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Abstract. We introduce the classes of admissible densities and show that there exist densities 
respecting coordinates, and product densities with marginals prescribable within these classes. 
For liftings there is the corresponding class of admissibly generated liftings. We apply these 
results to improve theorems on product liftings and liftings respecting coordinatei and to 
provide them a unifying approach. 
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0. Introduction 

For liftings in products of probability spaces the following problems turned up. 

1 0 The problem of the existence of liftings compatible with the product structure 
such as "consistent liftings" (see [12]), "product liftings and densities" (see [8 - 10]), 
and "liftings respecting coordinates" (see [1,2 ]), where the last one is the most far-
reaching concept. These liftings apply to the regularization of stochastic processes, 
to measurability problems for empirical processes (see [14, 15]), to the construction of 
strong liftings on products (see [7, 8]), and to stable measurable sets (see [131). 

As far as the existence of such liftings in full generality is unknown one asks for 
densities with the corresponding properties instead. For incomplete probability spaces 
(such as those based on Borelian and Baire--algebras which occur very often in appli-
cations to probability theory) where liftings possibly will not exist (see [111), one must 
resort to densities which still exist there by [ 3] . Our main result, Theorem 2.5, tells us 
that this is possible for densities respecting coordinates. For this reason our concern in 
this paper is with (possibly) incomplete probability spaces. 

2° The problem of the existence of liftings and densities listed in Problem 10 with 
marginals prescribable to some extent. It is well known from [8] and [9] that the latter 
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provides a tool for the construction of strong liftings in products from liftings in the 
factors, thus responding to a problem posed by Kupka [6]. 

While Problem 1 0 naturally and historically comes first, any solution of Problem 2° 
implies a solution of Problem 10. It has already been observed by Talagrand [15] that 
not all liftings have good properties from the product point of view (compare also [8]). 
Namely, there are complete probability spaces (cl,E 1 ,p 1 ) for i E I A 0 such that for 
given liftings Tj for p, there exists in general no lifting p for the product measure 
respecting coordinates or even being only a product lifting, having for each i E I the 
lifting Tj as its marginal. 

This raises the question, whether for a given probability space there exists a class of 
densities whose elements can always be prescribed as marginals for densities respecting 
coordinates or for product densities? In this paper we describe a large class of densities 
of this sort, called "admissible densities". For liftings a corresponding problem exists 
too and we answer it by introducing the class of "admissibly generated liftings". 

The basic Theorem 2.5 then tells us that for densities respecting coordinates there 
is a completely free choice of marginals in one coordinate fixed in advance, while in all 
other coordinates there is a free choice within the class of admissible densities. This 
result improves the corresponding result for product densities of [10] (and clearly implies 
(with different method of proof) the existence results from [2] for densities respecting 
coordinates). 

The class of the admissibly generated liftings (see Section 3) enables us to provide 
a unifying approach to all known results about product liftings as well as to the partial 
results on liftings respecting coordinates. In particular, we present a new proof of the 
existence of the consistent lifting of Talagrand. 

1. Preliminaries 

For a given probability space (1, !, p) a set N E E with 1u(N) = 0 is called a p- null 
set, and for f,g E £°°(p) and A,B E E we write f = g a.e. (p) or A = B a.e. 
(p) if {w E Q : 1(w) 54 g(w)) or ALB (the symmetric difference of A and B) is a 
p-null set, respectively. By E 0 will be denoted the set of all p-null subsets of Q. If i 
is a i-subalgebra of E, we write E,,(f) for a version of the conditional expectation of 
I E £°°(p) (the space of all bounded E-measurable functions on Q) with respect to i. 
By (Q, t, ) there is denoted the (Carathéodory) completion of (, E, p). 

By N and R we denote the sets of all natural and real numbers, respectively. If -y is 
an ordinal, then we will identify it with the set of all ordinals less than . 

We use the notion of lifting and lower density (or density, for short) in the sense of 
Definitions 3 and 4, respectively, of [5: Chapter III, Section 11, and for each probability 
space (, E, p) we denote by A(p) and z9(p) the systems of all liftings and densities, 
respectively. For each lifting p on t there exists exactly one (multiplicative) lifting (in 
the sense of [5: Chapter III, Section 1, Definition 21 on £°°(p) such that ,3(XA) = Xp(A) 
for all A E E (XA denotes the characteristic function of A) and vice versa (see [5: pp. 
35 - 36]). For simplicity we write p = throughout.
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If I is a non-empty set and Pi, YJ,i.ij))ji is a family of arbitrary (possibly in-
complete) probability spaces, then for each 0 54 J C I we denote by (Q j, )., p j) the 
uncompleted product measure space ®€j(l, E i, It must be carefully noted that in 
this paper we are looking for the uncompleted product in contrast to former papers such 
as [2] and that the completion of (nj, Ej, j ) = ®1EJ( Q i, E,, p) will always be written 
(j,j,j1j) ®iEJ( li,i,p) . For any J,K C I with J C K we denote bypjK the 
canonical projection from cZK onto ci 3 . For any J C I the canonical projection of ci1 
onto flj is denoted by pi and the a-algebra p'(E j ) g E, is denoted by E). For every 
non-empty index set I, I will denote the family of all non-empty proper subsets of I. 

