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Existence Theorems 
for Boundary Value Problems 

for Strongly Nonlinear Elliptic Systems 
Hôhg Thai Nguyêñ 

Abstract. Let L be a linear elliptic, a pseudomonotone or a generalized monotone operator 
(in the sense of F. E. Browder and I. V. Skrypnik), and let F be the nonlinear Nemytskij 
superposition operator generated by a vector-valued function 1 . We give two general existence 
theorems for solutions of boundary value problems for the equation Lx = Fx. These theorems 
are based on a new functional-theoretic approach to the pair (L, F), on the one hand, and on 
recent results on the operator F, on the other hand. We treat the above mentioned problems 
in the case of strong non-linearity F, i.e. in the case of lack of compactness of the operator 
L - F. In particular, we do not impose the usual growth conditions on the nonlinear function 
f; this allows us to treat elliptic systems with rapidly growing coefficients or exponential non-
linearities. Concerning solutions, we consider existence in the classical weak sense, in the so-
called L-weakened sense in both Sobolev and Sobolev-Orlicz spaces, and in a generalized weak 
sense in Sobolev-type spaces which are modelled by means of Banach L-modules. Finally, 
we illustrate the abstract results by some applied problems occuring in nonlinear mechanics. 
Keywords: Strongly nonlinear boundary value problems, existence theorems, solution in the 

usual weak sense, solution in the L,-weakened sense, elliptic operators, pseu-
domonotone operators, generalized monotone operators, complementary systems, 
Sobolev spaces, Sobolev-Orlicz spaces, exact embedding theorems 
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0. Introduction 
The present paper is concerned with the existence of solutions of strongly nonlinear 
elliptic boundary value problems, i.e. boundary value problems for elliptic equations 
and systems of the form.

Lx=Fx  

on an open bounded subset 9 of R'' (N > 2), where L is a linear or nonlinear elliptic 
differential operator of order 2k in the divergence form 

Lx=	(_1)1-lD0aa(s,t5kx(s))	 (2) 
oI<k 
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with coefficients a0 satisfying conditions (including growth conditions) which guarantee 
the solvability of the problem Lx = h. The Carathéodory function f(s, u)	x Rm 
Rm generating the nonlinear Nemytskij superposition operator F (see, e.g., [3 - 4]) 
where

Fx(s) = f(s, x(s))	 (3) 

satisfies some condition but has otherwise completely inrestricted growth ("strongly 
nonlinear" growth) with respect to u E R'. In other words, the "strong non-linearity" 
of F means that we have to consider the cases of the operator L - F with "lack of com-
pactness" and of "critical exponents" in the "exact" Sobolev embedding theorems (S. L. 
Sobolev, S. I. Pokhozaev and N. S. Trudinger and their generalizations). The nonlinear 
function f is assumed in the present paper to satisfy a general one-sided estimate, which 
covers all the so-called "sign condition" and "generalized sign condition". We point out 
that the above one-sided estimate is not sufficient for getting existence results in the 
non-scalar vector case m > 1 (i.e. the case of systems of equations), and so for this 
case we should suppose some addittional conditions on the growth of 1. This one-sided 
estimate, in particular, "compensates" the lack of both compactness and monotonicity 
type conditions of L - F.	 S 

Such problems in the scalar case (i.e. m 1) were first considered by F. E. Browder 
[9] and later on up to the present time by P. Hess, H. Brezis and F. E. Browder, J. Webb, 
J.-P. Gossez and others (see, for example, [6 - 8, 10, 15 - 16, 18, 23, 34], and the literature 
cited therein) via variational and topological methods. 

In this paper we shall present two general existence theorems (see Theorem 1 in 
Section 7 and Theorem 2 in Section 8) following ideas of our dissertation [26] for problem 
(1). We consider both systems with polynomial growth coefficients and with exponential 
growth coefficients, as well as, both the existences in the usual weak sense andin the 
so-called Lweakened sense of H. Brezis and F. E. Browder in Sobolev spaces and of J.-
P. Gossez in Sobolev-Orlicz spaces, and in more general spaces as so-called generalized 
Sobolev spaces (which are modelled by means of Banach function L,,,-modules). 

These theorems are based, on the one hand, on a new fuiction-theoretic approach to 
the pair (L, F), which unifies all the approaches of [7 - 10, 15 - 16], and the approaches 
[2, 26, 37], and which is applicable not only to linear strongly elliptic operators L or 
pseudomonotone operators L but also to generalized monotone operators L in the sense 
of Browder and Skrypnik (see, e.g., [29, 31 - 32]) and, on the other hand, on the recent 
theories of Banach function' .L,,,-modules of vector-valued functions and of nonlinear 
operators acting in such spaces, which are presented in [3 - 4, 25 - 27, 36]; We point 
out that the structure of such spaces is much more complicated than in the scalar case, 
and thus the results presented here are notjust generalizations from scalar differential 
equations to systems. 

The plan of our paper is the following one. In Section 2 we shall give simplest 
variants of the two main theorems, namely Theorem 1 in Section 7 and Theorem 2 in 
Section 8 for the quasilinear elliptic boundary value problem (1) where the nonlinear su-
perposition operator F is a "strongly non-linearity" and L is a operator, which is weakly 
nonlinear in the sense of M. I. Vishik - Yu. A. Dubinskij (see, e.g., [111) [L E (L)], 
pseudornonotone in the sense of H. Brezis [L E (BM)] (in particular, a "variational 
operator" of J. Leray-J.-L. Lions) (see, e.g., [21]), generalized monotone in the sense of
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F. E. Browder - I. V. Skrypnik (see, e.g., [29, 31 - 32]) [L E (BS)], or pseudomonotone 
with respect to complementary systems in the sense of J.-P. Gossez (see, e.g., [14 - 15, 
17]) [L E (GM)]. 

For these Theorems we shall give the definition of a complementary system 

(V, Vo; W, WO) 

in Section 3, introduce the classes of spaces 3v(L, F,,3) in Section 4 (connected with one-
sided estimates and the strong non-linearity of F), 1(L, F) (with the exact definitions 
of the classes (L), (BM), (BS), (GM)) in Section 5, condition (Ri) in Lemma 3 
and condition (112) in Lemma 4 in Section 6, 3v(L,F,r) and (L,F,r) and Tr(Vo,I') 
in Section 8, and finally give some applications in nonlinear mechanics in Section 9. 

We point out that these theorems can be extended also to variational elliptic in-
equalities as well as in many papers cited in [17], and we shall treat in detail this in a 
forthcoming paper. 

1. Some terminology and notations 

For our analysis in this paper we need the following notions concerning Banach spaces 
of measurable functions, in particular, the class of Banach L-modules (see [25 - 27, 
36]).

Recall [36] that a Banach space X of measurable functions x: ci -p R" with norm 
lix is called a Banach L <,0 -module (Banach function L,,-module) if x E X and a E L 

imply that ax E X and Ii ax iix Ila iiL,Ii x Ilx . Here L = L(ci,R) is the Banach 
algebra of all essentially bounded measurable scalar functions defined on Q. In the 
scalar case m = 1, Banach L.-modules are just Banach lattices with monotone norm 
(see, e.g., [5, 22, 33]). In the vector case rn > 1, the theory of Banach L,,.-modules is 
more involved and requires tools from Convex and Set-Valued Analysis (see [25 - 26]). 
A prominent example of a Banach L,,,-module is the Orlicz space LM = LM(IZ,Rm) 

with the Luxemburg norm

0 
IIXIILM = inf {A >0: J M(s, x(s) 

where M : ci x - [0,00] is a given Young funtion (see, e.g., [5, 24 - 25, 30]). 
If M(s,u) = JJuJJP (1 < p < co), the Orlicz space LM is just the Lebesgue space 
L. Other important examples of Banach L.-modules are the Lorentz space and the 
Marcinkiewicz space which are modelled by means of LM (see, e.g., [5, 19]). 

