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On Real and Complex Spectra

in some Real C*Algebras 

and Applications 
V. Didenko and B. Silbermann 

Abstract. A real extension A of a complex C-algebra A by some element rn which has a 
number of special properties is proposed. These properties allow us to introduce some suitable 
operations of addition, multiplication and involution on A. After then we are able to study 
Moore-Penrose invertibility in A. Because this notion strongly depends on the element m, 
we study under what conditions different elements m produce just the same involution on 
A. It is shown that the set of all additive continuous operators £aa(fl) acting in a complex 
Hilbert space fl possesses unique involution only (in the sense defined below). In addition, we 
consider some properties of the real and complex spectra of elements belonging to A, and show 
that whenever an operator sequence {A,} C £aa(fl) is weakly asymptotically Moore-Penrose 
invertible, then the real spectrum of AA can be split in two special parts. This property has 
been earlier known for sequences of linear operators. 

Keywords: Real C-algebras, Moore-Penrose invertibility, singular integral equations with 
conjugation 

AMS subject classification: 65 R20 

1. Introduction 

Let A be a real C'-algebra with identity e. A usual method for introducing the notion of 
spectrum for elements of A is to consider the spectrum of the images of these elements 
in a special complex algebra which is called the complexification of A. As a result, the 
spectra of elements of A are some sets in the complex plane C. One of the reasons for 
such a definition is to make impossible the situation when the spectrum of an element 
may turn out to be empty. Another reason for using the complexification of A is closely 
connected with the previous one. Namely, it is possible that the initial algebra does not 
have the operation of multiplication by complex scalars. However, there are real algebras 
which possess this operation. For such algebras the spectra defined by complexification 
technique may be distinguished from the usual one (see [5] or (12: Remark 1.1.111). 
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In the present paper we deal with the investigation of Moore-Penrose invertibility 
in special real C*algebras . In complex algebras analogous problems were studied in [9, 
10, 11, 15, 16, 181. It turns out that theproblems can be successfully treated by using 
spectral characteristics of some self-adjoint elements. However, self-adjoint elements 
of real algebras do not always possess the properties which such elements of complex 
algebras have. That is why we employ two different notions of the spectrum for the real 
C*a1gebras under consideration. Namely, we consider a real and a complex spectrum 
and the interdependency of these two objects. It is shown that the complex spectrum 
can be expressed by the real parts of the spectra of some elements belonging to an 
auxiliary complex C*algebra. 

The notion of Moore-Penrose invertibility used in this work strongly depends on a 
special element in. it may happen that different elements m lead to different Moore-
Penrose inverses. We give a description of a class of elements in such that they all 
generate just the same Moore-Penrose inverse for each a of our real algebra. 

The results mentioned are used to study some problems of Moore-Penrose invert-
ibility for additive operators, acting in a complex Hilbert space 7. In particular, we 
investigate the asymptotic Moore-Penrose invertibility in algebras appearing in spline 
approximation methods for singular integral equations with conjugation. Note that the 
stability problem in such algebras was studied in [2, 3, 7, 8, 14]. Finally, let us remark 
one technical detail. Definitions, examples, and remarks on the one hand and lemmata, 
theorems, and propositions on the other hand are numbered separately. 

2. Algebra A and some its properties 

Let R. be a ring over the real number field R. We assume that 7?. contains a complex C* 
algebra A with identity e and an element m $ A, which are connected by the following 
relations:

(A1) For each a E A, the element rnam is in A. 
(A2) in2 = e and me = m. 

(A3) For each ) e C, m(Ae) = Xrn. 

• (A4 ) The null element 0 of the C-algebra A is also that of the ring R. 

(A5 ) For each a E A, (marn)* = ma*rn , where "*" means an involution on A. 
•	In the sequel, the set of all such elements rn will be referred to as M(A). 

Now, we consider a subset A C 7?..which consists of all elements a having the form 

a = b + cm	 (1) 

with b, c E A. It is easily seen that the set A is closed with respect to the operations of 
addition and multiplication. Moreover, one can define the operation of multiplication 
of elements of A by complex scalars as 

= A(b+ cm) =(.\b)+(.Xc)m	V.\ E C.
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The set A with the above operations becomes a real algebra (this is not a complex 
algebra because, in general, ã(b) 54 A(ãb)). 

Let us note the following result. 

Lemma 2.1. Let assumptions (A 1 ) - (A5 ) hold. Then each element a of A has a 
unique representation in the form (1). 