We say that W E 19(121) satisfies condition (*) (see [2]), if for any J, K C I with 
J fl K = 0 we have 

ço(E U F) = cp(E) U W(F)	for any E E ) and F E <.	 (*) 

For a family ((Z, E 1 , Ps))sEI of probability spaces and a probability space (, E, p) such 
that Q = j , j, Y.j = jAj we call a lifting ir for ji a product lifting of the liftings 
Pi for p i ( i E I), and we write ir E ®jEIPs, if the equation 

7r((A 1 , , ..., A,j) = [p 1 (A 1 , ), ..., p,, (A,,)]	 (P) 

holds true for all n EN, i i , ... , i, € I and all A i, € E i, ( k = 1,...,n), where [A11,...,Ai n ] 
denotes the cylinder set fl,EJBI for B1 = A i, ( k = 1,...,n) and B, = Qi (i E 
I\ {i1,...,i}). If  = {1,. ..,n}, then we write 7r  p1 ®	®Pn. 

We say that	E i9(zi) (or 7T € A(p j )) respects coordinates if for each J C I the

inclusion co(Ej x lj.) g Ej x Q j c holds true. 

If (1l,E, it) is a probability space and I is a non-empty set, we write p1 for the 
product measure on fl' and 1' for its domain. A lifting p € A(A) is consistent if for 
every n € N there exists pfl € A('p) such that 

pTh (A i x	* A) = p(A i ) x	x p(A)	 (C) 

for all A,,..., A n € E (see Talagrand [12: Theorem 12]). We use a similar definition 
for densities instead of liftings. 

2. Densities respecting coordinates 

In the next definition we single out a class of densities with good properties from the 
product point of view. 

Definition 2.1. Let (®,T,u) be a probability space. A density v E19(v) is called 
admissible if it can be constructed with the help of the transfinite induction in the way 
described below. 

(A) Let V be the smallest cardinal with the property that there exists a collec-
tion M c T such that o(M) is dense in T in the pseudometric generated by u. Let 
M = ( Mo )a <,c be numbered by ordinals less than i, where K is the first ordinal of the 
cardinality V. Denote by i7o the a-algebra o(To) and for each 1	c denote by
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Y7. the a-algebra generated by the family {M.}<0 U io. We assume that Ma 170 for 
each a. It is clear that without loss of generality, we may do so. 

(B) Vo E i9 ( u l 77o) is the only existing density on (®,iio,vIo), i.e. 

fO ifBET0 

	

vo(B)= 	ifBT0. 

(C) If y n is a limit ordinal of uncountable cofinality, then 77, = U< 77a and we 
define v., E i9 ( u Ii) by setting 

v(B) := va(B)	if B E 77a and a <-y. 

(D) Assume now that there exists an increasing sequence (-y) of ordinals that is 
cofinal to y 5 c. For simplicity put v := v ' and 71 ,, := 77.y-, for all n e N. Then 

= cT(U TI Nin) and we can define v.1 by setting 

v(B) := fl U fl vm({Eil (XB)> 1—	for BE 7-i 
kEN nEN m>n 

It follows by [3: Lemma 1] that v E 9(v77.) and	= v,, for each n E N. 
(E) Let now y = + 1. To simplify the notations let M := M,i. It is well known 

that
iiy={(GflM)U(Hfl Mc) :G,HEr}. 

Let M1 2 M and M2 2 M C be 17 ,9 —envelopes of M and Mc, respectively, i.e. M1 , M2 E 
77, ( u Iiifl)s(MI \ M) = 0 and ( v I 7 ).(M2 \ MC) = 0 ((I') is the inner measure 
induced by	Define

v((GnM)U(HflMc)) 

(Mn v((Gfl M1 )U(H flMfl)) u (Mc fl vfl ((G fl M2 )u(H fl Mg)) 

for C, H E i. By (3: Lemma 2] it then follows that v7 E 9(v Ii) and v. Ii = v. 
(F) We define v E i9(v) just by setting v = v,. Throughout, the collection of all 

admissible densities on (®, T, u) will be denoted by At9(LI) and each v E Ai9(v) will be 
considered together with all elements involved into the above construction without any 
additional remarks. 

Proposition 2.2. For each probability space (®, T, ii) we have Ai9(zi) 0 0. 
This follows by converting the above definition into an inductive proof. 

