p}}
$$
for all integers $N_1, N_2 \geq 0$
\n
$$
\left(\sum_{n_1=N_1}^{\infty} \sum_{n_2=N_2}^{\infty} \left[\sum_{m_1=n_1}^{\infty} \sum_{m_2=n_2}^{\infty} \mathcal{U}(m_1, m_2)\right]^{p'} \mathcal{V}^{1-p'}(n_1, n_2)\right]^{\frac{1}{p'}}
$$
\n
$$
\leq A \left(\sum_{n_1=N_1}^{\infty} \sum_{m_2=N_2}^{\infty} \mathcal{U}(m_1, m_2)\right)^{\frac{1}{q'}}
$$
for all integers $N_1, N_2 \geq 0$. (2.8)

and

$$
\left(\sum_{n_1=0}^{N_1} \sum_{n_2=0}^{N_2} \left[\sum_{m_1=0}^{n_1} \sum_{m_2=0}^{n_2} \mathcal{V}^{1-p'}(m_1, m_2) \right]^q \mathcal{U}(n_1, n_2) \right]^{\frac{1}{q}}
$$
\n
$$
\leq A \left(\sum_{m_1=0}^{N_1} \sum_{m_2=0}^{N_2} \mathcal{V}^{1-p'}(m_1, m_2) \right)^{\frac{1}{p}}
$$
 for all integers $N_1, N_2 \geq 0$ \n
$$
\left(\sum_{n_1=N_1}^{\infty} \sum_{n_2=N_2}^{\infty} \left[\sum_{m_1=n_1}^{\infty} \sum_{m_2=n_2}^{\infty} \mathcal{U}(m_1, m_2) \right]^{p'} \mathcal{V}^{1-p'}(n_1, n_2) \right]^{\frac{1}{p'}}
$$
\n
$$
\leq A \left(\sum_{m_1=N_1}^{\infty} \sum_{m_2=N_2}^{\infty} \mathcal{U}(m_1, m_2) \right)^{\frac{1}{q'}} \text{ for all integers } N_1, N_2 \geq 0.
$$
\n
$$
\text{gh a characterization result is theoretically of great interest, it would be noted}
$$

Although a characterization result is theoretically of great interest, it would be noted that a necessary and sufficient condition as the one obtained in Theorem 2.1 is not in general easy to handle in explicit computations. It means that other investigations on sufficient conditions (easily computable) for $H: \ell_{\mathcal{V}}^p \to \ell_{\mathcal{U}}^q$ deserve to be done. This will be achieved by the author in a forthcoming paper. $m_2 = N_2$

(ion result is theoretically of great in

ficient condition as the one obtained

(explicit computations. It means that

(i) computable) for $\mathbf{H}: \ell_V^p \to \ell_U^q$ deserting

or in a forthcoming paper.

(i) and th

For many problems in analysis in product spaces, it is useful to consider variants of perator **H** like the operator H like

in analysis in product spaces, it is useful
\n
$$
(\mathbf{H}_{\bullet\bullet}\mathcal{F})(n_1, n_2) = \sum_{i_1=n_1}^{\infty} \sum_{i_2=n_2}^{\infty} \mathcal{F}(i_1, i_2)
$$
\n
$$
(\mathbf{H}_{\bullet\bullet}\mathcal{F})(n_1, n_2) = \sum_{i_1=0}^{n_1} \sum_{i_2=n_2}^{\infty} \mathcal{F}(i_1, i_2)
$$
\n
$$
(\mathbf{H}_{\bullet\bullet}\mathcal{F})(n_1, n_2) = \sum_{i_1=n_1} \sum_{i_2=0}^{n_2} \mathcal{F}(i_1, i_2).
$$
\n
$$
\mathbf{I}_{\bullet\bullet\bullet}\colon \ell_1^p \to \ell_2^q \text{ can be immediately obtain}
$$

A characterization for $H_{**}: \ell^p_{\mathcal{V}} \to \ell^q_{\mathcal{U}}$ can be immediately obtained by using the above Theorem 2.1. Indeed, by duality arguments, the former boundedness is equivalent to $H: \ell_{\nu_1}^{p_1} \to \ell_{\nu_1}^{q_1}$ where $p_1 = q'$, $q_1 = p'$ (so $p_1 \leq q_1$) and $V_1(n_1, n_2) = U^{1-q'}(n_1, n_2)$, $U_1(n_1, n_2) = V^{1-p'}(n_1, n_2)$. $\mathbf{H}_{\bullet1}(\mathcal{F})(n_1, n_2) = \sum_{i_1 = n_1} \sum_{i_2 = 0}^{n_2} \mathcal{F}(\mathcal{F}_{\mathcal{V}} \rightarrow \ell_{\mathcal{U}}^q \text{ can be immediate
luality arguments, the form
 $\ell_2 q', q_1 = p' \text{ (so } p_1 \leq q_1) \text{ a}$
and to the boundedness $\mathbf{H}_{1\bullet} : \ell_{\mathcal{V}}^p \rightarrow \ell_{\mathcal{U}}^q$. The
is the *that* $\mathbf{H}_{1\bullet} : \ell_{\mathcal{V}}^p \rightarrow \$$

Our next result is related to the boundedness $H_{1*}: \ell_{\mathcal{V}}^p \to \ell_{\mathcal{U}}^q$.