Proof. Indeed, if an element a has two different representations a = b 1 + c 1 m and 
a = b2 + c2 m, then we immediately get 

(b 1 - b2 ) + ( C l - c2 )m = 0.	 (2) 

Multiplying this equality by ie from the right and by (—i) from the left we get 

—(bi—b2)+(ci—c2)m=0.	 (3) 

Combining (2) with (3) and remembering assumption (A4 ) we obtain our claim. I 

As a next step we introduce an involution on A. This can be done by using the 
previous lemma. Namely, for each a E A, a = b + cm (b, c E A) we put 

a = b + mc.	 (4) 

It is a simply matter to show that the so defined involution possesses most of the basic 
properties we know for involutions on complex C-algebras. For instance, one has the 
following relations: 

• For each a E A, the element a belongs to A. 

• For each äEA,(ä*)*=ã. 

• For any a, b E A and a, fi E C, (ab)* = b*a* and (aã + $b)* = ä*e + 

In addition, we can see that m* = in and, for each a E A, iz = V. 

Therefore, it will cause no confusion if we will use the same symbol "*" for the 
notation of the involution on the set A. We should only turn the attention of the reader 
to the fact that the above involution depends on the element in. In the sequel, we will 
study a number of algebras A which can be defined by different elements M. In these 
cases we will use special notations to make precise which involution is meant.
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3. Real and complex spectra 

Let A be a real C-algebra with identity e, and let b E A. Recall the definition of the 
real spectrum of b. 

Definition 3.1. The real spectrum of b in A, denoted by spA b, is the set of all real 
numbers A such that b - Ae is not invertible in A. 

As it has been pointed out earlier real algebras often possess the operation of mul-
tiplication by complex scalars. When this is the, case, one may consider the complex 
spectrum of b in A, too. It is defined analogously, namely as the set of all complex 
numbers A such that b - Ae is not invertible in A. In the sequel, the complex spectrum 
of b in A will be denoted by SPAb. 

In this section we are going to describe some relations between the complex and the 
real spectra for the elements of the algebra A introduced earlier. To do this we have to 
mention some known results concerning real algebras. 

Theorem 3.1 (see [13] App. 1). Let b be a self-adjoint element of a unital (real or 
complex) C*algebra A, and let 1Z(b) be the smallest closed real C-subalgebra containing 
the elements b and e. Then R(b) is isometrically isomorphic to the algebra C(sp.,z(b)b) 
of all continuous real functions on spl(b)b. 

Lemma 3.2 (see [31). Let b be a self-adjoint element of a complex C-algebra A. 
Then sPlZ(b) b = SpA b (= SPA. 

Lemma 3.3 (see [3]). Let 8 be a real C*subalgebra of a complex C-algebra A. 
Then 8 is inverse closed in the algebra A, i.e. if an element b e 8 is invertible in A, 
then it is also invertible in B. 

Now we are in a position to give a description of the complex spectra for elements 
of A by real components of the spectra of some elements belonging to a known complex 
C-algebra. 

Let a E A, and let A2X2 be the complex C*algebra of (2 x 2)-matrices with entries 
in A. By 'F, 'F : A - A 21 we denote the transformation 

'F(ã) = F(b + cm)=  
(mcm 

b	c
 mbm) 

where b,'c E A. 

Theorem 3.4. Let = b + cm EA. Then 

	

SPAä = U {sp22'F(a)} e'w	 (6) 
E[0,27) 

where
aw = eb+e'cm	('p E [0, 27r))	 (7) 

and
spb = {Sp8b} fl {W U O}.
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Proof. Indeed, for each A = IAe we have 

a - Ae = (a9, - PIe)e'' 

Hence, the element a - Ae is invertible in A if and only. if all elements a9, - A l e for 
E [0, 27r) are so. We consider the subset E 21 of A 21 which consists of all matrices 

of A 21 having the form (5). It is easily seen that E12 is a real subalgebra of A2X2. In 
addition, we can see that an element a is invertible in A if and only if W(ä) is invertible 
in E12. Taking into account the relation 

-	 - A l e) = 1I' (a9,) - I A I E	 (8) 

where E = ( ), we obtain 

SPAã= U 
9'E[O2i) 

To complete the proof we only need to remember Lemma 3.3. I 

Corollary 3.5. Let a E A. Then 

5PA a = spA 2 X 21F (a ) .	 (9) 

It should be noted here that such an equality is not always true for the complex 
spectrum SpAa of a (see Example 5.2 below). 

We again consider the transformation 'I' : A - A' X2. 

Lemma 3.6 (cf. [3: Lemma 5]). The transformation Ii is a '-isomorphism between 
the real algebras A and E12. 

Due to this lemma we can equip the algebra A with the norm 

l a llA = 10(a)11A2x2. 

With this norm A becomes a real C'-algebra,i.e. it satisfies the condition 

lIälI=llaa'Il A	vaeA.	 .	(10) 

Thus, throughout this paper the algebra A is assumed having the norm (10).
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4. On the uniqueness of involution in A 

In Section 2 we defined an involution in the algebra A which, generally speaking, depends 
on the element m of the ring R. Let us explain more precisely what this means. 