Let X be a Banach L-module with the property that there exists a sequence 
{xj}1EN C X such that the linear hull of { x * (s)}1 E N coincides with R m for almost all 

E Q. Then there exists the non-trivial so-called (Köthe) associate space X' of all 
measurable functions x' : ci - R for which the pairing of measurable functions 

(X, X') = in (x(s), x'(s)) ds
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is finite for every x € X, where (•,.) is the usual scalar product in R. The space X' 
equipped with the natural norm 

II x 'IIx . = sup{(x,x') : II x IIx	1) 

is then also a Banach L,-module. X' can be interpreted as closed subspace of all 
integral linear functionals of the dual space X* . For example, if X = LM, then X' is 
the Orlicz spate L M. generated by the associate Young function 

M(s,v)=sup{(u,v)_M(s,u): uERm}. 

We have (Lp )'=Lp., where i + i. =l (lp<oo). 
The regular part X° of a Banach L.-module X is defined as Banach Lm-module of 

all measurable function x € X with absolutely continuous [equi-continuous] norm, i.e. 

	

X°	X € X: lim lIPDxIIx mes(D)—.O 

where PD denotes the multiplication operator by the characteristic function XD of a 
measurable set D. If X = X°, then X is called a regular space. The space X' coincides 
with the dual space X* of X if and only if X is regular. The space LM is regular if and 
only if M satisfies the L 2 -condition (see [24, 26, 30]). The space L is regular if p < oo, 
and is not regular if p = oo. 

The embedding Y C X of Banach L- modules X and Y is called absolutely 
bounded if the unit ball of Y is an absolutely bounded subset of X (under other name, 
it has uniformly absolutely continuous [equi-continuous] norms), i.e. 

lim	sup II PD X Dx = 0. 
mes(D)—.O IIxIIy<1 

For example, the embedding L C L is absolutely bounded, if p> q. 
Let a Banach L,,,,-module F of the associate space X' be total on a Banach L-

module X. Then, a subset 91 of X is called a F-weakly [a(X, F)-wealdy] absolutely 
bounded set if the condition 

lim SUP (PDx,z) = 0	(z E F) 
mes(D)—.o zEOl 

holds. Later on the symbols - or '-'- denotes continuous imbedding or compact 
imbedding of corresponding spaces, respectively. Denote by S(ci, lR) the metric space 
of all measurable functions x : ci •- R', equipped with the metric convergence in 
measure. For every Banach L,,,,-module X we have X '-* S(ci, Rm). 

Remark that the theory of the Nemytskij superposition operator F acting in Banach 
L,-modules and in Orlicz spaces is given in [3 - 4, 261 for the vector case m > 1, and 
in [5] for the scalar case m = 1.



Existence Theorems for Elliptic Systems	589 

2. Simplest variants of main existence theorems 

In this Section we present the simplest variants of the Main Existence Theorems 1 and 
2.

First, we formulate the following simplest variant of Theorem 1 (for operators L in 
(L), (BM) or (BS)) on the existence of solutions for the boundary value problem 

(1) with x E V where V with W(cz) '- V '-* W(fl) (1 < p < oo) is a reflexive 
Banach space of vector functions with values in R" and L is a 2k's order formal elliptic 
operator generating the operator L : V - V s . We denote by Z a "minimal" Banach 
L-module such that V is continuously (but non-compactly) embedded into Z (the 
imbedding inclusion V '-i Z is defined by means of Sobolev embedding theorems and 
their various generalizations). 

Theorem 1'. Let X, Y, I' c s(c,Rm ) be Banach L-rnodules, Z C F, Z C X 
and Z C Y, and suppose that following conditions are satisfied: 

(P1) L : V -. V is a bounded operator, either hemicontinuous pseudomonotone in 
the sense of H. Brezis, or generalized monotone in the sense of F. E. Browder 
- I. V. Skrypnik. 

(P2) There exists a Carathéodory function H : Q x R m -+ [0, oo) such that (u, f(s, u)) 
< H(s,u) and (Lx, x) - H[x] >0 (II x IIv r >0) for some r >0. 

(P3) The embedding Z C Y is absolutely bounded, and there exists a Carathéodory 
function B : Q x Rm - [0,) such that (u,f(s,u)) B(s,u) and the superpo-
sition operator B generated by the function B( . ,.) acts from Y into L(cZ, R). 

(P4) Either 
(a) m = 1 (the case of scalar equations) and X =1' and F acts from F into F' 

or
(b) rn > 1 (the case of systems of equations), Z C X and F: X - F' maps bounded 

subsets of X into F-weakly absolutely bounded subsets of F' 
or else

(c) m > 1 (the case of systems of equations), the imbedding Z C X is absolutely 
bounded and F acts from X into 1". 

Then problem (1) has at least one solution in V C X. 

We point out that in the case L E (C) (in particular, in the case of a linear 
operator L) we can drop condition (P3). Then we get results containing as particular 
cases existence theorems obtained in [2] via other methods. 

Second, we formulate the following simplest variant of Theorem 2 on the existence 
of solutions in the F-weakened sense for problem (1) where L E (BM) or L E (GM)). 
We formulate this variant of Theorem 2 for the case when L E (BM), F = Lo. and 
V = W, (Q) (1 <p < oo) that corresponds to the Dirichlet problem. Let L: W,() -* 
W7( f) be a 2k's order elliptic operator, p' = -j. We recall that the boundary value 
problem

Lx = Fx	(x E W; OQ ))	 (4)
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is solvable in the L-weakened sense if there exists a function x E W,() such that 

	

(y,Lx.)v	(y,Fx,)	(YE L n	 (5) 

	

(x * ,Lx4v	(x.,Fx).	 (6) 

Let X,Y C S(cl,Rm ) be Banach L.-modules, Z C X and Z C Y, where Z = L. 
if kp < N, Z = L, if kp > N, and Z = L, if kp = N (here p =	and 
0(s, u) = exp(lIuII PP- ') - 1). By the exact embedding theorems of S. L. Sobolev (see 
[11) and of S. I. Pokhozaev - N. S. Trudinger (see [1]) W,() is continuously (but non-
compactly if kp < N) embedded into Z. Remember that is the regular part of the 
Orlicz spaée L, (equivalently, it is the closure of the set of continuous functions in L.,). 

Theorem 2'. Suppose that the mentioned above conditions (P2) - ( P4) for I' = 
but without Z C F, and the following condition 

(P1') L : W '( f2) - W7(1Z) is an operator, which is bounded hemicontinuous and 
pseudomonotone in the sense of H. Brezis 

are satisfied. Then problem (4) has at least one solution x in the L-weakened sense 
(5)—(6). 

We point out that by the scheme for L,,,,-weakened solutions in the papers of F. E. 
Browder, F. E. Browder and H. Brezis, P. Hess, J. Webb, J.-P. Gossez, V. Mustonen, 
and others mathematicians (see, e.g., 16 - 10, 15 - 16, 18, 34] and the literature cited 
therein) one can consider only the case when m = 1 and H(s, u) = B(s, u) = b(s) with 
b E L(1, R) (i.e. when the so-called "sign" condition (u, f(s, u)) 5 b(s) is satisfied). We 
would like to point out that this "sign" condition turns out not to be sufficient for the 
existence of solutions in the non-scalar vector case m 1 (i.e. the case of systems of 
equations), and so for this case we should suppose some addittional conditions on the 
growth of I as in the above condition (P4)/(b) and (c). 

3. Elliptic differential operator L and complementary system 
(V,Vo;'W,WO) 

In this section we give the definition of an elliptic differential operator L in a comple-
mentary system (V, V0 ; W, WO) and some facts about the construction of complementary 
system in applications. 

Let ci be a bounded open subset in the Euclidean space R i" (N 2 2), a = 
EN (a 1 ,. . . , arj) a multi-index with non-negative natural components, al =	a3. If


x = x(s) = (x i (s),. . . ,m(s)) is some vector-valued function, then denote 

a 

	

_____________ 	k(N) - (N + k)! Dx =	
IoIx	

,	kX = { DaXj}IaI< m k,	
- N! k! t9SNGN 

Let L be a 2k's order elliptic differential operator in the divergence form (2) where 
a : ci x are Carathéodory functions, i.e. a,,(-, u) is measurable for all U 
and aa(s,.) is continuous for almost all S.
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Let V and W be two Banach spaces, V of vector-valued functions x -+ R' such 
that x and its distribution partial derivatives up to order k lie in S(l, 1W4 ). Suppose 
that (V, W) is a duality pairing with respect to a bilinear form (, )v for which 

(x,y)v = (x,y)	(x e V C S(Q,lR m ),y E WflS(S,R m ))	(7)


holds. Further, let
(V,Vo;W,WO) 

be a complementary system in the sense of T. Donaldson - J.-P. Gossez [13 - 141, i.e. 
I/ C V and W0 C W are subspaces such that, by means of (, )v, V can be identified 
with (i.e. is linear homeomorphic to) W and WO* with V. 