Theorem 2.3. Let (E,T,v) be an arbitrary probability space. If v E A9(u), then 
for each (cl, E, p) and each T E i9(z) there exists W E t9 (p 0 ii) such that 

	

p(A x B) = r(A) x v(B)	for all A E E and B E T.
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If A , /2) = ®iEI(i, Ej, z) and r E ®jEl Tj respects coordinates, then can be chosen 
to respect coordinates also. If moreover r satisfies condition (*), then also W can be 
chosen to satisfy (*). 

Proof. Let there be given r E 9(/2) and v E At9(zi) alitogether with other elements 
involved in the construction of v E Ai9(v). In particular, the family M = ( M0 )<,ç , the


	

i-subalgebras	and the sequences (-y,,) cofinal with limit ordinals are fixed. 
Using transfinite induction, we shall be constructing now a transfinite sequence 


	

with	® vE ® ,) such that 

x B) = r(A) x v0 (B)	for all A e E and B E ij,	 (1) 

and

	

I®h1oa	for a</3<re .	 (2) 

Moreover, we assume that if (,E,/2) = and rE (%E17'j respects coor-
dinates and satisfies condition (*), then each , respects the coordinates of the product 
space ®EJ(1Z1,E1, Pi) (9(®,7j,.,vJ7O) and satisfies condition(*).

u(E,.,)= 
1) E E by [4: Formulas (21.4) and (21.8)], and E = E x a.e. ( (9 v). Hence if we 
define

	

o(E)=r(E)xe	for all E=ExE) a.e.(/2Ov), 

we have ço E 9(p (9 v )I E 0 Yio) and ço(A x B) = r(A) x vo(B) for A E E and B E ijo. 
Note that ço respects coordinates of the space ®,EJ(j, E,, /LI)®(e, 77o, vliio) and satisfies 
condition (*). 

Assume now that given y < c, a system (0 0 ) satisfying the required conditions (1) 
and (2) has been constructed for all a 

We have to distinguish three cases. 
A) -y is a limit ordinal of uncountable cofinality: Then 

	

E®?7.1 =	 ( 3) 

Setting

	

(E)=0(E)	if EE®i10, 

we get unambiguously defined densities ç E 9(/20vI(917,) such that 0,1E ®ii = 
for all a < -y. It is a direct consequence of relation (3) that condition (1) is satisfied. 
Clearly, 0, respects the coordinates of the space (®jEJ(,, Ej, I2)) (9 (E, , vI j .) and 
satisfies condition (*). 

B) -y is of countable cofinality: For simplicity put v := v, ç2 := ç	and 
q_,, for all n E N. Then	-	-	.• 

0 = o(U E N(E 0
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Hence, we can define 

çb(P) := fl u fl çb m ({EEø m (X P ) > 1 -	for P € 2®?1.y. 
kEN nEN m>n 

It follows by [3: Lemma 11 that 0, E i9( ® ziI ® i) and O,JE 0 77,, = On for each 
nEN. Now for A€ and BE7hwehave 

x B) := fl U fl Sm({EE®(XAxB) > 1-
ki kENnENm>n 

But in virtue of [8: Lemma 2.1] we have 

{ EEØ,,,(xAXB)> 1 -= {EE®(xA 0 XB)> 1— 

= {(Er (XA)(&E,,(XB)) >1 - 

= {(XA 0 Ep m (XB)) > 1-

= A x {E(XB)> 1 -	a.e. ( 0 vjE 0,7m) 

for m,k E N. This implies that 

(AxB)= n u  fl m(AX{E(XB)>1_}) 
kEN nEN m>n 

= n  fl (r(A)Xm({E(8)>1_}) 
kENnENm>n 

=T(A)x(fl U fl Um({E(XB)>1_})) 
kEN nEN m>n 

= r(A) x 

i.e. ,A x B) = r(A) x v7(B) for all A € E and B € 1i• 
In order to check whether 0, respects coordinates, it sufficies to consider sets P € 

0 77, of the form P = Q x Q j. where J E 1, and Q € E j 0 77, of the form P = 
Q x fZj, x 0 where Q € E j . Since T respects coordinates and 0, is the product of r 
and v., we have in the second case

xe)=r(Qxç j ,)xErAxc j, X  

where A € E j , i.e. 0., respects the coordinates of P. In the first case, we have for each 
m E N 

{ E®,(cx) >1 -= {(EEJØ,,,(xQ) . (xn,)) >1 - 
=	{E®() > i -

	a.e. ( 0 vjE 0 nm).
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Since all 3 T,2 respect coordinates, we have 

	