Theorem 2.2. Suppose that $\mathbf{H}_{1*}: \ell_{\mathcal{V}}^p \to \ell_{\mathcal{U}}^q$. Then for some constant $A > 0$ the *three conditions '*

\n The equation
$$
p_1 = q'
$$
, $q_1 = p'$ (so $p_1 \leq q_1$) and $\mathcal{V}_1(n_1, n_2) = \mathcal{U}^{1-q'}(n_1, n_2)$.\n

\n\n The equation $V_1(n_1, n_2) = \mathcal{U}^{1-q'}(n_1, n_2)$.\n

\n\n The equation $V_1(n_1, n_2) = \mathcal{U}^{1-q'}(n_1, n_2)$.\n

\n\n The equation $V_1(n_1, n_2) = \mathcal{U}^{1-q'}(n_1, n_2)$.\n

\n\n The equation $V_1(n_1, n_2) = \mathcal{U}^{1-q'}(n_1, n_2)$.\n

\n\n The equation $\sum_{m_1=0}^{\infty} \sum_{n_2=0}^{N_2} \mathcal{U}(n_1, n_2) \int_{m_1=0}^{1} \left(\sum_{m_2=0}^{\infty} \sum_{n_2=0}^{\infty} \mathcal{V}^{1-p'}(m_1, m_2) \right)^{\frac{1}{p'}}(2.9)$.\n

$$
\int_{R_1}^R \int_{R_2}^{\infty} \left[\int_0^{x_1} \int_{x_2}^{\infty} v^{1-p'}(y_1, y_2) dy_1 dy_2 \right]^q u(x_1, x_2) dx_1 dx_2 \right]^{\frac{1}{q}} \frac{1}{\sqrt{2}} d\left(\int_0^{R_1} \int_{R_2}^{\infty} v^{1-p'}(x_1, x_2) dx_1 dx_2 \right)^{\frac{1}{p}} \quad \text{(2.10)}
$$
\n
$$
\leq A \left(\int_0^{R_1} \int_{R_2}^{\infty} v^{1-p'}(x_1, x_2) dx_1 dx_2 \right)^{\frac{1}{p}} \quad \text{(2.11)}
$$
\n
$$
\int_{R_1}^{\infty} \int_0^{R_2} \left[\int_{x_1}^{\infty} \int_0^{x_2} u(y_1, y_2) dy_1 dy_2 \right]^{\frac{1}{p'}} v^{1-p'}(x_1, x_2) dx_1 dx_2 \right)^{\frac{1}{p'}} \quad \text{(2.11)}
$$
\n
$$
\leq A \left(\int_{R_1}^{\infty} \int_0^{R_2} u(x_1, x_2) dx_1 dx_2 \right)^{\frac{1}{q'}} \quad \text{(2.12)}
$$

are satisfied with weights $u(x_1, x_2)$ and $v(x_1, x_2)$ defined as in (2.5) and (2.6). And *actually, in these conditions,* $A = C$ *provided that C is the constant involved in* H_{1*} :

 $(2.9) - (2.11)$ are satisfied. Precisely, the constant involved in the boundedness takes the *form* $C = c(p,q)A$ where $c(p,q) > 0$ *only depends on the indexes p and q.*

Conversely, the boundedness $H_{1*}: \ell_V^p \to \ell_U^q$ does hold whenever all the conditions (2.9) – (2.11) are satisfied. Precisely, the constant involved in the boundedness takes the form $C = c(p, q)A$ where $c(p, q) > 0$ only dep A characterization for $H_{-1} : \ell_V^p \to \ell_U^q$ can be deduced (by duality argument) from this last result, since this boundedness is equivalent to $H_{1*}: \ell_{\mathcal{V}_1}^{p_1} \to \ell_{\mathcal{U}_1}^{q_1}$ where p_1, q_1 and $\mathcal{U}_1(n_1, n_2), \mathcal{V}_1(n_1, n_2)$ are defined as above.

3. Proofs of results

In this section we will give the details of the proof of Theorem 2.1 and sketch the arguments for Theorem 2.2.

Proof of Theorem 2.1. For convenience the inequality

\n- 3. Proofs of results
\n- In this section we will give the details of the proof of Theorem 2.1 and sketch the arguments for Theorem 2.2.
\n- Proof of Theorem 2.1. For convenience the inequality\n
$$
\left(\int_0^\infty \int_0^\infty \left[\int_0^{x_1} \int_0^{x_2} f(y_1, y_2) dy_1 dy_2 \right]^q u(x_1, x_2) dx_1 dx_2 \right]^{\frac{1}{q}}
$$
\n
$$
\leq C \left(\int_0^\infty \int_0^\infty \int_0^\infty f^p(x_1, x_2) v(x_1, x_2) dx_1 dx_2 \right)^{\frac{1}{p}}
$$
\n for all $f(\cdot, \cdot) \geq 0$ \n will be denoted by $H: L^p_v \to L^q_u$. Our plan is to prove Theorem 2.1 as follows.\n
	\n- A) First we show that the boundedness $H: \ell^p_v \to \ell^q_u$ implies condition (2.2) and
	\n\n
\n

 $H: L^p_v \to L^q_u$ where the weights $u(x_1, x_2)$ and $v(x_1, x_2)$ are defined from $U(n_1, n_2)$ and $V(n_1, n_2)$ as in identities (2.5) and (2.6). Thus conditions (2.3) and (2.4) follow
readily from the boundedness $H : L_v^p \to L_u^q$ as it is well-known in [8]. Consequently,
the necessary part in the theorem is verified. readily from the boundedness $H : L_v^p \to L_u^q$ as it is well-known in [8]. Consequently, the necessary part in the theorem is verified: noted by $H : L_v^p \to L_u^q$. Our plan is t
irst we show that the boundedness l
+ L_u^q where the weights $u(x_1, x_2)$ a
 $n_2)$ as in identities (2.5) and (2.6).
bm the boundedness $H : L_v^p \to L_u^q$ a
ary part in the theorem is v L_u^q where the weights $u(x_1, x_2)$
 J) as in identities (2.5) and (2.6)

the boundedness $H: L_v^p \to L_u^q$
 y part in the theorem is verified.

t we check that condition (2.2) is
 $\int_{R_2}^{\infty} u(x_1, x_2) dx_1 dx_2 \Big)^{\frac{1}{q}}$

B) Next we check that condition (2.2) implies
\n
$$
\left(\int_{R_1}^{\infty} \int_{R_2}^{\infty} u(x_1, x_2) dx_1 dx_2 \right)^{\frac{1}{q}} \left(\int_{0}^{R_1} \int_{0}^{R_2} v^{1-p'}(x_1, x_2) dx_1 dx_2 \right)^{\frac{1}{p'}} \leq A \qquad (3.2)
$$

for all $R_1, R_2 > 0$. Then, because of [8: Theorem 1], the boundedness $H : L_v^p \to L_u^q$ does hold under conditions (2.3), (2.4) and (3.2).