Suppose that the formal differential operator (2) defines the operator L : V 
W with domain D(L) j V0 (which, in general cases, is not everywhere defined and 
nonlinear) by

(y, Lx) v = L(x,y)	(YE Vo,x E D(L))	 (8) 

and
L(x,y) = 11: (ao (s ,k x(s)) , Da y(s))ds .	 (9) 

We point out that in applications for the case of reflexive Banach spaces V we shall use 
the complementary system (V, V; V, V). In applications for the non-refexive case we 
shall use for the Dirichlet problem the system 

(Wk E , TAT k E0 ; I?VIC E', W—k (El)o) 

and for the Neumann problem the system 

(V, Vo; W, W0 )	with V = W k E and V0 = WcE0 

(see references in [13 - 14, 17, 19]). Here E C S(1 , Rmk ( N )) is a Banach L,,.-module 
and E° is its regular part (see Section 1), and W k E is the "generalized" Sobolev-like 
space (modelled by means of E) of vector-valued functions x with the norm 

l x ii WkE = Ilk X ilE	 (10) 

(6k x is the vector of which components are all distribution partial derivatives of x up to 
order k), and 1,V!CE is the c(E,(E')° )-weak closure of C'°(,Rm ) in Wk E. Remember 
(see, e.g., [13 - 14, 21]) that V with *, C V c Wk (the usual Sobolev spaces) corre- 
sponds to boundary value problems for equations having coefficients with polynomial 
growth, and V with Wk Lm C V C WICLM ( the Sobolev-Orlicz spaces) corresponds 
to boundary value problems for equations having coefficients, with rapidly or slowly 
increasing growths, etc.	 . - -
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4. Class 3v(L,F,) 

Let f: 11 x IR' : be  Carathéodory function generating the superposition operator 
F: V - W and having domain D(F). Sections 4 - 8 devote the existence investigation 
on the boundary value problem (1) where L : V -i W is the operator with domain 
D(L) which was introduced in Section 3. 

We put
Tv(r) = {x E V: II z IIv :5 r}	(0 < r < no)	 (11) 

and
H(r)={Lx:xETv(r),Lz=OFx for some 0e}	 (12) 

where is the set of all measurable scalar functions such that 0 < 0(s) < 1 for almost 
all .s e Q. We recall that (Y, ) E 3v(L, F, 1) (here r is a total on a Banach L,,,-module 
Y Banach L,,-submodule of Y') if the sets H(r) (0 < r < no) are F-weakly absolutely 
bounded in Y. 

The verification of the inclusion (Y, F) E 3v(L, F, .F) is connected with many consid-
erable difficulties. We shall describe the main non-trivial scheme for this in the present 
section. 

We shall be interested in the imbedding V '-- S(1l,R m ) and in constructing a 
Banach L w-module X such that V - X or V '-*'-- X. The imbedding V '.- X can be 
defined by embedding theorems of Sobolev type, and the imbedding V '-- 5(11, Rm) 
follows from theorems of Rellich-Kondrashov type (see, e.g., [1, 19] and the various 
literature cited therein). 

The verification of the imbedding V '-*'--* X is connected with the following lemma. 
Lemma 1. Let X0 ,X C S(11,R m ) be Banach L,,. -modules, V '-p Xo, V '--

S(11, R m ) and Xo C X be an absolutely bounded embedding. Then V '-'--* X holds. 

Proof. By assumptions the unit ball of V is pre-compact in 5(11, R m ) and abso-
lutely bounded in the Banach L,,,,-module X. Hence, it is pre-compact in X by [27: 
Theorem 8] I 

We recall that (L, F) E P0 (V, Z) (where Z is a Banach L,,,,-module and V '-' Z) if I satisfies the inequalities 

(iru, f(s, u)) < A,r(s, u) 2 0	(A,, (s, 0) = 0)	 (13) 

and if the inequalities 

11A-IL <a,(r)	(II x IIz	r,7r e 1')	
(14 (irx, Lx) v > c,(r)	(ir € P,x € Tv (r) fl D(L)) 

hold where aff (r) and c,(r.) (r > 0) are constants, and A,r : 11 x R -* R are superposi-
tionally measurable (for example, Caratheodory) functions generating the superposition 
operators A ir, and P = {ir) is some (maybe, empty) family of orthogonal projectors in 
Rm which commute with operators L and F. In applications, 7' = {ø}, P = {I} with
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I the identity operator or P = {. j= 1,... ,m} where . is the operator of passing to 
the .7 'th component. 

We put

= {Lx : x E D(L), j I( x(s ), Lx ( s ))I ds < d,	 E 7').	(15) 

Lemma 2. Let (L, F) E 20 (V, Z). Then H(r) C L(d,r) where d, = 2a,(cr) - 
c,r(r) (ir E 7') and c = c(V, Z) is the imbedding constant of V into Z. 

Proof. Assume y E H(r). Then for some x E Tv(r) fl D(L) and for some 9 E 
y = Lx = OFx. Evidently, 

in (7rx, OFx) ds = fo (7rx, Lx) ds = (irx,Lx) 2 c,(r). 

For each measurable set D we have 

fD 
Or x, OFx) ds	= Ii A , (P)II L :^ a, (cr). 

LetQ(7r) denote the set of all s E Q such that (x(s), 9(s)Fx(s)) > 0. Then 

j(x, Lx)I ds 
= j (x, OFx)I ds = (2 f - j) (xx, 9Fx) ds 

< d, = 2a,(cr) — c,r(r) = d,(r) 

and the lemma is proved I 

Now suppose that f satisfies else the inequality (in this case we write f E P°(V)) 

(v, f(s, u))	cI(iru, f(s, u))I + P(s, u) + Q(s, v) + R(s, v, u)	(16)

,rEl' 

where c,r (ir € 2) are non-negative constants and F, Q, R (R(s, v, 0) = 0) are Carathéo-
dory functions such that the corresponding superposition operators F, Q, R map V, F, r x 
V into L(1, R), respectively, where F is a total on Y Banach L.-module of Y'. 

Proposition 1. Assume Y = F', (L, F) E P0 (V, Z), and I E P°(V), and that one 
of the following conditions is satisfied: 

(i) V -'-- X. 
(ii) V - X, the operator P is bounded on each ball, of X, and the operator R(z,.) 

is absolutely bounded on each ball of X for every fixed z E 1'. 
(iii) V	X, F is a regular Banach L-module, i.e. _r = F°, and the operator 

R(z,.) is bounded on each ball of X for every fixed z € I'.	- 
Then (Y, r) E 3v(L, F, F)



594	Hôg Thai Nguyêñ 

Proof. From Lemma 2 and (16) the inequality 

I(PDz,OFx)I <A > c,d,(r) + A II Px IIj. + A II PDQ( A —' z )IIL + AIIPDR(Az,x)IIL 

follows where 0 < A < 00, z E I', Lx = OFx E H(r), x E Tv(r) and 0 E . By (17) and 
the assumptions of Proposition 1 we have 

(PDz,OFx)I	A	c,d,(r) + A sup IIPXIIL 

	

,rEP	 IIzIIx 15c
-	(0<A<oo) 

+ AjPDQ(A'z)II + A sup IIPDR(A 'z,x)IIL 
.ETV(,) 
L.=Fr 

where c is the imbedding constant of V - X. 
By either V '-- X or the boundedness of the superposition operator P : X —* 

L(, R) it follows that for every fixed E > 0 we can find a suitable number A > 0 such 
that

I(PDZ,OFx)I <e + A II PDQ(Az)II + Ae sup IIPDR(Az,x)IIL. 
ETv(r) 

By the Krasnoselskij type continuity theorem for superposition operators acting in Ba-
nach L,-modules (see, e.g., [4: Theorem 3]) and of the Vitali-Krasnoselskij compaètness 
criterion (see, e.g. [20] and [27: Theorem 8]) for subsets in L(, IR), in the case when 
assumption (i) or (ii) holds, the equality 

lim	sup (PDz,OFx)I = 0	 (18) mes(D)—.O ETv(r) 
Lr=DF 

holds and, in the case when assumption (iii) holds, the inequality 

sup I (z,OFx) I < 00 
.ETV(,) 
Ls=F 

holds which, by regularity of the Banach L.-module f and the Banach-Steinhaus 
theorem, is (see [26] and [27: Theorem 8]) equivalent to (18). Equality (18) means 
that the set H(r) (see (12)) is f-weakly absolutely bounded in Y for all r > 0, i.e. 
(Y, IF) E 3v(L,F,F) I 

As simple but important specializations of Proposition 1, we obtain the following 
two corollaries. 