Suppose we have two different elements m 1 and M2 of R. possessing the properties 
(A 1 ) - ( A5 ) and producing just the same algebra A. If a € A, then we do not know 
whether the corresponding involutions 

	

(a),, 1 = ( b 1 + c i m i ) , = b + m 1 c	(bi,ci € A) 

	

(a),, 2 = ( b2 + c2 m2 ) 2 = 14 + m2 c	02, C2 € A) 

coincide. In this section we give some conditions when the equality (a) 	(ã)'m2 is

fulfilled for each a of A provided that Am 1 = Am 2 ( A). 

Theorem 4.1. Let A,,., and Am 2 be the real algebras generated by a complex C'-
algebra A and by elements m 1 and rn 2 , respectively. Then the following assertions are 
equivalent: 

1. Am 1 = Am 2 (= A) and, for each a € A, 

(a) , =(a) 2 .	 (11) 

2. The element m 1 m2 belongs to the algebra A and 

	

(rn i m2 )' = m2 m 1 .	 (12) 
Proof. Necessity part: Let the algebra Am, coincide with Am 2 , and let they both 

have just the same involution. Then there exist 1,9 E A such that m 1 = I + gm2. 
Following the proof of Lemma 2.1 we get m 1 = —f + 9m2. Hence, m 1 = gm2 , or 

m 1 m2 =g,	 (13) 

i.e. m 1 m 2 E A. 
Let us show equality (12). To do this we compute each of the involutions for the 

element m 1 . Firstly, we have
= m 1	 (14) 

and, secondly,
= (gm 2 )', 2 = m29 '.	 (15) 

Comparing (14) with (15) we obtain m 1 = Tfl29 ' . Multiplying this equality by m2 from 
the left and remembering (13) we get our claim. 

Sufficiency part. Let us suppose that the element rn 1 rn 2 belongs to the algebra 
A and satisfies equality (12). First of all, we show that the algebras Am, and Am2 
coincide. Let a € Am,. Then there exist b, c € A such that a = b + cm 1 . Hence, 

a = b + cm 1 = b + cm 1 rn 2 = b + c (m i m2 )m2 = b + c1m2,
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i.e. a € Am 2 because b, c 1 E A. The inclusion Am 2 , C Am, is proved analogously. Now 
we take an element a of A and find its involutions generated by each of the elements 
m 1 and m2 . We have

(a), = ( b + cm i ),,, = b + m1c 
and

(a),, 2 = ( b + cm i ), 2 = ( b + c(m i m2 )m2), = b + rn2(c(m1m2)) 

= b +m2 (m i m2 )*c* = b* +m 2 (m2 m i )c* = b* +m1c, 

i.e. (a)	= (a) 2 • 
Corollary 4.2. Let both the elements M 1, M2 E 7?. satisfy assumptions (A1)—(A5). 

If there exists a unitary element a E A such that in 2 = rn 1 a, then in 1 and m2 define 
just the same algebra A, and for each a E A one has	(a),,2. 

Indeed, since m 1 m2 = a E A we only need to prove equality (12). But this is almost 
apparent, because (m i m2 ) = (m i m i a) = a* = a = m2 m 1 , which proves the claim. 

The following two assertions give us some methods to construct elements of 7?. which 
would have properties (A 1 ) - ( A5 ) and would produce an algebra A with just the same 
involution. 

Corollary 4.3. Let m satisfy assumptions (A 1 ) - ( A5 ), and let q be a unitary 
element of A such that

mqm.	 (16) 
Then:

1. The element mq = rnq satisfies all conditions (A 1 ) - ( A5). 

2. AmAmq(A). 
3. For each a E A, (a) = (a),,. 
Proof. In view of the previous corollary we only have to show the first claim of this 

assertion. Note that the relations (A1),(A3),(A4) are evident, and (A2 ) immediately 
follows from (16). Moreover, for the element (mq bmq ) (b e A) we have 

(mq brn q ) = (mqbmq) = q*(mqbm)* = q*(mb*q*m) 

= m(mq*m)bm(mq*m) = rnq b . rnq = rngbmq. 

This yields the proof. I 
Corollary 4.4. Let in satisfy assumptions (A 1 ) - ( A5 ), and let q E A be a self-

adjoint element such that q 2 = e. Then for the element m q = qmq all assertions of 
Corollary 4.3 are true. 

Proof. The validity of the relations (A 1 ) - ( A5 ) can be proved by straightforward 
computation. Here we only show the validity of equality (A5 ). For each b E A we have 

(mq bm q ) = (qrnqbqmq)* = qrn(qbq)mq = qmqbqmq = mqbrnq. 