C) Finally, we prove that condition (2.2) and $H: L^p_v \to L^q_u$ lead to the boundedness $H : \ell_{\nu}^{p} \to \ell_{\nu}^{q}$. Therefore steps B) and C) yield the proof of the sufficient part in the theorem.

Proof of Part A. Suppose that $H : \ell_{\mathcal{V}}^p \to \ell_{\mathcal{U}}^q$. It means that inequality (2.1) is true for some constant $C > 0$. Consider integers $N_1, N_2 \ge 0$. Applying (2.1) for any non-negative (double) sequence $\mathcal{F}(n_1, n_2)$ whose support is $\{0, \ldots, N_1\} \times \{0, \ldots, N_2\},$ then

functions (2.9), (2.4) and (3.2).

\nprove that condition (2.2) and
$$
H: L_v^p \to L_u^q
$$
 lead to the boundedness

\nreference steps B) and C) yield the proof of the sufficient part in the

\n**14. Suppose that** $H: \ell_V^p \to \ell_U^q$. It means that inequality (2.1) is

\nstart $C > 0$. Consider integers $N_1, N_2 \geq 0$. Applying (2.1) for any

\nble) sequence $\mathcal{F}(n_1, n_2)$ whose support is $\{0, \ldots, N_1\} \times \{0, \ldots, N_2\}$,

\n
$$
\left(\sum_{m_1=0}^{N_1} \sum_{m_2=0}^{N_2} \mathcal{F}(m_1, m_2)\right) \left(\sum_{n_1=N_1}^{\infty} \sum_{n_2=N_2}^{\infty} \mathcal{U}(n_1, n_2)\right)^{\frac{1}{q}}
$$
\n $\leq C \left(\sum_{m_1=0}^{N_1} \sum_{m_2=0}^{N_2} \mathcal{F}^p(m_1, m_2) \mathcal{V}(n_1, n_2)\right)^{\frac{1}{p}}$

\n(3.3)

This last inequality implies immediately condition (2.2) (with $A = C$) by taking $\mathcal{F}(n_1)$, $n_1(n_1) = \mathcal{V}^{1-p'}(n_1, n_2)$ in its support $\{0, \ldots, N_1\} \times \{0, \ldots, N_2\}$ and by using the identity $(1-p')p + 1 = (1-p').$

chain of computation shows:

$$
\begin{aligned}\n\lim_{m_1=0} \frac{1}{m_1=0} & & & & & & & & \\
\lim_{n_1=0} \frac{1}{m_1=0} & & & & & & \\
\lim_{n_1=0} \frac{1}{m_1=0} & & & & & & & \\
\lim_{n_1=0} \frac{1}{m_1=0} & & & & & & & \\
\lim_{n_1=0} \frac{1}{m_1=0} & & & & & & & & \\
\lim_{n_1=0} \frac{1}{m_1=0} & & & & & & & \\
\lim_{n_1=0} \frac{1}{m_1=0} & & & & & & & \\
\lim_{n_1=0} \frac{1}{m_1=0} & & & & & & & \\
\lim_{n_1=0} \frac{1}{m_1=0} & & & & & & & \\
\lim_{n_1=0} \frac{1}{m_1=0} & & & & & & & \\
\lim_{n_1=0} \frac{1}{m_1=0} & & & & & & & \\
\lim_{n_1=0} \frac{1}{m_1=0} & & & & & & \\
\lim_{n_1=0} \frac{1}{m_1=0} & & & & & & \\
\lim_{n_1=0} \frac{1}{m_1=0} & & & & & & \\
\lim_{n_1=0} \frac{1}{m_1=0} & & & & & & & \\
\lim_{n_1=0} \frac{1}{m_1=0} & & & & & & & \\
\lim_{n_1=0} \frac{1}{m_1=0} & & & & & & & \\
\lim_{n_1=0} \frac{1}{m_1=0} & & & & & & & \\
\lim_{n_1=0} \frac{1}{m_1=0} & & & & & & & \\
\lim_{n_1=0} \frac{1}{m_1=0} & & & & & & & & \\
\lim_{n_1=0} \frac{1}{m_1=0} & & & & & & & & \\
\lim_{n_1=0} \frac{1}{m_1=0} & & & & & & & & \\
\lim_{n_1=0} \frac{1}{m_1=0} & & & & & & & & \\
\lim_{n_1=0} \frac{1}{m_1=0} & & & & & & & & \\
\lim_{n_1=0} \frac{1}{m_1=0} & & & & & & & & & \\
\lim_{n_1=0} \frac{1}{m_1=0} & & & & & & & & & \\
\lim_{n_1=0} \frac{1}{m_1=0
$$

$$
=C^{q}\left(\int_{0}^{\infty}\int_{0}^{\infty}f^{p}(x_{1},x_{2})v(x_{1},x_{2})dx_{1}dx_{2}\right)^{\frac{q}{p}}\left(\text{since }\mathcal{V}(n_{1},n_{2})(\int_{n_{1}}^{n_{1}+1}\int_{n_{2}}^{n_{2}+1}v^{1-p'}(y_{1},y_{2})dy_{1}dy_{2})^{p-1}=1\right).
$$

Proof of Part B. To check inequality (3.2), let us consider $R_1, R_2 > 0$ such that $N_1 \leq R_1 < N_1 + 1$ and $N_2 \leq R_2 < N_2 + 1$ for some integers $N_1, N_2 \geq 0$. Then condition since

$$
= C^{q} \left(\int_{0}^{\infty} \int_{0}^{\infty} f^{p}(x_{1}, x_{2}) v(x_{1}, x_{2}) dx_{1} dx_{2} \right)^{\frac{q}{p}}
$$