Corollary 1. Suppose Y = f' and suppose that one of the following conditions is 
satisfied:

(i) V '—*'-- X and the operator F acts from X into Y. 
(ii) V — X, and the operator F: X — Y maps every bounded subset of X into a 

f-weakly absolutely bounded subset of Y. 
(iii) V	x, I' is a regular Banach L,,.-module, and the operator F: X - Y maps 

every bounded subset of X into a f-weakly bounded subset of Y.
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Then (y, r) e 3(L,F,F) 

Proof. We have
(v,f(s,u)) :5 R(s,v,u) 

where R(s,v,u) = I(v,f(s,u))I. As assumed, all assumptions of Proposition 1 hold for 
the case when P = {ø}, P(.s,u)= Q(s,v) = 0. Hence, from Proposition 1, Corollary 1 
follows I 

Corollary 2. Assume Y F', in = 1, (L, F) E P0 (V,Z) and P = {I} with I 
the identity operator. Suppose, moreover, that the superposition operator F acts from F 
into Y. Then (Y, r) E3(L,F, F) if V '-'-- S(cl,Rm). 

Proof. We set
f(s,u) = sup {lf( s , w )I : I W I	ui). 

Then (see [4: Lemma 5], noting that cocif = [-1, i]J) f will be also a Carathéodory 
function and the superposition operator f acts from I' into Y, too. We have 

(v, f(s, u)) 5 lvi If(, u)i :5 I uf( s , u)i + R(s, v, u) 

where R(s,v,u) = l v If( s , v ) . Hence, condition (1) of Proposition 1 follows in the case 
when P = {I}, cj = 1, P(s,u) = Q(s,v) = 0 and X is an arbitrary Banach L,,,,-
module such that the imbedding Z --4 X is absolutely bounded (and then, by Lemma 
1, V -+ --+ 'X). This proves that Corollary 2 follows from Proposition 1/(i) I 

In the end of Section 4 we remark that the condition (Y, F) E 3(L, F, 1F) is analogous 
to the so-called k.-compactness and b,-boundedness of the non-linearity F in the sense 
of [35]. Via the schemes [35] and [28] one can find other complicated sufficient conditions 
which guarantee (Y, F) E 3v(L, F, .T), and, in particular, a vector analog of Corollary 
2 by using "P = {. : j 1,...,rn} where . j is the operator of passing to the j'th 
component. 

5. Classes 91(L, F), (C), !(BM), (BS) and (GM) 

We recall that (V, V0 ; W, Wo) e 91(L, F) if for any sequences {x} C D(L) and {9,,} C 
such that 

Lx,, = 9,,Fx,, 
x,, converges to x in the metric of S(c,Rm) 
x,, converges in the weak topology a(V, W0), 
8,, converges to 1 in S(cl,Rm), 

Lx,, converges to c in the weak topology i(W, V0), 
Lx = r, = Fx follows. Remember that, as before, is the family of all measurable 
scalar functions 8 such that 0 <8(s) < 1 for a.a. s E Q. 

The verification of the inclusion (V, V0 ; W, W0 ) E 1(L, F) is connected with the 
following well-known concrete classes of operators L and with the inclusion (Y, F) E 
3v(L,F,.1). In this paper we use the classes C(C), (BM), (BS) and (GM) of L 
which will be defined below.
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We recall (see Yu. A. Dubinskij [11], and also [31 - 32]) that L E c(L) if V = Vo is 
a reflexive Banach space, W = W0 V* , and the operator L: V —* W (D(L) = V) 
is bounded and weakly continuous (i.e. Lxn weakly converges to Lx if a generalized 
sequence x n converges weakly to x; in the case of a separable Banach space V it is 
sufficient to consider a usual sequence xc). 

We recall (see [21] and Brezis's papers cited therein) that L E t(BM) if V = Vo 
is a reflexive Banach space, W = W0 = V* , the operator L : V - W (D(L) = V) is 
bounded, weakly continuous on every finite-dimensional subspace of V and of the type 
(M), i.e. has the following property (M): for every sequence {x} such that x — x 
weakly, Lx —* r. weakly and limsup_,(x,Lx)v 15 (x,ic)v it follows that K = Lx. 

We recall (see, e.g., [29, 31 - 32, 38]) that L € (BS) if V V0 is a reflexive 
Banach space, W Wo = V, L : V —* W (D(L) V) is a bounded operator, which 
is demicontinuous (i.e. which maps every convergent in norm sequence into a weakly 
convergent sequence) and it has the Browder - Skrypnik property (so-called condition 
(S)+): for any sequence {x} such that x,, —* x weakly and lim 0 (x — x,Lx)v <0 it 
follows that x,, - x in norm. 

We recall (see J.-P. Gossez [13 - 141, and also [171) that L € (GM) if 
1) D(L) D 110 and L is continuous on every finite-dimensional subspace of V as an 

operator acting from V into (W,ci(W,Vo)) 

2) L is sequentially pseudomonotone, i.e. for any sequence {x } C D(L) such that 
xn —4 x in the weak topology a(V,Wo), Lx,, — #c in the weak topology o(W,Vo) and 
limsup,,,,0(x,,,Lx,,)v 5 (x,'c)v it follows that x E D(L), ,c = Lx and (x,,,Lx,,)v 
converges to (x,?c)V. 

We recall that V € 1(F) if for any sequences {x,,} and {O,,} C such that x,, - x in 
the weak topology a(V, W0 ) and in S(, IR'), 9,, — 1 in S(çl, R) and I (x,,, 9nFx,,)I < 00, 
the inequality

limsup(x,,,8,,Fx,,)	(x,Fx) <00	 (19)


follows. 

Proposition 2. Suppose (u,f(s,u)) B(s,u) ^! 0, with B: ci x R  —i IR a 
Carathéodory function generating the superposition operator B : Z. - L(ci, R) where 
V '-+- Z and Z. C S(cl,Rm ) is a Banach L-rnodule. Then V € 1(F). 

Proof. Assume that {x,, } and {O,, } are sequences of functions in the definition of 
V € fl(F). Then from V '-- Z, it follows that x,, —* x in the norm of Z,.. By 
the Krasnoselskij- type continuity theorem (see, e.g., [4: Theorem 3]), the superposition 
operator B : Z. —L(fl,R) is continuous, and consequently, Bx,, -. Bx in L(ci,IR). By 
the Nemytskij theorem (see, e.g., in [20]), 9,,Fx,, -+ Fx in S(ci, Rm). 

Further, by Bx,,(s) — (x,,(s),9,,Fx,,(s)) >0, from the Fatou lemma the inequality 

liminfJ 
(Bx n (s) - (xn(s),OnFxn(s)))ds if, (Bx — (x,Fx)) ds	(20) n—.
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follows. This inequality implies that 

0 f (Br - (x,Fx))ds 

< liminfJ Bx(s)ds + liminfJ ( — (x,8Fx))ds 
T, —oo	 n—.co (1 

= j 
Bx(s)ds - limsupj(xn9nFxn)ds.

n—co

Consequently, 

limsupj(x n) On Fx n )ds
 in 

(x,Fx)ds 
in 

Bx(s) ds <00 

which proves (19)1 

Proposition 3. Assume r' = y, V0	r and that one of the following conditions

is satisfied: 

(i) L E ((C), (y, r) E 3v(L,F,F). 
(ii) L E (BM), (y, r) E 3v(L,F,.fl, V € 'Yl(F). 