It remains to prove the second assertion of Theorem 4.1. Indeed, the element rnrn q = 
(rnqm)q evidently belongs to the algebra A, and 

(rrim q ) = ((mqm)q) = q*mq*m = qrnqm = rnqm. 

This finishes the proof I
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Now we would like to give some examples of complex C-algebras and its extensions 
generated by different elements possessing properties (A l ) - (A5). 

Example 4.1. Let r be the unit circle in the complex plane C, i.e. r = {t E C 
ti = 1). By L2 = L2 (r) we denote the set of all complex-valued Lebesgue-measurable 

functions W on r such that Jr i( t )1 2 I dt i <oc. Provided with the scalar product 

(,) =
1 I (t)	idtI	(, 7b E L2(I')) 

2ir r 

this set actually becomes a Hubert space. By M we denote the operator of complex 
conjugation in L2 (F), i.e.

(Mp)(t) = ç(t)	VW E L2(I'). 

As is shown in [3], the extension of the C-algebra A =L(L2 (r)) by the operator M 
leads to the algebra of all additive continuous operators A = £add( L2(r)) acting on the 
space L2 (r). Due to the fact that the operator M satisfies relations (A 1 ) —(A 5 ), we 
can introduce a "good" involution on this set. 

Just the same involution on £add(L?(r)) can be also obtained by using the operator 
M1 = SMS, where S is the singular integral operator of Cauchy, i.e. 

1 ( (r)d7	
"Jr	

(EL2(r)) 
7rz	r — i  

because 5 = S and 52 = S (cf. [6], Chapter 1 and Corollary 4.4). 

Example 4.2. Let us consider the Hilbert space L2 (F) again. We take a continu-
ously differentiable function a = a(t) (t E I') such that 

a2 (t)	a(a(i)) = t	Vt E r.	 (17) 

It is also supposed that
ia'(t)i	1	Vt e r.	 (18) 

For example, one can choose the function a(t) =	(t E ). We denote by W0 the

operator of the Carleman shift 

(W)(t) =	t))	( V E L 2 (r), t E I') 

and by B. the operator of multiplication by a continuous function a, i.e. 

	

(Bap)(t) = a(t)cp(t)	(cp E L 2 (r'), t e r). 

Let A be the smallest closed C-subalgebra of the C*algebra £(L2 (I')) containing the 
operator W0 and all operators Ba with a E C(r). We consider the extensions of this 
algebra by the elements M and M1 = MW,,.
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It is easily seen that M satisfies all assumptions (A 1 )—(A5 ). Therefore, we only have 
to check the conditions of Corollary 4.3 for the operator W. Indeed, it follows from 
(17) and (18) that W = I and W = B 111 W0 = W0 . In addition, a straightforward 
computation gives

MWO,M - W0 = W, 
i.e. all conditions of Corollary 4.3 are fulfilled. Therefore, the elements M and M1 
define just the same algebra A and just the same involution on this algebra. 

Example 4.3. Let N be a Hilbert space and let £add(N) be the set of all additive 
continuous operators acting in N. As it was established in [3] the algebra Jadd(N) 
can be considered as an extension of the C*algebra £(N) by any continuous additive 
operator M with the following properties: 

• M2 = I, where I is the identical operator of .C(H). 

• (Mço,4' ) = (,M ' ) for all W, b EN. 

The set of all such operators will be denoted by £ M (N). Now we are in a position to 
show that all such operators produce just the same involution on £dd(N). First of all, 
we note that each operator M satisfying the above conditions is an anti-linear one, i.e. 

M(Ax) = AMx	V.\ E C and Vx E N. 

Hence, for arbitrary M1 , M2 E Lm (H), the operatorMi M2 belongs to C(N). In addi-
tion, for any	' E N one finds 

(MI M2 p,t,b) = (M2 , M1 ) = (ça,M2M1t,b). 

Thus (M1 M2 )* = M2 M1 , and using Theorem 4.1 finishes the proof. 
We see that a wide class of anti-linear operators produces just the same involution 

On £a(N) (in the sense of definition (4)). Moreover, in the'last case it turns out that 
all possible involutions (4) coincide! 

Below, we are going to prove this claim. However, before we have to introduce some 
additional notations. 