1—	= cm(ç1Jc x {EEJ Ø 1 ( xQ )> 1 - 
X Am 

where Am E Yj ® Tim. It follows that ç,(P) E E j. ® i, i.e.	respects coordinates. 
To show that	satisfies condition (*), we need the following 
Claim 1. For arbitrary J,K c i	IU{y} with JflK = 0, A € 

B E	0 i, and in, k € N we have a.e. (j ® v I E ® Tim) the condition 

EEØ(xAuB) > 1 -	
= {EEØ,,(xA)> 1 -

	
u {EEo,,XB)> 1 { 	

- 
Proof. Let J,K,A,B,m,k be as in the claim. For A = 0 or B = 0 the claim is 

obvious. Suppose that A 0 and B 0. It is clear that a.e. (p 0 vIE 0 7m) we have 

EE® m (XAUB)> 1—	{EE®(XA)> 1—	{EE®(xB)> 1 {	 — 

To prove the converse relation, notice that without loss of generality one may assume 
that 7 E J \ K. Then B = BK X I\K x 0 € E 0 Tim and so 

EEØ,(XB) = XB	a.e. (p®VIE®Tim). 
Consequently, we get a.e. (p 0 vE ® Tim) that 

EØp (XAUB)> 1 -	= {EEØXA ) + XB - EEØ,(xA)xB> 1 - }. (4) {  
If (.,O) € B, then 

EEØ,,,,(XA)(w,G)+XB(w,O)— EEØ,(xA)(w , O )xB(w , O) XB(W,O), 
hence we get a. e. (p 0 v I E ® Tim) that 

EØT,,(A) + XB - EE® m (XA)XB > i -	
fl B {  

	

={XB>1—}flB	 (5) 

9 ({EE(&(xA)>1—}nB)u({EEØ(xB)>1_}nB). 

If(w,9) B, then 
Ee,,,,(xA)(w,O) + XB(', O) - EE®m(XA)(W , G)XB(W ) = EE®im(XA)(W,G), 

hence we have a. e. (p ® v I E ® Tim) that 

{ E®(XA) + XB - Eø m (XA)XB > 1 - In Be 

	

={xa>1_}nB C	 (6) 

	

({EEø im (XA) > -	
nBC) ({EØtl ( X B )> 1 -	

nBC). 

From (4) - (6) it follows that a.e. (p ® v I E ® Tim) we have 

EEØ,(xAua)> 1 -	
c {EEØ,,x)	

-	u {Eø m () >1 { 	
- 

This completes the proof of Claim 11
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Claim 2. If a set D E Ej ® 77, depends on the coordinates J U {y}, then the same 
is true for E,o,,,,,(xD). 

Proof. If D = D 3 x Q j. with Di E E.j 0 ij, then 

E®,,,_(xDxnJ) =	 ®xn)= EEJØ,,,,,(XDJ)®XnJC 

and the claim is proved I 

Let J, K, A, B be as in Claim 1. Assume that 

A=AJ xf J\J	and	B=BKXI\KXe 

where Ai E Ej (9 77, and BK E E K . Applying the inductive assumption and the above 
claims we have 

cbm({EE®vl,JxAua)> }) 

m({E®P?rn(XA)> } u {EEe(xB)> }) 

m({EEJ øq,n (X AJ )®xc1 , \j > } U{EEK(XBK ®X1I\K ®Xe> 

I I =m({EE J ® 7i JX AJ )0Xi, \j > }) U cm({ E K (XBK )®Xn, \K ®xe> k}) 

= m({EEøXA> 1 }) Um(B). 

Then
AuB)= fl U fl 0m({Eøv7m(XAuB)>1_}) 

kEN nENm>n 

= fl U fl [cm({EE®vin(XA)> }) U(Pvn(B)J 
kEN nEN m>n 

= fl U fl	Ere,,_ (XA) > }) u(B)] 
kEN nEN rn>n 

= A) U 

i.e.	satisfies condition (*). 
C) y = 3 + 1: To simplify the notations let M	M. It is well known that 

= {(K fl (Q x	U (L fl (l x MC)): K, L E E 0 

Let M1 D M and M2 2 MC be i7 ,6 -envelopes of M and Mc, respectively, used in the 
process of describing v. An easy calculation shows that 

E1 =fxM1	and	E2=xM2	 (7)
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are E ® i-envelopes of Q x M and Q x Mc, respectively. Define 

ç{(Kn(czxM))U(Ln(czxMc))] 

( ( Q x M) n	K n E1 ) U (L n Er))) U (( x MC) n 6((K n E2 ) U (L n E))) 

for K, L E E ® ,. By [3: Lemma 21 it then follows that 0, E 19(1 0 iiE ® ij.) and 
IE0 r7o = p. For A E E and G,H E q,6 write B = (GflM)u(HflM'). Then 

B E 77 , and

AxB=Ax ((GnM)u(HnMC)) 

= ((A x C) n (c x M)) u ((A x H) n (c x Mc)) 

together with K := Ax G and L:= Ax HE E 0q,6 . For simplicity put E0 := S2 x M. 
By definition we have 

B) = (E0 fl 0,6 ((K fl E1 )u(L fl Efl)) u (Eoc fl	K fl E2 )u (L fl E))).