(iii) L E (Bs), (y, r) E 3v(L, F, F), V e 91(F). 
(iv) L E (GM), (y, r) E 3v(L, F, F), V € 91(F). 

Then (V,Vo;W,Wo)€ 91(L, F) 

Proof. Let x,,, 8,,, c, x be functions in the definition of 91(L, F). First, we consider 
the case when condition (i) is satisfied. Then, by L € (L) we have at once the equality 
Lx = e. It remains to prove K = Fx. Since On — 1 in S(c, R) and Xn — in S(1, sm), 

then by the Nemytskij theorem (see, e.g., in [5, 20)) 8,,Fx,, —, Fr in S(Q,R m ). Since 
(Y,r) E 3(L,F,1) and the set {x,,} is bounded in V, the set {8,,Fx,,} is r-weakly 
absolutely bounded in Y. By the Vitali-Krasnoselskij convergence theorem (see, e.g., 
[20] and [27: Theorem 8]) in L(, R), 

	

(z,8,,Fx,,) — (z,Fx)	(z € )	 (21) 

as n — 00 and therefore 9,,Fr,, —' Fr r-weakly in Y. Since Vo r and r' = Y, 
the restriction of every functional ( . ,y) on Vo (y E Y) is a element of V = W. By 
the definition of a complementary system (V, V0 ; W, W0 ) (see Section 3) it follows that 
(z,8,,Fx) = (z,9,,Fx,,)v and (z,Fx) = (z,Fx)v (z € I'o) . From (21) it follows 

	

(z,8,,Fx,,)v —' (z,Fx)v	(z € V0 ),	 (22)


as n - 00, i.e. 8,,Fx,, = Lx,, — Fx in the weak topology o(W,Vo). Hence, Fr = K. 

We are going to consider the case when condition (ii) is satisfied. As in the preceding 
case one can prove that 8,,Fx,, Lx,, —* Fr in the weak topology (W, V0 ) and Fr = K. 
It remains to prove that Lx = re. By V E 91(F) we have (19). Then -

limsup(x,,,Lx,,)v = limsup(x,,,8,,Fx,,) < (x,Fx) = (r,K)v
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By property (M) for L E (BM), Lx = r, follows. Thus, Lx = r, = Fx. 
Now we consider the case when condition (iii) is satisfied. As in the first case one can 

prove that OFx = Lx,, — Fx in the weak topology o(W, V0 ) and ,c = Fx. It remains 
to prove that Lx tc. By V E 91(F) we obtain (19). Hence, since (x,, — x,Lx,,)v = 
(x,,,9nFx,,)v — (x,9,,Fx,,)v, x E V = V0 -r and Y = r', it follows that 

limsup(x,, — x,Lx,,)v 

= urn sup(x,,, 9,,Fx,,) + liminf(—(x, 8,,Fx,,)) n—co
 limsup(x,,,9,,Fx,,) — (x,Fx) 

n-co 
0. 

Consequently, by the Browder-Skrypnik property of L E (BS), x,, — x in the norm of 
V. By the demicontinuity of L E (BS), Lx,, —* Lx weakly, and consequently; Lx = 
Thus, Fx = K = Lx. 

We consider the case when condition (iv) is satisfied. As in the case (i) one can 
prove that 9,,Fx,, = Lx,, —* Fx = ic in the weak topology a(W,Vo), and by V E 91(F) 
we obtain (19). Then 

(z,Lx,,)v = (z,O,,Fx,,)v —* (z,ic)v = (z,Fx)	(z E V0 ).	(23)


as n —* oo. Further, we have 

limsup(x,,,Lx,,)v = limsup(x,,,8,,Fx,,) < (x,Fx) = (x,)v. 

By L E (GM) it follows that x E D(L) and Lx = ,c. Thus, Fx k = Lx  

6. Auxiliary lemmas 

We need else the following technical notions [25 - 26] in the theory of Banach L ,-
modules for some further proofs in this paper. 

Let B: ci 2R" be a multifunction, for which there exists a sequence of measurable 
functions {x}jEN such that the closure hull of {x(s)},EN coincides with B(s) for a.a. 
S E ci and B(s) is a symmetric absolutely convex compact subset of R . Then B is 
called (see [25 - 26]) an infra-semi-unit or m* -unit of X if x E X for every so-called 
measurable selector x of B, i.e. measurable function x such that x(s) E B(s) for a.a. 
S E Q. In the scalar case m = 1, any 1-unit B has the form B(s) = [—b(s), +b(s)] where 
b is a non-negative element in X. A subset 91 C X is called (see [25 - 26]) U-bounded, if 
all elements of 91 are measurable selectors for some fixed rn-unit B of X. In the scalar 
case m = 1, this notion is equivalent to the notion of order- boundedness of 91, i.e. to 
the existence of a non-negative function b E X such that x(s)I	b(s) for a.a. s E ci

and for all x e 91.
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An analog of the space L is the Banach L-module MB of measurable functions 
x with the norm

11 x 11M8 = inf {.\ > 0: x(s) E AB(s) a.e.} <+00. 

A subset 91 is U-bounded if and only if 91 is bounded in the norm of MB for some m-
unit of X. The associtate space (MB)' (denoted by L B-) as an analog of the Lebesgue 
space L 1 is a regular space [261. For example, in the scalar case m = 1, when B(s) = 
[—b(s), +b(s)], LB O is just the Lebesgue space L, (b) with weight b. 

Recall that an operator F : X —* Y is called U-bounded on the whole space X, if 
F(X) is U-bounded in Y. 

Lemma 3. Let V '—'—E, E c S(Q,R m ) be a Banach L.-module, L € C, where 
is one of the classes C(C), C(BM) or C(BS), and the superposition operator F : E —* E' 
be U-bounded on whole space E. Suppose that the following condition is satisfied: 
(Ri) There exists a superpositionally measurable function H( . ,.) : 11 x Rm - [0,00) 

such that (u, f(s, u)) < H(s, u), the superposition operator if generated by 
H( . ,.) acts from V into L(11, R), and (x, Lx) v — Hx >0 (lI x il > r) for some 
r >0. 

Then the equation Lx = Fx has at least one solution x E Tv(r) for which II Lx IIw c 
where c = sup {II Lz IIw : II z IIv	r}. 

Proof. Remember that E '-p 5(11, IR tm ) by [27: Theorem 4]. First, we prove that 
L — F € C Since F: E —+ E' is U-bounded on whole E, there exists an rn-unit B of 
E' such that F(X) C MB -4 E', E '-' (MB )' = LB', and F: E --+ MB is a bounded 
operator on whole E (see [27: Theorem 41 and [25: Theorem 5)). In the scalar case 
m 1, this 1-unit B has the form B(s) = [—b(s),+b(s)] where b is a non-negative 
element in E' with suppb Q. Let II x n — x IIE - 0 as n - 00. Then x,, converges 
in the norm of LB and, consequently, it has uniformly absolutely continuous norms as 
LB is regular [26] by the Vitali-Kra.snoselskij type convergence theorem (see, e.g., [20] 
and (27: Theorem 8]). Hence, for z € LB D E we get 

urn sup / I(z,Fx)Ids	lim	IIPDZIILB sup II FxnhIM8 = 0. 
mes(D)—O n JD	 mes(D)—.O	 n 

By the Nemytskij theorem (see, e.g., (5, 20]) Fx - Fx in the metric of S(11,Rm), 
and hence it follows from the Vitali-Krasnoselskij convergence theorem in L(fZ, R) (see, 
e.g., [20] and [27: Theorem 8]) that (Fx,z) - (Fx,z) as n — oo, for every z E E. 
Therefore, Fxn converges in the weak topology c(E', E). This proves that f : E - 
(E', o(E', E)) is continuous. 