\n(*since* $V(n_{1}, n_{2}) (\int_{n_{1}}^{n_{1}+1} \int_{n_{2}}^{n_{2}+1} v^{1-p'}(y_{1}, y_{2}) dy_{1} dy_{2})^{p-1} = 1$).
\n**Proof of Part B.** To check inequality (3.2), let us consider $R_{1}, R_{2} > 0$ such that $N_{1} \leq R_{1} < N_{1} + 1$ and $N_{2} \leq R_{2} < N_{2} + 1$ for some integers $N_{1}, N_{2} \geq 0$. Then condition (2.2), with the constant $A > 0$, leads to the test inequality (3.2) with the same constant since
\nsince\n
$$
\int_{R_{1}}^{\infty} \int_{R_{2}}^{\infty} u(x_{1}, x_{2}) dx_{1} dx_{2} \leq \int_{N_{1}}^{\infty} \int_{N_{2}}^{\infty} u(x_{1}, x_{2}) dx_{1} dx_{2}
$$
\n
$$
= \sum_{n_{1} = N_{1}}^{\infty} \sum_{n_{2} = N_{2}}^{\infty} \int_{n_{1}}^{n_{1}+1} \int_{n_{2}}^{n_{2}+1} u(x_{1}, x_{2}) dx_{1} dx_{2}
$$
\n
$$
= \sum_{n_{1} = N_{1}}^{\infty} \sum_{n_{2} = N_{2}}^{\infty} U(n_{1}, n_{2})
$$

and

 $\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}})$

$$
= \sum_{n_1=N_1}^{\infty} \sum_{n_2=N_2}^{\infty} \mathcal{U}(n_1, n_2)
$$

$$
\int_0^{R_1} \int_0^{R_2} v^{1-p'}(x_1, x_2) dx_1 dx_2 \le \int_0^{N_1+1} \int_0^{N_2+1} v^{1-p'}(x_1, x_2) dx_1 dx_2
$$

$$
= \sum_{n_1=0}^{N_1} \sum_{n_2=0}^{N_2} \int_{n_1}^{n_1+1} \int_{n_2}^{n_2+1} v^{1-p'}(x_1, x_2) dx_1 dx_2
$$

$$
= \sum_{n_1=0}^{N_1} \sum_{n_2=0}^{N_2} \mathcal{V}^{1-p'}(n_1, n_2).
$$

Proof of Part C. First some remarks can be done. For instance, (2.2) implies
for some $A > 0$

$$
\left(\sum_{n_1=N_1}^{\infty} \mathcal{U}(n_1, N_2)\right)^{\frac{1}{q}} \left(\sum_{m_1=0}^{N_1} \mathcal{V}^{1-p'}(m_1, N_2)\right)^{\frac{1}{p'}} \le A
$$
 (3.4)

Proof of Part C. First some remarks can be done. For instance, (2.2) implies that for some $A > 0$

$$
= \sum_{n_1=0}^{\infty} \sum_{n_2=0}^{\infty} \gamma^{1-p'}(n_1, n_2).
$$

rt C. First some remarks can be done. For instance, (2.2) implies

$$
\left(\sum_{n_1=N_1}^{\infty} \mathcal{U}(n_1, N_2)\right)^{\frac{1}{q}} \left(\sum_{m_1=0}^{N_1} \gamma^{1-p'}(m_1, N_2)\right)^{\frac{1}{p'}} \le A
$$
(3.4)
$$
\left(\sum_{n_2=N_2}^{\infty} \mathcal{U}(N_1, n_2)\right)^{\frac{1}{q}} \left(\sum_{m_2=0}^{N_2} \gamma^{1-p'}(N_1, m_2)\right)^{\frac{1}{p'}} \le A
$$
(3.5)

$$
= \sum_{n_1=0}^{N_1} \sum_{n_2=0}^{N_2} \mathcal{V}^{1-p'}(n_1, n_2).
$$

\n**t C.** First some remarks can be done. For instance, (2.2) implies
\n
$$
\left(\sum_{n_1=N_1}^{\infty} \mathcal{U}(n_1, N_2)\right)^{\frac{1}{q}} \left(\sum_{m_1=0}^{N_1} \mathcal{V}^{1-p'}(m_1, N_2)\right)^{\frac{1}{p'}} \le A
$$
\n
$$
\left(\sum_{n_2=N_2}^{\infty} \mathcal{U}(N_1, n_2)\right)^{\frac{1}{q}} \left(\sum_{m_2=0}^{N_2} \mathcal{V}^{1-p'}(N_1, m_2)\right)^{\frac{1}{p'}} \le A
$$
\n
$$
0. \text{ It is well-known that condition (3.4) implies the one-dimensional\nHady inequality
$$

for all $N_1, N_2 \in \mathbb{N}_0$. It is well-known that condition (3.4) implies the one-dimensional discrete weighted Hady inequality

$$
= \sum_{n_1=0}^{n_2} \sum_{n_2=0}^{n_1-p} \left(n_1, n_2\right).
$$

\nProof of Part C. First some remarks can be done. For instance, (2.2) implies
\nthat for some $A > 0$
\n
$$
\left(\sum_{n_1=N_1}^{\infty} \mathcal{U}(n_1, N_2)\right)^{\frac{1}{q}} \left(\sum_{m_1=0}^{N_1} \mathcal{V}^{1-p'}(m_1, N_2)\right)^{\frac{1}{p'}} \leq A
$$
\n(3.4)
\n
$$
\left(\sum_{n_2=N_2}^{\infty} \mathcal{U}(N_1, n_2)\right)^{\frac{1}{q}} \left(\sum_{m_2=0}^{N_2} \mathcal{V}^{1-p'}(N_1, m_2)\right)^{\frac{1}{p'}} \leq A
$$
\n(3.5)
\nfor all $N_1, N_2 \in \mathbb{N}_0$. It is well-known that condition (3.4) implies the one-dimensional
\ndiscrete weighted Hady inequality
\n
$$
\left(\sum_{n_1=0}^{\infty} \left[\sum_{m_1=0}^{n_1} \varphi_1(m_1)\right]^q \mathcal{U}(n_1, N_2)\right)^{\frac{1}{q}} \leq c_0 A \left(\sum_{n_1=0}^{\infty} \varphi_1^p(n_1) \mathcal{V}(n_1, N_2)\right)^{\frac{1}{p'}}
$$
\n(3.6)
\nfor all $\varphi_1(\cdot) \geq 0$, where $c_0 = c_0(p, q) = \left(1 + \frac{q}{p}\right)^{\frac{1}{q}} \left(1 + \frac{p'}{q}\right)^{\frac{1}{p'}}$. Similarly, from condition
\n(3.5) then
\n
$$
\left(\sum_{n_2=0}^{\infty} \left[\sum_{m_2=0}^{n_2} \varphi_2(m_2)\right]^q \mathcal{U}(N_1, n_2)\right)^{\frac{1}{q}} \leq c_0 A \left(\sum_{n_2=0}^{\infty} \varphi_2^p(n_2) \mathcal{V}(N_1, n_2)\right)^{\frac{1}{p'}}
$$
\n(3.7)