By an application of (7) this can be rewritten as 

x B) = (Eo fl ç3 13 (A x R)) U (E01 fl fl (A x S)) 

if
R:=(Gfl M I ) u(HflMI)	and	S:=(GflM2)U(HflMfl. 

Since R, S E q, this implies 

ç(A x B) = (Eon (r(A) x v(R))) u (Ec fl (T(A) x va(S))). 

By means of E0 = Q x M the latter formula can be transformed into 

x B) = r(A) x v.(B)	for all A E E and B E 17,. 

Therefore	satisfies condition (1). 
In order to check whether 0, respects coordinates, it is sufficient to consider sets 

P E Y7, of the form P = Q x Q j, where J E 1 and Q E E j 0 ij., and of the form 
P = Q x jc x 0 where Q E E j. Since r respects coordinates and 0, is a product of 
T and v., we have in the second case 

where A E Ej, i.e	respects the coordinates of P. 
In the first case we take K = K' x 0 j. and L = L' x Q j. with K', L' E E j 0 

such that P = (K fl E0 ) U (L n . E). Then 

P=(KnE0 )u(LnE)= [(K'n (Qj xM))U(L'fl(1 j xMC ))] xcl3.
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Since	respects coordinates, we have 
((K fl E1 ) U (L fl Er)) 

= Ofl [((K' x Q,-) n (cl x M1 )) u ((L' x c) n (Q x Mfl)] 

= [((K' fl ( j x Mi )) u (L' n (Q j x Mn)) x 

=AxPi. 
where A E E j ® ij. Similarly,

K n E2 ) U (L n Efl) = B x 
with B E Ei 0 q. Consequently, 

K n E) u (L n E)) 

= [Eon	K n E1 )u (L n Er))] u [E n	K n E2 ) U (L n E))]


= (Eo n (A > c2.1 )) u (E n (B x cz)) 

= {((c x M) n A) u ((Il j x MC) n B)] x ci. 
In the case of K or L from ) x 0 the calculations are similar. As a consequence 
respects coordinates. 

To show that ç satisfies condition (*), consider J, H c I with J n H = 0. If 
A=(KflEo)U(LflE)€EØ	and B=(BnE0)u(BnE)eE,


where K, L E E) ® Y7,6 , then applying the inductive assumption we get 

ç(A U B) = ç. ((K liE0 ) U (L fl E) U (B liE0 ) U (B fl E0c))


07= [((K U B) n E0 ) U ((L U B) n E)] 

= [Eonçp(((KUB)nE 1 ) u ((LuB)nE))] 

U [Enc(((KuB)nE2)u((LuB)nE))] 

= [Eon((KnEi)U(LnE)UB)} 

U [Eor  

= [Eon((KnEi )u(LnE)) up(B)] 

U [EOc n c((K n E2 ) u (L n E)) Ucø(B)} 

=	K n E,,) u(L n E)) U (B) 

= ç(A) U ç(B),. 
i.e. 0, satisfies condition (*). 

We can define now p € t9(z 0 ii) possessing the required properties just by setting 
= ç. The densities are properly defined, since each element of E ® T is measurable 

with respect to some E 0 'jo, with a ic I
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Lemma 2.4. Let	 (i = 1, 2,3) be probability spaces and let f : Q, x

X Q 3 —* [0, 11 be a bounded E i 0 Q2 ® .z3 -measurable function. Then there exists a 

. . 1 ®2 X f 3 -measurable version of E=102103(f). 

Proof. Let D E E I 0 22 be an arbitrary set. By the assumption, we may as-
sume that there is a bounded E I ® E3 -measurable function g satisfying everywhere 
the equality f(, 1 , 2 , w3 ) = 9(w 1 ,w3 ). Let a function h be given by the equality 
h(w i ) := f0 9(W1, ) d11 3 (W3)- Since g can be uniformly approximated by measur-
able simple functions, we get the 1 -measurability of h. Then, applying the Fubini 
theorem (cf. [4: Theorem 21.12]), we have 

JDX03 fd(
i ® 2 (9 3)=f

D  
(L3g(wi,w3)d(/3))d(ILiO/2) 

 

= f h(w i ) d( 1 (9 2)(WI,2) 

=f Dx113 

This means that h0 2 0xrz3 is a E	x c13 -measurable version of E=,,=303(f)I


To some extent we can prescribe the marginals of a density respecting coordinates. 