We consider the case C = (r). Since V '-*'- E and F: E — E' is U-bounded, 
bouridedness of F : V = Vo — W = W0 follows and consequently, boundedness of 
L - F : V - W, since L E () is bounded. Further, since V = Vo '-*'-* E and 
V is a reflexive Banach space, from weak convergence in V strong convergence in E 
follows: Then the proved continuity of F: E — (E', a(E', E)) implies weak continuity 
of F: V — W, and consequently L - F: V - W is weakly continuous, since L € (C) 
is weakly continuous. Thus, L - F € (C).
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Next we consider the case L E it = ((BM). As in the first case we can prove that 
L - F : V = Vo -* W = W0 is bounded and F : V -, W is weakly continuous, in 
particular, F : V -* W is weakly continuous on every finite-dimensional subspace of 
V. Since L E t(BM) is weakly continuous on every finite-dimensional subspace of V, 
L - F has the same continuity property. It remains to prove that L is an operator of 
type (M). For this suppose that x,, - x weakly in V, (L - F)x - weakly in W and 
limsup(x,(L - F)x)v (x,k)v. By V = Vo '-'- E, x, -* x in the norm of E 
and in the metric of S(, R m ). Consequently, (x e , Fx) -.+ (x, Fr) in S(Q, R). Further, 
Fr,, E MB and x,, -* x in LB- . We have 

lim	sup	(x,,,Frn)Ids <	lim	sup IIn1IM8 II PD m nIIL,, mes(D)—.O fl ID	 - mes(D) — O n 
c	urn	supIIPDxflhILB, mes(D)—.O n 

=0 

where c = sup,, IIFXnIIM,, <00, since F: E - MB is bounded and LBO is regular (see 
[261). Hence it follows by the Vitali-Krasnoselskij theorem in L(1l,R) (see, e.g., [20] or 
[27: Theorem 8]) that (x,,,Fx,,) - (x,Fx) in L(1l,R) and, in particular, 

lim (x,,,Fx,,) = (x,Fx)	(x,Fx)v.	 (24) n -.00 

We have that Fx,, --+ Fx weakly in W and, consequently, Lx,, --4 c + Fr weakly. Thus, 

limsup(x,,,Lx,,)v limsup(x,,,(L - F)x,,)v +limsup(x,,,Fx,,) 

(x,ic)v + (x,Fx)v 

= (x,i+Fx)v 

Consequently, Lx = K + Fx, since L E t!(BM) is an operator of type (M). This 
completes the proof of L - F E Q(BM). 

At last we consider now the case that L E (BS). As in the preceding case one can 
prove that F : V = V0 -* W = WO is bounded and weakly continuous, in particular, 
demicontinuous. Since L E (BS) is bounded and demicontinuous, L - F has also these 
properties. It remains to prove the Browder-Skrypnik property of L - F E (BS). For 
this suppose that x,, - x weakly and lim,,.00(x,, — . x, (L - F)x,,)v < 0. Analogously 
as in the proof of (24) one can prove that 

	

lim(x,, - x, Fr,,) = 0.	 (25) n cc 

Hence it follows that 

lim(x,, - x,Lx,,)v = lim(x,, - x, (L - F)x,,)v + lim(x,, - x,Fx,,)v 

0+0 

Egli
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By the Browder- Skrypnik property of L E Q2(BS) it follows that z -' x in the norm of 
V. This proves that L - F has the Browder-Skrypnik property and that L - F E (BS). 

Thus we proved that L - F E . By condition (Ri) of Lemma we have 

(u,f(s,u)) :5 H(s,u) > 0 

and

(x, (L - F)x)v = (x, Lx) v - (x,Fx) ^: (x, Lx) v - Hz >0	(II x IIv > r >0). 

Then by well-known existence theorems for operators of the class (see, e.g., [11, 21, 
29, 31 - 32, 38]) it follows that Lx = Fx has at least one solution f E Tv(r ) I 

Lemma 4. Let V '-'- E, E C S(I?,Rm ) be a Banach L.-module, L E (GM) 
and the superposition operator F : E --+- E' be U-bounded on whole space E. Suppose 
that the following condition is satisfied: 

(R2) There exist a function y E Vo, a superpositionally measurable function H(.,.) 
x RTn -4 [0, oo) and a number r > 0 such that (u - y(s), f(s, u))	H(.s, u),


the superposition operator H : V -* L(cl, R) generated by H( . ,.) is bounded on 

	

bounded sets, (x—y, Lx) v —Hz >0 (II x IIv	r >0), and lI Lx lIw	c(c i ,c2 ) <

00 where li x il c j <00 and (x - y, Lx)v c 2 <00. 

Then the equation Lx = Fx has at least one solution x for which II Lx IIw c' where 
cl = c'(r , sup ii z iiv <r II HZ IIL) < 00. 

Proof. Analogously as in the proof of Lemma 3 in the case L E (BM) one can 
prove that L - F E (GM) and that F is bounded in W on every bounded in V subset. 
Further, we prove that L - F satisfies also condition (R2) for same y and H(s,u) and 
for some function c'(c 1 ,c2 ). First we have 

(u - Y(s), f(s, u))	H(s, u) >0 
(x - y, (L - F)x)v = (x — y,Lx)v - (x - y,Fx)v	

(26 
S	

^(x—y, Lx) v—Hx 
> 0 (II x IIv > r > 0). 

	

Now let II x IIv < c 1 < -- and (x - y,(L - F)x)v	c2 < oo. Then x E D(L) (since

Lx = (L — F)x + Fx) and 

(x - y , Lx)v = (x - y, (L - F)x)v + (x - y, Fx) 

< C2 +(II x IIv + ll y IIv) sup IIfzIIw 

	

S	 IIzIIvct 
= 

<00. 

Consequently, by condition (R2) for L we have II Lx IIw c(c i ,c) <00 where II Fx IIw < 

	

d(c i ) = sup 1111 ,..<, IIfz IIw < oo. Hence	 S 

II( L — F)x IIw 15c'(c i ,c2 )=c(c i ,4)+d(c 1 )	 (27)
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follows where II x lIv c1 < oo and (x —y,(L--F)x)v 5 c2 <. By (L — F) E (GM) 
and (26) - (27), from known existence theorems (see, e.g., [13, 17]) it follows that the 
equation Lx Fx has at least one solution x E Tv(r). The estimation of the norm 
IILx*IIw follows from condition (R2) and the relations (x —y, Lx*) = (x* _y,Fx*)v 
1Hz' 11  I 

7. Main existence theorem in the usual weak sense 
We state now the general result on the existence of solutions in V for the problem 
Lx = Fx via the abstract notion (V, V0 ; W, W0 ) E 'M(L, F). We draw attention of the 
reader to the fact that verifiable sufficient conditions for (V, V0 ; W, Wo) E 91(L, F) were 
given before in Proposition 3 (Section 5) together with Proposition 2 (Section 5) and 
Proposition 1 with Corollaries 1 - 2 (Section 4). 

Theorem 1. Let (V, Vo; W, Wo) be a complementary system in the sense of Section 
3, and let E, Y, F c S(cl, R") be Banach L,,.-modules such that V '-- E, F' = Y and 
V0	F. Further, suppose that one of the following conditions is satisfied: 

(i) (V, V0 ; W, W0 ) E 91(L, F), and condition (Ri) in Lemma 3 for L E it is satisfied 
where C is one of the classes Q(C), (t.(BS), (BM): 

(ii) (V, Vo l W, W0 ) E 91(L, F), and condition (R2) in Lemma 4 for L E Q(GM) is 
satisfied. 