(3.5) then

$$
\left(\sum_{n_1=0}^{\infty} \left[\sum_{m_1=0}^{n_1} \varphi_1(m_1) \right]^q \mathcal{U}(n_1, N_2) \right)^{\frac{1}{q}} \le c_0 A \left(\sum_{n_1=0}^{\infty} \varphi_1^p(n_1) \mathcal{V}(n_1, N_2) \right)^{\frac{1}{p'}} \qquad (3.6)
$$

$$
\varphi_1(\cdot) \ge 0, \text{ where } c_0 = c_0(p, q) = \left(1 + \frac{q}{p!}\right)^{\frac{1}{q}} \left(1 + \frac{p'}{q}\right)^{\frac{1}{p'}}. \text{ Similarly, from condition}
$$

then

$$
\left(\sum_{n_2=0}^{\infty} \left[\sum_{m_2=0}^{n_2} \varphi_2(m_2) \right]^q \mathcal{U}(N_1, n_2) \right)^{\frac{1}{q}} \le c_0 A \left(\sum_{n_2=0}^{\infty} \varphi_2^p(n_2) \mathcal{V}(N_1, n_2) \right)^{\frac{1}{p'}} \qquad (3.7)
$$

for all $\varphi_2(\cdot) \geq 0$.

Y. Rakotondratsimba

all $\varphi_2(\cdot) \ge 0$.

Next we are now in the position to derive the boundedness $H: \ell_{\mathcal{V}}^p \to \ell_{\mathcal{U}}^q$ by using

dition (2.2) and $H: L_{\nu}^p \to L_{\nu}^q$. To do this let us split things as

564 Y. Rakotondratsimba
\nfor all
$$
\varphi_2(\cdot) \ge 0
$$
.
\nNext we are now in the position to derive the boundedness $H : \ell_V^p \to \ell_U^q$ by using
\ncondition (2.2) and $H : L_V^p \to L_U^q$. To do this let us split things as
\n
$$
\sum_{n_1=0}^{\infty} \sum_{n_2=0}^{\infty} (H\mathcal{F})^q(n_1, n_2) \mathcal{U}(n_1, n_2)
$$
\n
$$
= \sum_{n_1=0}^{\infty} \sum_{n_2=0}^{\infty} \left[\sum_{m_1=0}^{n_1} \sum_{m_2=0}^{n_2} \mathcal{F}(m_1, m_2) \right]^q \mathcal{U}(n_1, n_2)
$$
\n
$$
= S_1 + S_2 + S_3 + S_4
$$
\n
$$
(3.8)
$$

with :

 $\bar{\psi}$:

 $\ddot{}$

 $S_1 = \mathcal{F}^q(0,0)\mathcal{U}(0,0)$

$$
-\sum_{n_1=0}^{n_1}\sum_{n_2=0}^{n_2}\left[\sum_{m_1=0}^{n_2}\sum_{m_2=0}^{n_3}\mathcal{F}(m_1,m_2)\right]u(n_1,n_2)
$$

\n
$$
=S_1+S_2+S_3+S_4
$$

\n
$$
S_1 = \mathcal{F}^q(0,0)\mathcal{U}(0,0)
$$

\n
$$
S_2 = \sum_{n_2=0}^{\infty}\left[\sum_{m_2=0}^{n_2}\mathcal{F}(0,m_2)\right]^q \mathcal{U}(0,n_2)
$$

\n
$$
S_3 = \sum_{n_1=0}^{\infty}\left[\sum_{m_1=0}^{n_1}\mathcal{F}(m_1,0)\right]^q \mathcal{U}(n_1,0)
$$

\n
$$
S_4 = \sum_{n_1=1}^{\infty}\sum_{n_2=1}^{\infty}\left[\sum_{m_1=0}^{n_1}\sum_{m_2=0}^{n_2}\mathcal{F}(m_1,m_2)\right]^q \mathcal{U}(n_1,n_2).
$$

\ntask remains to estimate each of S_i ($i \in \{1,2,3,4\}$)
\n
$$
(cA)^q \left(\sum_{m_1=0}^{\infty}\sum_{m_2=0}^{\infty} \mathcal{F}^p(n_1,n_2)\right)^{\frac{q}{p}}
$$

Consequently, our task remains to estimate each of S_i $(i \in \{1,2,3,4\})$ by a term like

$$
(cA)^q \bigg(\sum_{n_1=0}^{\infty}\sum_{n_2=0}^{\infty}\mathcal{F}^p(n_1,n_2)\mathcal{V}(n_1,n_2)\bigg)^{\frac{q}{p}}
$$

where $c > 0$ is a constant which only depends on the indexes p and q .