Theorem 2.5. Let	 (I a non-empty index set) be a family of prob-
ability spaces with product	If io € I is fixed, then for each Ti,, E 10(,,) and

for arbitrary Ti € Ai9(1z,) with i € I \ {io} there exists p E 19(i) such that W respects 
coordinates, and V € OtE fT1 .	 - 

Proof. Let ic be the first ordinal of cardinality equal to card(I). Without loss 
of generality, we may assume that I = K and io = 0. Put also (X.1 , T1 , v.1) 

O,,LQ) for 1	y	K and let pa-y be the canonical-projection from X.1

onto X0 whenever a < . 

We shall be constructing inductively densities W, € (v) respecting coordinates, 
and such that

p-y E 06<.rT6	for 1 < y < c	 (8) 

and
op=po	for 1a<7.	 (9) 

To start the induction define W , := ro. Suppose that for some 7	K and all a < 
the densities	E i9(u0 ) respecting coordinates and satisfying (8) and (9) are already 

known. We have to distinguish three cases. 

A) = a + 1: By Theorem 2.3 there exists a density	€ i9(v+ i ) respecting 
coordinates and satisfying the condition	€ (& fl<r Tp . Clearly, condition (9) is also 

satisfied.

B) is of countable cofinality: We assume here that if H C y, then H C := \ H. 
For each a with 1 a < we put T := p;.!(T0 ) and- z' := v.lT,. Clearly; for 
1<a<B<y

TCT	and	uIT=v.
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For each a < define a density	E i9(v) by means of 

A) := pp0(A)) 
where A E T and AS = p(A) a.e. (ii). It is easily seen that	IT = p,*, for all or

and /3with 1<a<3<-y. 

Let (y) be an increasing sequence of ordinals cofinal with y. Then for each a < 7 
there exists n E N such that T, C T, and IT =	where T, := T. and V,*,  
Hence

T=cY(UT)	and	+1IT= 
nEN 

for each n e N. Thus, we can define 

P):= flU fl m({ETXP>}) for each PeT. 
kEN nEN m>n 

It follows by [3: Lemma 1] that ç E .9(v.) and	IT = ço for all n E N, hence 
=	for all a 

We have to show yet that V. respects coordinates. To do it, take a non-empty set 
J C 7 and assume that P = Q x ci 3 , where Q E >j. Notice that for each m E N we 
have the equality

7=(7mflJ)U(7mflJC)U7. 

Let E 1 := 2 := E Y.njc and E3 := Applying Lemma 2.4 to f = Xp, we 
see that the function ET. ( x p ) can be assumed to be E, ®l , ujc-measurable. Since Pm 
respects coordinates, we get a similar measurability of the set y({ET.(Xp) > 1— H). In particular, the set p,j{ET.(xp) > 1 - j}) is >j x uj-measurable. Consequently, 
the set ço.(P) is Ei x jc-measurable. This proves that W., respects coordinates. 

C) 7 is of uncountable cofinality: In this case T, = U 1 <<T. Now define for 
each 1 <a < 7 a density	E 9(v), where v,*, := v.)jT, by - 

p. 

for each A E Tc. with A* 	p;(A) a.e. (v,',). Since	IT,*,= p for all a and with

1 <a < /9 < there exists a density V, E i9(v.) defined for each A E T by 

=	A). 
Clearly,	respects coordinates and	IT =	for arbitrary 1 <a <7. Hence 

op = p o	for arbitrary 1 a <7.cry

It follows from steps (B) and (C) that for each limit ordinal 1 < ,c there exists 
always a density cp E i9(v.) satisfying condition (9). As an immediate consequence of 
(9) we have

'P -Y (A >	 =(A) x fl Q,,	 (10) 
o<fl<y 

for all 1 <_ a	r. and A E	The condition	E	 is a direct consequence

of (10) and of the inductive assumption about each W ,, with a < 7 . We can define now 

E i9(izj) posessing the required properties just by setting W := PK U
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The following corollary, containing the main result of [10] as well as Theorem 3 of 
[8: Section 21 is an immediate consequence of Theorem 2.5. 

Corollary 2.6. Let P i , E u))' be a family of probability spaces. Fix io E I. 
Then for each r10 E i9(p) there exist r, E t9() for i E I\ { i 0 } and E i9(zj) respecting 
coordinates and satisfying the condition w E ®ajT. 

Corollary 2.7. Let (ci, , ) be a probability space. For a non-empty set I write 
pj(w) := w 1 for w E Q 1 and i E I. Then for each r E Ai9(p) and for each non-empty 
set I there exists rj E 19( 4uj) such that 

rj (p7'(A)) = p'(,-(A))


for each A E Y and i e I. In particular, each admissible density is a consistent density. 

The following result is a particular case of Fremlin's Theorem 346G in [2], proved in 
a different way. But here the completeness assumption for the probability spaces, used 
in Fremlin's result, is avoided. 