Then the equation Lx = Fx has at least one solution in V. 
Proof. Fix an rn-unit B of E' such that the linear hull of B(s) coincides with Rm 

for a.a. s E Q (see Sections 1 and 6, and [25: Theorem 5]; in the scalar case m = 1, this 
1-unit B has the form B(s) = [—b(s), +b(s)j where b is a non-negative element in E' with 
suppb = Il). We define the Carathéodory function coB(s,u) = inf{)i> 0: u E )B(.$)'}, 
and then B(s ,) is a norm in IRmfl for a.a. s E Q. Put 

f,,(s,u) =rnin =min {1,n(pB(s,f(s,u))) -1 }f(s,u).	 (28) 
Evidently, for each n E N, I,, [the so-called relaxation of f] is a Carathéodory function 
and it defines the superposition operator F. : E -i E', which is U-bounded on whole 
space E, since F,,(X) is contained in the ball of MB with radius n. Further, for the 
sequence of scalar functions 

9,,(s, u) = min { 1, n ( p B(s, f(s, u))) —' } 
we have On - 1 a.e. and, therefore, f,, —i I a.e. In the end, for each function I,, 
condition (Ri) in Lemma 3 or condition (R2) in Lemma 4 holds. By Lemmas 3 and 
4 the equation Lx = F,,x,, has at least one solution x,, € Tv(r) for which llLx,,lIw< 
c < oo for some numbers r,c > 0 not depending on n. Obviously, Lx,, = 8,,Fx,, where 

= 9,,(s,x,,(.)) E	and 8 - 1 in S(cl,R). 
By V '-'---+ E '-i S(cl, R m ) (from our assumptions and [27: Theorem 4]) and by the 

Alaoglu-Bourbaki theorem [12] hence the existence of a subsequence {nk} follows such 
that, for some x' € Tv(r), x,, - x' in the weak topology. a(V, W0 ), in norm of E and 
in the metric of S(l , Rm ) , and, for some r. € Tw( r), Lx,,, - tc in the weak topology 
a(W,Vo). By (V,Vo;W,Wo) € 'Jl(L,F) hence it follows that Lx' = r. = Fx', i.e. the 
equation Lx = Fx has a solution in V I
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8. Main existence theorem in the r-weakened sense 

8.1 Solvability in the I'-weakened sense. Let (V, V0 ; W, W0 ) be a complementary 
system in the sense of Section 3. Recall that the equation Lx = Fx is solvable in the 
F-weakened sense (here I' is some fixed Banach L-module in S(, R)) if there exists 
X, such that

(y,Lx.)v	(y,Fx.) (yE Vfl[')	 (29) 
(x.,Lx4v = (x.,Fx.).	 (30) 

Remark that the solvability in the L,,.-weakened sense is considered, e.g., in (6 - 10, 15 
- .16, 18, 341 (see also the literature cited therein). In this section we get the general 
Theorem 2.on the existence in the F-weakened sense by means of the method presented 
in Sections 4 - 7 that refines results of these mathematicians for the case when F = 
and m = 1. From this Theorem it follows that the so-called "sign condition" in the 
above mentioned articles is not sufficient for the solvability of the equation Lx = Fx in 
the vector case m 0 1. 

We state now the general result on the existence of solutions in the F-weakened 
sense in V for the problem Lx = Fx via the following abstract notion (V, Vo l W, W0 ) E 
91(L, F, F). We draw attention of the reader to the fact that verifiable sufficient condi-
tions for the inclusion (V, Vo; W, W0 ) E t(L, F, I') will be given in Proposition 5 (Sub-
section 8.2) together with Proposition 4 (Subsection 8.2), the [mentioned in the first 
part of Subsection 8.2] sufficient conditions for the inclusion (V, V0 ; W, W0 ) E Tr(Vo, F), 
and Proposition 1 and its Corollaries 1 - 2 (Section 4). 

Let be a fixed class from C(BM) or (GM) (see Section 5). Following Section 
6, we recall that (V,Vo;W,Wo) E (L,F,r) if for any sequences {x} C D(L) and 
{9} c such that 

Lx = 9Fx 
x, - x in the metric of S(, R") 

-* f in the weak topology a(V, W0) 
9-1inS(,R) 
Lx,, -' r, in the weak topology a(W, V0) 

it follows that Lx = , and relations (29) - (30) hold. Remember that, as before, is 
the set of all measurable scalar functions 9 such that 0 < 9(s) < 1. 

Theorem 2.' Let (V, V0 ; W, WO ) be a complementary system in the sense of Section 
3, and E,Y,F C S(,Rm ) be Banach L,,.-modules such that V -*-- E and r' = Y is 
regular (in particular, F = L,,.,). Further, suppose that one of the following conditions 
is satisfied: 

(i) (V, Vo; W, Wo) E fl(L, F, F) and condition (Ri) in Lemma 3 is satisfied for 
L e !(BM). 

(ii) (V, 1/o; W, W0 ) E 'YL(L, F, F) and condition (112) in Lemma 4 is satisfied for 
L E (GM). 

Then the equation Lx = Fx has at least one solution x E V in the F-weakened 
sense.	 .
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Proof. Let f,, be the functions defined in (28) and On be the functions in the proof of 
Theorem 1. As proved there, each equation Lx = F,.x has at least one solution x, such 
that x,. E Tv(r) and II LxnIIw <c < oo for some r, c > 0 not depending on n. Obviously, 
Lx,. = 9,.Fx,. where 9,.( . ) = O,.(.,x,.(.)) — 1 in S(ci,R). By V '-'-- E '- S(ci,Rm) 
(from our assumptions and [27: Theorem 4)) and the Alaoglu-Bourbaki theorem [12) 
hence there follows the existence of a subsequence ink  such that, for some x' E Tv(r), 

- x, in the weak topology o(V, Wo), in the norm of E and in the metric of 
S(ci,Rm ), and, for some c e T(c), Lx,,,, —* K in the weak topology o(W,Vo). By 
(V, Vo; W, W0 ) E 1(L, F, F) hence Lx, = ,c and relations (29) - (30) follow U 

8.2. Verifiable sufficient conditions for (V, V0 ; W, Wo) E 91(L, F, I'). The ver-
ification of the inclusion (V, V0 ; W, W0 ) E l(L, F, I') is connected with the inclusion 
(Y, F) E 3v(L, F, ) and with "good" properties of the spaces V and V0 . We recall that 
(V, V0 ; W, Wo) E Tr(Vo, F) if the following two conditions are satisfied: 

(Ti) (Brezis-Browder- Goss ez condition). From that tc E W, z E F', (y,Ic)v 
(y, z) (YE Vofl F), x E V, (x(s),z(s)) <h(s) for a.a. s E ci and h  L(Q) it 
follows that (x,1)v = (x, z). 

(T2) For each y E V fl F there exists y, E Vo fl F such that yj -* y in the weak

topology a(V, W) and in the metric of S(1l, R m ), and SUpjEN II!IiIIr < 00. 

The verification of the inclusion (V, V0 ; W, W0 ) E Tr(Vo, F) in the non-trivial case V0 fl 
F 54 Vo is connected with many considerable difficulties. At the present from results 
of H. Brezis and F.E. Browder [7 - 8], J.-P. Gossez [15 - 161, A. Benkirane and J.-P. 
Gossez [6] it follows that (V, I/o; W, W0 ) E Tr(Vo, F) if one of the following conditions is 
satisfied:

(i) V = V0 = IiT (ci) and F = L(Q) (see [7 - 8]). 
(ii) V = V0 = W(ci), F = L,.,,(1l) and ci satisfies the cone condition and the 

segment condition (see [7 - 8]). 
(iii) V = W'LM (ci), V0 = W'L°M (ci) and F = L(Q) where ci satisfies the segment 

condition (see [15 - 16]). 
(iv) V = W'LM(cl), V0 = W'L°M (ci) and F = L,.(cl) where ci satisfies the cone 

condition and the segment condition (see [15 - 16]). 
(v) V = IV k LM(ci), V0 = W k L0M (ci) and.F = L,.(ci) where k > 2 and ci satisfies 

the segment condition, and both Young functions M and M' satisfy the /.2-condition 
(see [6]). 

As an analog to the inclusion V E 01(F) in Section 6 we recall that V E 91'(F) if 
for any sequences {x,.} and {9,.} such that x,. — x in the weak topology a(V, W0 ) and 
in the metric of S(ci,R m ), On -i 1 in S(ci,R) and I(x,.,9,.Fx,.)I <00 it follows that 

limsup(x,,,9,.Fx,.) (x,Fx) <00 

and (x(s), Fx(.$)) h(s) holds for a.a. s E ci where h is some function of L(ci, R).
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Proposition 4. Let (u, f(s, u)) < B(s, u) 2 0 with B( . ,.) a Carathéodory function 
generating the superposition operator B Z. - L(l, R) where V '-*- Z. and Z. C 
s(cRm ) is a Banach L,,,, -module. Then V E 1'(F). 