Estimate of S_1 **.** The conclusion follows from condition (2.2) since

y, our task remains to estimate each of
$$
S_i
$$
 $(i \in \{1, 2, 3, 4\})$ by
\n
$$
(cA)^q \Big(\sum_{n_1=0}^{\infty} \sum_{n_2=0}^{\infty} \mathcal{F}^p(n_1, n_2) \mathcal{V}(n_1, n_2) \Big)^{\frac{q}{p}}
$$
\nis a constant which only depends on the indexes p and q .
\nte of S_1 . The conclusion follows from condition (2.2) since
\n
$$
S_1 = \Big(\mathcal{F}^p(0,0) \mathcal{V}(0,0) \Big)^{\frac{q}{p}} \Big[\mathcal{U}^{\frac{1}{q}}(0,0) \Big(\mathcal{V}^{1-p'}(0,0) \Big)^{\frac{1}{p'}} \Big]^q
$$
\n
$$
\leq A^q \Big(\mathcal{F}^p(0,0) \mathcal{V}(0,0) \Big)^{\frac{q}{p}}
$$
 (*by condition (2.2) with* $N_1 = N_2 = 0$)
\n
$$
\leq A^q \Big(\sum_{n_1=0}^{\infty} \sum_{n_2=0}^{\infty} \mathcal{F}^p(n_1, n_2) \mathcal{V}(n_1, n_2) \Big)^{\frac{q}{p}}
$$
\n
$$
\text{the of } S_2.
$$
 The main point is the Hardy inequality (3.7) (with
\n
$$
S_2 = \sum_{n_2=0}^{\infty} \Big[\sum_{m_2=0}^{n_2} \mathcal{F}(0, m_2) \Big]^q \mathcal{U}(0, n_2)
$$
\n
$$
\leq (c_0 A)^q \Big(\sum_{n_1=0}^{\infty} \mathcal{F}^p(0, n_2) \mathcal{V}(0, n_2) \Big)^{\frac{q}{p}}
$$

Estimate of S_2 **. The main point is the Hardy inequality (3.7) (with** $N_1 = 0$ **).** Indeed,

$$
\left(\sum_{n_1=0}^{n_2=0} n_2=0\right)
$$
\n
$$
S_2 = \sum_{n_2=0}^{\infty} \left[\sum_{m_2=0}^{n_2} \mathcal{F}(0,m_2) \right]^q \mathcal{U}(0,n_2)
$$
\n
$$
\leq (c_0 A)^q \left(\sum_{n_2=0}^{\infty} \mathcal{F}^p(0,n_2) \mathcal{V}(0,n_2) \right)^{\frac{q}{p}}
$$
\n
$$
\leq (c_0 A)^q \left(\sum_{n_1=0}^{\infty} \sum_{n_2=0}^{\infty} \mathcal{F}^p(n_1,n_2) \mathcal{V}(n_1,n_2) \right)^{\frac{q}{p}}
$$

Estimate of S_3 **.** As for S_2 , the proof is based on the Hardy inequality (3.6) (with $N_2 = 0$). The details are left to the readers.

Estimate of S_4 **. It can be noted that for some constant** $c_1 > 0$ **, which depends**

only on q, then
\n
$$
S_4 = \sum_{n_1=1}^{\infty} \sum_{n_2=1}^{\infty} \left[\sum_{m_1=0}^{n_1} \sum_{m_2=0}^{n_2} \mathcal{F}(m_1, m_2) \right]^q \mathcal{U}(n_1, n_2) \leq c_1 \left(S_{41} + S_{42} + S_{43} + S_{44} \right)
$$

where

$$
S_4.
$$
 It can be noted that for some constant $c_1 >$
\n
$$
\sum_{n=1}^{\infty} \sum_{m_1=0}^{n_2} \mathcal{F}(m_1, m_2) \Big|^{q} U(n_1, n_2) \leq c_1 \Big(S_{41} + S_{41} \Big)
$$

\n
$$
S_{41} = \sum_{n_1=1}^{\infty} \sum_{n_2=1}^{\infty} \mathcal{F}^{q}(n_1, n_2) U(n_1, n_2)
$$

\n
$$
S_{42} = \sum_{n_1=1}^{\infty} \sum_{n_2=1}^{\infty} \left[\sum_{m_2=0}^{n_2-1} \mathcal{F}(n_1, m_2) \right]^{q} U(n_1, n_2)
$$

\n
$$
S_{43} = \sum_{n_1=1}^{\infty} \sum_{n_2=1}^{\infty} \left[\sum_{m_1=0}^{n_1-1} \mathcal{F}(m_1, n_2) \right]^{q} U(n_1, n_2)
$$

\n
$$
S_{44} = \sum_{n_1=1}^{\infty} \sum_{n_2=1}^{\infty} \left[\sum_{m_1=0}^{n_1-1} \sum_{m_2=0}^{n_2-1} \mathcal{F}(m_1, m_2) \right]^{q} U(n_1, n_2)
$$

The term S_{41} can be estimated just by using condition (2.2) since

$$
S_{43} = \sum_{n_1=1}^{\infty} \sum_{n_2=1}^{\infty} \left[\sum_{m_1=0}^{n_1-1} \mathcal{F}(m_1, n_2) \right]^q \mathcal{U}(n_1, n_2)
$$

\n
$$
S_{44} = \sum_{n_1=1}^{\infty} \sum_{n_2=1}^{\infty} \left[\sum_{m_1=0}^{n_1-1} \sum_{m_2=0}^{n_2-1} \mathcal{F}(m_1, m_2) \right]^q \mathcal{U}(n_1, n_2)
$$

\nm S_{41} can be estimated just by using condition (2.2) since
\n
$$
S_{41} = \sum_{n_1=1}^{\infty} \sum_{n_2=1}^{\infty} \left(\mathcal{F}^p(n_1, n_2) \mathcal{V}(n_1, n_2) \right)^{\frac{q}{p}} \left[\mathcal{U}^{\frac{1}{q}}(n_1, n_2) \left(\mathcal{V}^{1-p'}(n_1, n_2) \right)^{\frac{1}{p'}} \right]^q
$$

\n
$$
\leq A^q \sum_{n_1=1}^{\infty} \sum_{n_2=1}^{\infty} \left(\mathcal{F}^p(n_1, n_2) \mathcal{V}(n_1, n_2) \right)^{\frac{q}{p}}
$$
 (*by (2.2)*)
\n
$$
\leq A^q \left(\sum_{n_1=0}^{\infty} \sum_{n_2=0}^{\infty} \mathcal{F}^p(n_1, n_2) \mathcal{V}(n_1, n_2) \right)^{\frac{q}{p}}
$$
 (*since* $\frac{q}{p} \geq 1$).
\n
$$
\text{imate of } S_{42} \text{ is essentially based on the Hardy inequality (3.7). Indeed,}
$$