Let Nt be the same Hilbert space N considered as a real space. As a scalar product 
on Wnt we will use the form 

(x,y) = (x, y) 7j. = Re(x,y)	(x,y E Na).	 (19) 

For each A E £dd(N) we refer to as Aa such an operator B E £dd(N) which satisfies 
the relation

(Ax, y)	(x, By)	Vx,y EN. 
We list without proofs some elementary properties of these operators: 

1) For each A E Cdd(N), the operator Aj exists and is uniquely determined; 
2) For any A, B E £add(N), (A + B)f = A + B and (AB) = BA; 
3) For each A E £add(N), (A) = A; 
4) For each A € £(N), A = A; 
5) For each M E M(L(N)), the operator MM belongs to £(N).
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Theorem 4.5. Let ?-i be a complex Hubert space. Then any operators M 1 , M2 E 
M(C(N)) produce just the same involution on 

Proof. First of all, we suppose that dim7-> 1 and consider an arbitrary operator 
M E M(L(N)). Let A E £(?I). On account of properties 1) - 4) one can write 

(MAM) = MAM.	 (20) 

On the other hand,
(MAM) = (MA*M) = MAM. 

Therefore, according to condition (A2 ) we get 

(MM)A = A(MM) VA E .C(H). 

Since dimfl> 1 the algebra £(fl) is irreducible. Hence, the operator MM e £(fl) is 
an operator of multiplication by some scalar (cf.,[11, Proposition 2.3.1) i.e. MM = Al 
for some A E C. However, the operator MM is self-adjoint. This implies A E R, and 
applying axiom (A 2 ) once again we obtain A = ±1. Thus, there may exist only two 
situations, M = M or M = —M. 

Let us now show that the second case is impossible. Indeed, if we suppose that 
M = —M, then I + MM; = 0. Therefore, for any x E fl we have 

11x11 2 <(x,x) +(Mx,Mx)(x,x) + (Mx,Mx) 
= (X, X) + (MMx,x) 

= ((I+MM)x,x) 

11( 1 + MMj )xII lixU 

(using the Cauchy-Schwarz inequality), whence 

x II < 1I( I + MM )x II=0	VxEfl, 

which is impossible. Hence, for each M E M(C(7)) we obtain M = M. 

It remains to use the necessary and sufficient condition (12). Namely, for any 
M1 , M2 E M(r(7-I)) we can write 

(M 1 M2 ) = (M1 M2 ) = ( M2 )(M1 ) = M2M1. 

Thus if dimfl > 1, then all the operators of M(C(7-I)) produce just the same involution 
on Cadd(l(). Let us now consider the situation dimll = 1. In this case the algebra £(7L) 
consists of the operator of multiplication by complex scalars only, and it is a simple 
matter to check that

= {e'M :	E [0, 27r)) 
where M is the operator of complex conjugation. However, all such elements produce 
just the same involution on £add(l,) I



On Real and Complex Spectra in Real Algebras	679 

Remark 4.4. Theorem 4.5 can be generalized on further complex C-algebras. 
Properties 1) - 5) show what assumptions one needs in order to guarantee that the 
corresponding results remain true. 

All the previous considerations have dealt with the cases when different elements of 
M(A) produced just the same algebra A. However, it may also occur another situation. 
Now we give an example when different elements Tn 1 and rn 2 generate non-coinciding 
algebras Am, and Am,, respectively. 

Example 4.5. Let a continuous function a satisfy relation (17) (but optionally 
relation (18)), and let B0 , W0 , M and M1 be the same operators as in Example 4.2. By 
A we now denote the smallest closed C*subalgebra of £(L2 (I')) containing all operators 
B0 , with function a being in C(IF). Because 

M1 B0 M1 = B	and	(M1B0M1)* = B000 = M1BM1


the element M1 generates the algebra AM1. However, it is easily seen that Am, 7t AM. 

5. Moore-Penrose invertibility in the algebra .4 
After introducing operations of multiplication and involution on the algebra A we may 
also consider the notion of Moore-Penrose invertibility in this algebra. To do this we 
suppose that the algebra A is generated by a complex C*algebra A and by an element 
m with properties (A 1 ) - ( A5). 

Definition 5.1. An element a €A is said to be rn-Moore-Penrose invertible in the 
algebra A if there exists an element b € A such that the relations 

ãbã = a,	bab = b,	(ab) = ab,	= ba.	 (21) 

are true. 
If such an element b exists, then it is called an rn-Moore-Penrose inverse of a and 

denoted by ä. 