Corollary 2.8. Let Pi, Ej,ij))j E J be a family of probability spaces. Then there 
exists W E 19(zj) respecting coordinates. 

3. Admissibly generated liftings 

The next definition is a counterpart of Definition 2.1 above and singles out a class of 
lift ings with good properties from the product point of view. 

Definition 3.1. Let v E 0(v) be an arbitrary density on (®, T, v). It is well known 
by [16] that

{B E T: 9 E v(B)} 

is a filterbasis on 0 so that for each 9 E 0 one can choose an ultrafilter U(9) on 0 finer 
than '(9). We define then 

a(B):={OEO: BEU(9)}	for all BET. 

It has been proven in [16] that a E A(i') and 

v(B) ç a(B) C [v ( B c )] c	for all B E T.	 (11) 

An arbitrary lifting a constructed in the above manner from a density v will be called 
a lifting generated by v. If the lifting a described above is generated by an admissible 
density v, then it is called admissibly generated (by v) and the family of all admissibly 
generated liftings on (0, T, v) is denoted by AGA(v). 

Remark. It follows from Proposition 2.2 and Definition 3.1 that AGA(v) 00. 
Theorem 3.2. Let (ci,E,/L) and (0,T,v) be complete probability spaces and let 

T E i9(), v E i9(v), and p E i9( 0 ii) be densities such that the condition cp E r 0 V
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holds true and W satisfies condition (*). Then, for each p E A( j ) and each a E A(v) 
generated by r and v, respectively, there exists ir E A(pu) such that 

	

ir(A x B) = p(A) x a(B)	for all AEE and BET	 (F) 

	

(E) c (E) c [(EC)lc	for all E E E 0 T 

	

ir(f (9 g) = p(f) 0 a(g)	for all f E £°°(p) and g E £(i). 

Proof. For each w E ci and each 8 E ® let 

	

.F(w) := {A E E : w E r(A)}	and	F(8)	{B E T: 8 E v(B)} 

be filterbases generated by r and v, respectively. Then let 

	

U(w) := {A E E : w E p(A)}	and	U(9) := {B E T: 8 E a(B)} 

be the ultrafilters generated by p and a, respectively, so that 

() c U() C E	and	F(8) C U(8) c T. 

For each (w, 8) E ci x E) define a filterbase by 

F(,9):={EEE®T: (,8)Eço(E)}. 

Claim 1. For each (w,8) E ci x ®, A E U()); BE U(8), and E E .T(w,8) we have 

En (A x B) O. 

Proof. Let (w,8),E and A,B be as in Claim 1. Assume that Efl(A x B) = 0. 
Then we get by using condition (*) 

(E) C ([AC x 01 u [ci x BC]) 

= '(A' x 0) u (cl x BC) 

= [v(Ac ) x 0] U [ci x r(B')] 
C [P(A C ) x 0] u [ci x a(Bc)] 

= [p(A) x 

i.e. W (E) fl [p(A) x a(B)] = 0, which contradicts to the assumption (w,8) E p(E) fl 
[p(A) x a(B)J of Claim 11 

By the above claim there exists an ultrafilter U(w, 8) C	finer than F(w, 8)

such that

A x B E U(w,8)	for all A E U(w) and B E U(8).	 (12)


For each E € ET put

7r(E):={(,8)Ecix®: EEU(w,8)}. 

It follows by [16], for example, that ir € A(j.uv).
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Claim 2. For each A E E and B E T we have 

p(A) x a(B) ir(A x B). 

Proof. For A E E and B € T we get from (12) that 

(CQ,9) € p(A) x a(B)	E p(A) and 9€ u(B) 

A € U(w)&B € U(8) 

=AxBEU(,O) 

(w, 0) € ir(A x B), 

i.e. p(A) x a(B) 9 7r(A x B). It remains to show that ir(A x B) c p(A) x o(B). 
Applying the first part of the proof we get for each A € ! and B € T that 

(p(A) x a(B)) C = [p(A C ) x ®] U [l x c,(BC)] 
c Ir(A' x ®)u ir(cl x B') 

= [ir(A X B)]C. 

This completes the proof of Theorem 3.2 U 

Corollary 3.3. Let (®,T,v) be an arbitrary complete probability space. If a € 
AGA(zi), then for each complete probability space (S, E, z) and for each p € A(y) there 
exists ir E A(p.v) such that ir E p® a. 

Proof. Let (cl, >, z) and p be as as in the corollary. Since AGA(v) 54 0, it follows 
by Theorem 2.3 that there exists E 9( ® ii) satisfying condition (*) and such that 
W E p ® T. The result. now follows from Theorem 3.2 I 

The following corollary is the main result of [8]. 