\n
$$
S_{42} \leq \sum_{n_1=1}^{\infty} \sum_{n_2=0}^{\infty} \left[\sum_{m_2=0}^{n_2} \mathcal{F}(n_1, m_2) \right]^q \mathcal{U}(n_1, n_2)
$$

The estimate of *542* is essentially based on the Hardy inequality (3.7). Indeed,

$$
S_{42} \leq \sum_{n_1=1}^{\infty} \sum_{n_2=0}^{\infty} \left[\sum_{m_2=0}^{n_2} \mathcal{F}(n_1, m_2) \right]^q \mathcal{U}(n_1, n_2)
$$

\n
$$
\leq (c_0 A)^q \sum_{n_1=1}^{\infty} \left(\sum_{n_2=0}^{\infty} \mathcal{F}^p(n_1, n_2) \mathcal{V}(n_1, n_2) \right)^{\frac{q}{p}} \quad (by (3.7) \text{ with } N_1 = n_1)
$$

\n
$$
\leq (c_0 A)^q \left(\sum_{n_1=0}^{\infty} \sum_{n_2=0}^{\infty} \mathcal{F}^p(n_1, n_2) \mathcal{V}(n_1, n_2) \right)^{\frac{q}{p}} \quad (since \frac{q}{p} \geq 1).
$$

The term S_{43} can be bounded similarly as S_{42} by using the Hardy inequality (3.6). The estimate of S_{44} makes use of the boundedness $H: L_v^p \to L_u^q$, say with the constant $c_2 A$

where $c_2 > 0$ depends only on the indexes p and q . Indeed,

Y. Rakotondratsimba
\n
$$
c_2 > 0
$$
 depends only on the indexes *p* and *q*. Indeed,
\n
$$
S_{44} = \sum_{n_1=1}^{\infty} \sum_{n_2=1}^{\infty} \left[\sum_{m_1=0}^{n_1-1} \sum_{m_2=0}^{n_2-1} \mathcal{F}(m_1, m_2) \right]^q \int_{n_1}^{n_1+1} \int_{n_2}^{n_2+1} u(x_1, x_2) dx_1 dx_2
$$
\n
$$
\begin{aligned}\n\text{(by the definition of } u(x_1, x_2) \text{ in (2.5)}\\
&= \sum_{n_1=1}^{\infty} \sum_{n_2=1}^{\infty} \int_{n_1}^{n_1+1} \int_{n_2}^{n_2+1} \left[\sum_{m_1=0}^{n_1-1} \sum_{m_2=0}^{n_2-1} \right] \\
\int_{m_1}^{m_1+1} \int_{m_2}^{m_2+1} f(y_1, y_2) dy_1 dy_2 \Big]^q u(x_1, x_2) dx_1 dx_2 \\
\text{(where } f(y_1, y_2) = \sum_{k_1=0}^{\infty} \sum_{k_2=0}^{\infty} \mathcal{F}(k_1, k_2) I_{[k_1, k_1+1) \times [k_2, k_2+1)}(y_1, y_2) \Big] \\
&= \sum_{n_1=1}^{\infty} \sum_{n_2=1}^{\infty} \int_{n_1}^{n_1+1} \int_{n_2}^{n_2+1} \left[\int_{0}^{n_1} \int_{0}^{n_2} f(y_1, y_2) dy_1 dy_2 \right]^q u(x_1, x_2) dx_1 dx_2 \\
&\leq \int_{0}^{\infty} \int_{0}^{\infty} \left[\int_{0}^{x_1} \int_{0}^{x_2} f(y_1, y_2) dy_1 dy_2 \right]^q u(x_1, x_2) dx_1 dx_2 \\
&\leq (c_2 A)^q \left(\int_{0}^{\infty} \int_{0}^{\infty} \mathcal{F}^p(x_1, x_2) v(x_1, x_2) dx_1 dx_2 \right)^{\frac{q}{p}} \\
&= (
$$

This way Theorem 2.1 is completely proved \blacksquare

Proof of Theorem 2.2. We will restrict to outline the main lines of the proof, since the arguments are the same as those used for Theorem 2.1. **To** do this, it can be noted that the boundedness $H_{1*}: L_v^p \to L_u^q$, i.e.

$$
\left(\sum_{n_1=0}^{10} \sum_{n_2=0}^{1} J_{n_1} J_{n_2} \right) \left(\sum_{n_1=0}^{10} \sum_{n_2=0}^{10} J_{n_1} J_{n_2} \right)
$$
\n
$$
= (c_2 A)^q \left(\sum_{n_1=0}^{\infty} \sum_{n_2=0}^{\infty} \mathcal{F}^p(n_1, n_2) \mathcal{V}(n_1, n_2) \right)^{\frac{1}{p}}
$$
\n
$$
\left(\text{by the definitions of } f(x_1, x_2) \text{ and } v(x_1, x_2) \text{ in (2.6)}\right).
$$
\nay Theorem 2.1 is completely proved **W**

\nsoof of Theorem 2.2. We will restrict to outline the main lines of the proof, he arguments are the same as those used for Theorem 2.1. To do this, it can be that the boundedness $H_{1*}: L_v^p \to L_{1,1}^q$ i.e.