Lemma 5.1. Let the elements rn 1 and m2 produce just the same algebra A. If 
(rnirn2)* = rn 2 m 1 , then each element a e A is m i -Moore-Penrose invertible if and only 
if it is m2 -Moore-Penrose invertible and if a, = 

Proof. If (m i m2 )* = m2 rn 1 , then the m i -involution on A coincides with the m2 -
involution. It implies the validity of the first assertion of Lemma 5.1. The calculation 

	

-+ ,--+ '*	--4. â	=ã,äà ,	 =am,(ã,),,,ã2 

a — -+ 
M , k ( a+m , im \* -. (+ 'i s -5 - -+ ((+ 'i s -5 'i(+ 'is -.5 —	, am2 ,am2 1m2 am2 - am , ,. k am , im, am , ik a m2 ,m2am2 

- -+ --+ (+ 'i s — -+ -'-+ — (+ -'i s -.+ - -* (+ 'i s -+ — am , aam , \aam2 1m2 — am, al — k am , a im , al - am , k a Tfl , im, am, 
--5 (+ 'i s -.5 (+'is -+ — (+ -'* (+ — 'is -+ — am2 am 2 1m2 am,am , im, am2 — tam, a im2 \am, a/ m , amz 
—+ (+ -'i+ — -+• -' -+ — am, m, a i m 2 — am,aam2 — am2 

gives the second assertion I
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Corollary 5.2. Let 7- be a complex Hubert space, and let M 1 , M2 E M(L(fl)). 
Then an element A E £add(N) is M1 -Moore-Penrose invertible if and only if it is M2 -
Moore-Penrose invertible and AM, = A I (A E £add(lI)). 

The proof of this corollary immediately follows from Theorem 4.5. 

Therefore, in what follows we will suppose that either the element m is fixed or all 
the elements of M(A) produce just the same involution, and we will write a' and ä 
instead of ã' and of ä, respectively. 

As it has been mentioned earlier, the Moore-Penrose invertibility in complex C'-
algebras can be handled by using some spectral characteristics of suitable self-adjoint 
elements. However, considering a real algebra we may meet situations when the spec-
tra of self-adjoint elements possess unusual properties, for instance, they can contain 
complex points. 

Example 5.2. Let 1-1 C, A be the algebra of all operators of multiplications by 
a E C, and let M(x)	for all x E C. Then 

A= {b+cM:b,cEA}. 

We consider _a self-adjoint element a of A. It is clear that a = b + cM is self-adjoint if 
b and only if  = b. If we again exploit transformation (5), we obtain that Sp4 a is the 

circle of the radius Icl with the center at the point b, i.e. if c 0 0, then the spectrum of 
a contains complex points, as well. 

In the proposition below there are collected some results we need to continue the 
investigation of the Moore-Penrose invertibility in the algebra A. 

Proposition 5.3. Let A be generated by an element rn and a C'-algebra A with 
identity e. If a E A, then the following assertions are equivalent: 

1) a is Moore-Penrose invertible. 

2) aa is invertible or 0 is an isolated point of the real spectrum of à'à. 

3) There exists a projection P. in 'R.A (à'a) such that ã'à = 0'and ã'ã + P is 
invertible. 

4) There exists a projection 4 in A such that ã4 = 0 and ä'ã + 4 is invertible. 

If one of these conditions isfulfilled, then 4 is uniquely determined and à = (&a + 

The proof of this proposition follows from [3: Propositions 7 and 8, Corollaries 11 
and 15] and from Corollary 3.5 of the present article. 

Following [3) we will say that a C'-subalgebra B of the C'-algebra A is rn-closed if 
for each b E B the element mbm is in B again. 

Proposition 5.4 (cf. [3: Corollary 13]). Let A be a complex C'-algebra with 
identity e and 8 be an rn-closed C'-subalgebra of A containing e. Then the element 
of 8 is Moore-Penrose invertible in 8 if and only if it is Moore-Penrose invertible in A.
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From now on, we are going to restrict ourselves to considering a special real C-
algebra F. Namely, let fl be a complex Hubert space, and let F be the set of all bounded 
sequences { A,, } of bounded linear operators A,, acting in fl. This set equipped with 
the norm

I{4n}IIF = sup{A,,}Il 

and with the natural operations of addition, multiplication, scalar multiplication and 
with the involution {A,,} = {A,} becomes a C-algebra with identity. Considering the 
extension of F by any element M with properties (A 1 ) - (A5 ) we obtain a real algebra 
F consisting of all the sequences { A,, } the members of which are additive continuous 
operators acting on 7-1. Let 0 be the set of all sequences of F tending to zero in the 
operator norm. It is easily seen that 0 is an ideal of F. In addition, it is worth noticing 
that the operator norm on F is equivalent to the norm the set F is equipped with as 
the extension of F by M (see [31). 

Definition 5.3. A sequence {A T,} E F is said to be weakly asymptotically Moore-
Penrose invertible if there exists a sequence (b,, } E F such that the sequences 

{A,I BT,A,, - A,,}, {BI,A,,B,, - B,,}, {(A,,B,,) - A,,BI,}, {(B,,A,,) - B,,ATI} 

belong to the ideal 9 or, in other words, if the coset {A,, } +9 is Moore-Penrose invertible 
in the quotient algebra F/c. 