Corollary 3.4 (see [8: Section 2, Theorem 4]). If (Q, E, y) and (®, T, i) are com-
plete probability spaces, then for each p € A(p) there exist a € A(v) and ir € A(pzi) 
such that

	

ir(A x B) = p(A) x a(B)	for all A € E and B €T	 (F) 

	

ir(f (9 g) = p(f) 0 a(g)	for all I € £(z) and g € £(v). 

• Theorem 3.5. Let K be an ordinal and	 be a family of complete 
probability spaces. Moreover, for each 1 < A	put (XA , TA, IIA ) := 
Then for each P0 € A(/Ao) and each collection {p. E AGA(p 0 ) : .0 < a < ic} there exists 
afamily {7TA € A(VA): 1 A	} such that: 

(i) ir € ®cz<A pcz for each 1 < A <,c. 

(II) ir,(A x	 = 7rA(A) x flA<<,fZfor each 1 A <K and A € TA. 

Proof. For each 1 < A	c let p be the canonical projection from X A onto X0

whenever a < A. We are going to construct inductively liftings irx €.A(VA ) such that 

7r A E ®s< po	for 0 < A < K	 (13)
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and

irAop=p:o7r,.	for O<a<A.	 (14) Ox 

To start the induction let ir := Po e A(v i ). Then assume that for 1 < A < K lift-
ings 7r0 E A(iia) satisfying conditions (13) and (14) are already known. We have to 
distinguish three cases. 

A) A = a + 1: By Corollary 3.3 there exists a lifting iro.H E A(ua+ i ) satisfying 
condition (13). Clearly, condition (14) is also satisfied by 7r1. 

B) A is of countable cofinality: For each a with 0	a < A denote by T,*,, the 
a-algebra T,*, U (TA)O , and v,*,, := uAIT. Clearly, for 0	a < 0 < A, T,* ç T and

v(A) = v.* (A) holds for any A e T. For each a < A define a lifting 7r,*,E A(u) by 

p(ir0(A)) 

where A E T,*,, and A E Ta with A*	p(A) a.e. (zi). It is easily seen that, for all

a and 8 with 0 a ( /3 < A, irjT = 7r,*, holds. But since A is of countable cofinality 
for each a < A there exists n e N such that T C T,*, :=	and IT = ir where 
ir	ir, and (a n ) is an increasing sequence cofinal with A. Hence i r +iIT,	ir, for

each n E N. 

It follows easily from [5: Theorem IV.2] that there exists 7rx E A(ziA ) being the 
common extension of all 7r,*, with a < A. Consequently, the family (lra) & < A satisfies 
condition (14). The relation 7rx E Øo<Aps is an immediate consequence of the inductive 
assumption about ira. with a < A, since A is a limit ordinal. 

C) The limit ordinal A is of uncountable cofinality: With the notation from the 
Case B) we have now TA = Uo< a< A(T). Since, for all a and 0 with 0 < a < 0 < A, 
?r J Ta' := ir holds, there exists a lifting ir E A (VA) such that irAIT = ir for each 
1 <A < ,c. Consequently, the family (1r)0< A gatisfies condition (14). The relation 
ir , E ®<,\p follows in the same way-as before I 

The following corollary is the main result of [9). 

Corollary 3.6 (see [9: Section 2, Theorem 1]). Let be given a family ((Q,, E 1 , j)),EJ 
(I a non-empty index set) of complete probability spaces. Fix io E I. Then for each 
p'0 E A( , ) there exist Pi E.A(t 1 ) for , i E I \ { i 0 } 'and ir E A( j ) such that - 7r e ®iEIPi. 

Proof. Let ,c be the firt ordinal of cardinality equal to card(I). Without 'loss of 
generality we may assume that "I = c and i0 =. 0. Since AGA( j1 ) 54 0 for i E I\ {i0} 
the result follows immediately by Theorem 3.51 

Corollary 3.7 (see [2: Theorem 346H]). Let K be an ordinal and ((Ila,co,pa))a<, 
be any family of complete probability spaces with completed product (, E, au). Then there 
exists a ir E A(p) 'such that ir(A) E E whenever A E !, and J C ic is either a singleton 
or an initial segment of ,c. 

The following corollary is a generalization of 12: Theorem 3461].
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Corollary 3.8. Let (, !, jz) be a complete probability space. For any non-empty 
set I write pj) := w, for w € fZ' and i € I. Then for each p € AGA(jz) and for each 
non-empty set I there exists pi € A(') such that 

p,(p7(A)) = p'(p(A)) 

for each A € ! and i E I. In particular, each admissibly generated lifting is a consistent 
lifting. 

Corollary 3.9 (see [12: Theorem 12]). Let (c?, E,) be a complete probability space. 
Then there exists a consistent lifting p € A(). 
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