\n
$$
\left(\int_0^{\infty} \int_0^{\infty} \left[\int_0^{x_1} \int_{x_2}^{\infty} f(y_1, y_2) dy_1 dy_2 \right]^q u(x_1, x_2) dx_1 dx_2 \right)^{\frac{1}{q}}
$$
\n
$$
\leq C \left(\int_0^{\infty} \int_0^{\infty} f^p(x_1, x_2) v(x_1, x_2) dx_1 dx_2 \right)^{\frac{1}{p}}
$$
\nfor all $f(\cdot, \cdot) \geq 0$ \nvalent to the three conditions

\n
$$
\left(\int_{R_1}^{\infty} \int_0^{R_2} u(x_1, x_2) dx_1 dx_2 \right)^{\frac{1}{q}} \left(\int_0^{R_1} \int_{R_2}^{\infty} v^{1-p'}(x_1, x_2) dx_1 dx_2 \right)^{\frac{1}{p'}} \tag{3.10}
$$
\n
$$
\leq A \text{ for all } R_1, R_2 > 0
$$

is equivalent to the three conditions

$$
\begin{aligned}\n &\leq C \left(\int_0^\infty \int_0^\infty f^p(x_1, x_2) v(x_1, x_2) dx_1 dx_2 \right)^{\frac{1}{p}} \quad \text{for all } f(\cdot, \cdot) \geq 0 \\
 &\text{alent to the three conditions} \\
 &\left(\int_{R_1}^\infty \int_0^{R_2} u(x_1, x_2) dx_1 dx_2 \right)^{\frac{1}{q}} \left(\int_0^{R_1} \int_{R_2}^\infty v^{1-p'}(x_1, x_2) dx_1 dx_2 \right)^{\frac{1}{p'}} \\
 &\leq A \quad \text{for all } R_1, R_2 > 0\n \end{aligned}\n \tag{3.10}
$$

$$
\begin{aligned}\n&\text{Inequalities for Two-Dimensional Hardy Operators} & 567 \\
&\left(\int_0^{R_1} \int_{R_2}^{\infty} \left[\int_0^{x_1} \int_{x_2}^{\infty} v^{1-p'}(y_1, y_2) dy_1 dy_2 \right]^q u(x_1, x_2) dx_1 dx_2 \right)^{\frac{1}{q}} \\
&\leq A \left(\int_0^{R_1} \int_{R_2}^{\infty} v^{1-p'}(x_1, x_2) dx_1 dx_2 \right)^{\frac{1}{p}} \quad \text{for all } R_1, R_2 > 0 \\
&\left(\int_{R_1}^{\infty} \int_0^{R_2} \left[\int_{x_1}^{\infty} \int_0^{x_2} u(y_1, y_2) dy_1 dy_2 \right]^p v^{1-p'}(x_1, x_2) dx_1 dx_2 \right)^{\frac{1}{p'}} \\
&\leq A \left(\int_{R_1}^{\infty} \int_0^{R_2} u(x_1, x_2) dx_1 dx_2 \right)^{\frac{1}{q'}} \quad \text{for all } R_1, R_2 > 0.\n\end{aligned}
$$
\n(3.12)\n
$$
\begin{aligned}\n&\text{for all } R_1, R_2 > 0.\n\end{aligned}
$$
\n
$$
\begin{aligned}\n&\text{for all } R_1, R_2 > 0.\n\end{aligned}
$$
\n
$$
\begin{aligned}\n&\text{for all } R_1, R_2 > 0.\n\end{aligned}
$$

The proof of Theorem 2.2 will be fulfilled after doing the following three steps.

A) First we have to show that the boundedness $H_{1*}: \ell_{\mathcal{V}}^p \to \ell_{\mathcal{U}}^q$ implies condition (2.9) and $H_{1*}: L^p_v \to L^q_u$ where the weights $u(x_1, x_2)$ and $v(x_1, x_2)$ are defined from $\mathcal{U}(n_1, n_2)$ and $\mathcal{V}(n_1, n_2)$ as in (2.5) and (2.6). Thus conditions (2.10) and (2.11) follow readily from (3.11) and (3.12), respectively. These last conditions are implied by H_{1*} : $L^p_v \to L^q_u$ as it is noted above. And consequently the necessary part in the Theorem is verified.

B) Next we have to check that condition (2.9) implies (3.10). Consequently, the boundedness $H_{1*}: L^p_\nu \to L^q_\nu$ does hold because of (3.10), (2.10) and (2.11).

C) Finally, we have to show that condition (2.9) and $H_{1*}: L^p_v \to L^q_u$ lead to the discrete boundedness $H_{1*}: \ell_{\mathcal{V}}^p \to \ell_{\mathcal{U}}^q$.

Therefore Steps B) and C) yield the proof of the sufficient part in Theorem 2.2.

Acknowledgement. The author would like to thank the referee for having pointed him out that the idea to solve the discrete problem via the corresponding continuous one was previously used by G. Hardy, J. Littlewood and G. Pólya in (1].

References

- [1] Hardy J., Littlewood J. E. and Pólya G.: *Inequalities* (Cambridge Mathematical Library). Cambridge: Univ. Press 1934.
- [2] Hwang, D. Y.: *A many variable generalization of the discrete Hardy's inequality.* Tamkang J. Math. 27 (1996), 125 - 132.
- *[3] Kamaly, A. and Y. Rakotondratsimba: Weighted inequalities for discrete and integral Hardy operators. SUT* J. Math 33 (1997), 183 - 188.
- *[4] Kamaly, A. and Y. Rakotondratsimba: Weighted inequalities for two-dimensional discrete Hardy operators.* Thesis by A. Kamaly. Stockholm: KTH 1998.
- *[5] Leindler, L.: On the converses of inequalities of Hardy and Littlewood.* Acta Sci. Math (Szeged) 58 (1993), 191 - 196.
- *[6] Németh, Z.: Inequalities of Hardy- Lit tlewood type for double series.* Acta Sci. Math (Szeged) 62 (1993), 153 - 159.
- [7] Pachpatte, B.: *A many variable generalization of Hardy's inequality concerning a serie of terms.* Tamkang J. Math. 23 (1992), 349 - 354.

568 Y. Rakotondratsimba \cdot

 \sim \sim

 \bar{z}

l,

à,

 α :

 $\bar{\mathbf{v}}$

 $\ddot{}$

 $\alpha = 1$

[8] Sawyer, E.: *Weighted inequalities for the two-dimensional Hardy operator.* Studia Math 82 (1985), $1 - 16$.

 $\ddot{}$

 \bar{z}

 \sim \star

l.

 \overline{a}

 \overline{a}

 $\ddot{}$

 \div

 $\ddot{}$

 $\boldsymbol{\prime}$

Received 28.09.1998

 $\gamma_{\rm{eff}}$.

 \mathbb{R}^4