It has been shown in [17] that whenever a sequence {A,,} E F is weakly asymp-
totically Moore-Penrose invertible, then the spectrum Sp(A,A,,) of AA,, can be split 
in two parts one of which is bounded from zero by a positive constant (independent of 
n), while the other part tends to zero if n tends to infinity. We now intend to show 
that this property remains true for elements of the real algebra F as well. However, 
the spectrum Sp(A,A,,) (which coincides with the real spectrum of AA,, in that case) 
should be replaced by the real spectrum sp(A,A,,) of A,A,,. 

Proposition 5.5. A sequence .{ A TI } is weakly asymptotically Moore-Penrose in-
vertible in F if and only if there exist non-negative numbers d and r,, with d > 0 and 
rn -+ 0 as n - cc such that

sp(AA,,) c [0,r,,) U [d,00]	 (22) 

for all sufficiently large n. 

To prove this assertion one can exploit the scheme of the proof of the corresponding 
result for complex C*algebras (see [171). However, one has to be sure in the validity 
of auxiliary results used in [17]. We are now going to give brief comments for some 
propositions we need. 

In the theory of complex C*algebras an "almost projection" lemma is well-known 
(see [19: Lemma 5.1.6]). A careful consideration of its proof shows that this lemma 
remains also true for real C*algebras. More precisely, we have the following lemma. 

Lemma 5.6. Let 13 be a real C-algebra with identity, and let b E B be a self-adjoint 
element with 110 - b ll < . Then there exists a self. adjoint element g € B such that 
b+g is a projection and llll 5 2 11 0 - bli.
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For the proof of this result in the real situation one can use the isometrical isomor-
phism between the real algebra R(b) and C(sp7(b)) (see Theorem 3. 1), if one observes 
that the corresponding proof in the complex situation deals with real functions only. 

Let {A} be in P. By {A}° we denote the coset of F/9 which contains the 
sequence {A}, i.e. {Afl }° := {A} + 0. Suppose that {A} is weakly asymptotically 
Moore-Penrose invertible. Due to Proposition 5.4 there is a sequence {P} E .T such 
that ({P}0)2 = { F}o and ({P}°) {P.}0. It is possible, therefore, to pick up a 
sequence {.} E {Pfl }° such that P.- = Pfl and II P, - .,,fl -, 0 as n - cx. Together 
with Lemma 5.6 this implies that one can choose a sequence {fi} E {P}o such that 
each member of it is a projection, i.e. 11	fI n and ft,', = 11, for all n E N. 

Combining this result with Proposition 5.3 we obtain 

Lemma 5.7. A sequence {A} E .T is weakly asymptotically Moore-Penrose in-
vertible if and only if there exists a sequence {H} of projections on ?i such that the 
sequence {AA + fI T } is stable and J JAnf1n11 -p 0 as n -* 00. The sequence { i fl } is 
unique modulo 0 and {(AA +H fl ) -1 A}° = {{A}+}o. 

It should be noted that in place of 4 in assertion 4) of Proposition 5.3 the element 
= e - äã can be chosen. According to this designation we refer to as H{Afl } the 

set of all projections in ({A}0)r1. 

Lemma 5.8. Let { A fl } E P be weakly asymptotically Moore-Penrose invertible. 
Then there is a sequence {fl	 ñ fl } E I1{A} such that , E	i. dd (l)(A fl An) for all 

	

(1)	(2) n E N. The sequence {H} 23 unique in the following sense: If {H }, {H, } E 
R t.d d (?l)(AA fl) for all n > no, then {fi} = {fl2)} for all sufficiently large n. 

The proof of this lemma also follows the corresponding proof of Theorem 3 in 
[17], and the only additional result we need here is the Gelfand-Naimark theorem for 
commutative real C*algebras. However, this can be found in [5]. 

Proof of Proposition 5.5. After having proved Lemmas 5.7 and 5.8 we can use 
Theorem 3.1 to obtain relation (22). However, as is shown before, in real algebras 
the spectral properties of self-adjoint elements can be different from those in complex 
algebras. Therefore, we first show that the real spectrum of AA does not contain 
negative points. Indeed, as it follows from Corollary 3.5, 

= SpL2X2()(W(Afl)J1(Afl)). 

However, the self-adjoint operator JJ( A )* 'J.'(A) does not have any negative points in 
its spectrum since it belongs to the complex C*algebra £2x2 (fl) . Hence 

spc dd (7)(A fl A fl) C [0, +oo]. 