Proof. By Proposition 2 we have V E 91(F). Since x € V - Z., we have 
(x(s), Fr(s)) h(s), h(s) = Br(s) > 0 and h E L(, R). This completes the proof of 
V e

Proposition 5. Let I" = Y be a regular Banach L,,.-module (in particular, 1' = 

L), (y, r) E 3v(L,F,.F), V E 91'(F), (V,Vo;W,Wo) E Tr(Vo,r), and L E it where 
is one of the classes (BM) or (GM). Then (V, Vo; W, Wo) E 91(L, F, I'). 

Proof. Let r,, 0,,, i, x be functions in the definition of (V, Vo; W, W0 ) E 91(L, F, 1'). 
Then by (Y, 1') E 3v(L, F, 1) and by the results of the proof of Proposition 2 (see (21)) 
we have lim,,....,,,(y,9,,Fx,,) = (y,Fx.) (yE ) and, consequently, 

(y, ic)v = lim(y, Lx,,)v = lim(y, 9,,Fx,,) = (y, Fr.)	(y E 1/ fl F).	(31) 
n—oo

By V E 91'(F) we obtain 

limsup(x,,,Lx,,)v = limsup(x,,,9,,Fx,,) < (r,, Fr,) < oc,	(32) 

	

and (r.(s),Fx.(s))	h(s) for some h e L(cl,R). By (31) and condition (Ti) in the 

definition of (V, V0 ; W, Wo) € Tr(Vo, F) hence 

	

(x.,k)v = (r.,Fx.)	 (33)a


follows. Consequently, by (32) we have 

limsup(x,,,Lx,,)v	(r., re) v.	 (33)b 

Since C = !(BM) or C = (GM), Lx. = tc follows. 
Now by condition (T2) in the definition of (V, Vo; W, Wo) E Tr(Vo, F) there exists 

for any ti € V n F a sequence {y,} C V0 n F such that yi - y in the weak topology 
a(V,W) and in the metric of S(l,Rm ), and sup, Iki.,II <no. Then, by the regularity of 
r' = Y we have 

lim	sup 	I (y(s),Fr.(s))ds ^ sup IIvjIIr	lim	II P0Fx .II y = 0. 
mes(D)—.0 i D	 mes(D)-0 

Consequently, by the Vi tali- Krasnoselskij convergence theorem (see, e.g., [20] or [27: 
Theorem 8]), (y,(.),Fr.(.)) __* (y(.),Fx(.)) in L(, R) and, in particular, limj...(y, 
Fr.) = (y, Fr.). From (31) hence it follows that 

(y, 'c)v = lim (y,, ?c)v = lim (y,, Fr.) = (y, Fr.)	(y € V fl F).	(34) 300	)—CO 

From the proved relations Lx. = ic and (33) - (34) it follows that x E D(L)and 
relations (29) - (30) hold U
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9. Applications to boundary value problems in nonlinear 
mechanics 

In this Section by studying two concrete examples we explain the scheme of applications 
of Theorems 1 and 2 to some "perturbed" applied boundary value problems in Nonlinear 
Mechanics (mechanics of visco-plastic media, mechanics of elastic media, etc.) of the 
type Lx = Fx where x(s) is the "state" of the System, and the perturbation term 
Fx(s) = f[s,x(s)] is the "force" acting on the system and depending on the "state". 

First we consider the "perturbed" boundary value problem finding the elastic-plastic 
torsion of strengthened bars 

[H(T2(x)) 
aS1 
ôx1 +. a 

[H(T (2

	

	
ax'_ j x))I +f(sI,s2,x(sI,s2)) =01	(35) as2j

= 0 J 

where ci is a bounded domain of R 2 , T2(x) 
= ()2 + (_2. )2, and H(a) characterizes as,

material properties of a bar. Following [31], suppose that H(a) is continuous for a> 0, 
a0 + a l a_ 1 < H(a) Ao + A 1 aF' (a 2 O,p > 1,a0 2 0,a 1 > 0) and A0 = 0 for 
1 <p < 2. Then by [31] the system (35) is equivalent to the operator equation Lx = Fx 
in W(ci) where L : W,(ci) - W,'(ci) is an operator of the class (BS) and 

(Lx, x) A H(T2 (x))T2 (x)dsdt	+oo	(II x IIw	: +oo). 

From Theorem 1 and embedding theorems of S. I. Sobolev and S. I. Pokhozaev - N. S. 
Trudinger mentioned in Section 2, we have the following 

Corollary 3. Let Z = L 2p for p < 2, Z = L for p > 2, Z = L°,, for p = 2 where 
p(s,u) = expu2 —1. Suppose the following: 

(i) (u,.f(s,u)) < b(s) for a.a. SE ci where b  L1(Q,R). 
(ii) Z = F, and the superposition operator f acts from I' into F'. 

Then the boundary value problem (35) has at least one solution x of W' (ci, R). 

Now we are going to consider the "perturbed" three-dimensional problem finding 
the elastic-plastic equilibrium of bodies in Plastic Deformation Theory, i.e. 

3	
'1aorij

+ pf,(s,x(s)) = 0	(i	1,2,3)	
(36)asj

i=1	

J x 1 = 0 

asi

 

where ci C 1R 3 is a considered body, p is its density, x = (x i ,x2 ,x3 ) is the displacement 
vector, f(s,x(.$)) = (f(s,x(s)) (i = 1, 2,3) is the "perturbed" mass force depending 
on a displacement vector, or ij are the components of the stress tensor defined by means
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of the deformation tensor c ij as a,(x) = + 2g(r(x)){e1(x) - e(x)5} where k 
is the volume compression coefficient, .5 k, are the Kronecker symbols, 

	

e R,(x) =	(x) = (fL + L), r(x) = (2	e,,(x))
ij 

	

E(x) =	=	e 1 (x), e R,(x) = e RJ (x) - 

g is some function (so-called "plastic module") characterizing properties of a given 
material. Following [31], we suppose that g is continuous on a > 0, and that a0 + 
a 1 a 2 <g(a) <A0 +A i a 2 (a> O,p> 1,a0 ^! O,a i >0) and A0 = 0 for 1 <p<2. 
Then by [31] the system (36) is equivalent to the operator equation Lx = pFx in WI(Q) 
where L : W(l) -* W'(cl) is an operator of the class (BS) and 

I 1e 2 (x)	 _	 _ 

(Lx, x) ^	 +g(r(x))r2(x)}ds . +00	(II x IIw	. +00). 

From Theorem 1 and embedding theorems of S. I. Sobolev and S. I. Pokhozaev - N. S. 
Trudinger mentioned in Section 2, it follows 

Corollary 4. Let Z = L 3, for p< 3, Z = Lforp> 3, Z = 114 for p= 3 where 

(s, u) = exp (II u II) —1. Suppose that condition (i) in Corollary 3 is satisfied and that 
for some Banach L-modu1es X, I' c S(cl, R3) the following condition is satisfied: 

(iii) Either 

(a) Z C X and Z C I' with r regular, and the superposition operator pF acts from 
X into r' 

or

(b) Z C X and Z C 1', and pF : X - r' maps every bounded subset into a c-weakly 
absolutely bounded set 

or else

(c) Z C r, the embedding Z C X is absolutely bounded and pF acts from 
X into r'. 

Then the boundary value problem (36) has at least one solution x ofW,(cl, R3) 

We remark that from the conditions of Corollaries 3 or 4 it follows that L - F 
is bounded and demicontinuous, but it does not follow that L - F has the Browder-
Skrypnik property, and therefore, generally speaking, (L - F) (BS), and so the 
general existence theorem of I. V. Skrypnik [31] is not applicable. 

In conclusion of this section we remark that Corollaries 3 and 4 remain- true if we 
replace in (35) - (36) yo + f(,) by f(,) where yo is a fixed element of WP—, 1 ( a )), since 
we can apply Theorem 1 for (Lx - yo) = Fx instead of Lx = Fx.
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