Let {A} be weakly asymptotically Moore-Penrose invertible. Due to Lemmas 5.7 and 
5.8 we can take a sequence of projections {l1} such that {Afl } e R.(AA) (n E N)
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and II AAÜ II —+ 0 as n — oo and the sequence {AA + fl} is stable. Then there 
exists a number d> 0 such that

1 
II({ AA +lln}) IIjç < 

and we put
rn := II AAñ II .	 (23) 

Using the definition of the norm in T/9 we can choose a number no such that 

1 
II{ AA + Ün}IIc dd co <	(n > no) .	 (24) 

Now we fix some n > n0 . Due to the isometrical isomorphism between 1 := R.(AATI) 
and C(sp(AA)) (see Theorem 3.1) we can identify the element AA TI with the 
function x — x, and the projection fl with the function x — pn(x), where p, takes 
the values 0 and 1 only. Then it follows from (23) and (24) that 

X +pn(X) > d	and	xpn(X) <r	(x E sp(AAfl)). 

Analyzing the last two inequalities we obtain our claim. U 

Now we consider the notion of asymptotical Moore-Penrose invertibility for se-
quences of .1. We recall that a sequence {A} E .1 is said to be asymptotically 
Moore-Penrose invertible if there is an no such that the operators A are Moore-Penrose 
invertible for all n > no and if sup> 0 II A tiI < +. 

Theorem 5.9. A sequence { A TI } e .1 is weakly asymptotically Moore-Penrose in-
vertible if and only if it can be represented as a sum of an asymptotically Moore-Penrose 
invertible sequence and a sequence of g. 

Proof. Necessity part: Let {An) E I be weakly asymptotically Moore-Penrose 
invertible, and let {ll} be the projection sequence defined in the proof of Proposition 
5.5. By {B} we denote the operator 

Bn = A,(i'— fl).	 (25) 

Then, as it follows from the proof of Proposition 5.5, the real spectrum of BB,-I + H 
is contained in the set {1} U fd, +oo). Therefore, the operator bn is Moore-Penrose 
invertible, B,t = (BB + H)'B and 11i3 + 11 1/rd. Henceforth, the sequence 
{B} is asymptotically Moore-Penrose invertible. In addition, we have lI AH II - 0 as 
n —* co (cf. Lemma 28). Finally, from (25) we obtain 

An = B + dn	with li Gnil — 0 a n — 00.	 (26) 

The proof of the sufficiency is evident. I
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'The above results are of practical interest and can be applied to the Moore-Penrose 
regularization of approximation methods for equations with additive operators. Be-
low we consider this problem for spline approximation methods for singular integral 
equations with conjugation. 

In the space L2 (r) (see Example 4.1) we consider the equation 

b(t)	x ______ 
(Ax)(t) a(t)x(t) +	(r)dr + 

c(t)+	
[x(r)dr 

Jr r — i	 z J r—t 

+ / ki(t,T)x(r)dT + [k2(t,r)(dr	 (t E F)	(27)

jr 

=g(t) 

where a, b, c, d are supposed to be piecewise continuous functions on F and k 1 , k2 E 
C(F x F). As was shown in [2) the investigation of spline-approximation methods for 
equation (27) can be reduced to studying an algebra of operator sequences. This algebra 
is generated by a special sequence of anti-linear operators {M}, by sequences tending 
to zero in the operator norm as well as by diagonal sequences and by sequences of 
circulants i&n formed by given transformations of piecewise continuous functions q and 
tJ, respectively. More precisely, the sequences which appear in spline approximation 
methods for the equation (27) can be represented in the form 

	

{A} = {a& + b/3 + (Cyn + dO)M + G}, II G II - 0 as n -, 00	(28) 

where	 are related with the coefficients a,b,c,d of (27) whereas 
On reflect the method used. For the form of these terms we refer the reader to [2 1 . In 

[3] the sequence (28) was studied with respect to the weak asymptotic Moore-Penrose 
invertibility. Now we are able to say something more about the asymptotic behaviour 
of this sequence. However, we need additional notations. 

Thus, let P and Q stand for the operators 1 ( 1+ -S) and (I—S), respectively, where 
S was defined in Example 4. 1, and let a,b,c,d and a,/3,-y,9 be piecewise continuous 
functions. We form the matrices 

A(t) 
= (a(t) 0 \ 

-)
1 b(t) 

B(t) = ( 0	\

	
c(t)	0	\ 

C(i) =	
0 

(d(t) D(t) = 0 "
a *(t) = 

(a(t . ) 0. \	 (/3(t)	0	\ f3*(j) = 

( .y(t) 
=	0

0 \ 

)
9*(t) = (9(t) 

0
0	 1 A

W( ̂tj )	.0	0)

Corollary 5.10. Let a, b, c, d E PC(F) as well as a, 0, y,O E PC(r). The sequence 
(28) can be represented in the form (26) if and only if all the operators W, Wu E 
£(L(F)) (u E F), 

= [A(t)a*(u + 0) + B(t)f3* (u + 0) + (C(t)y*(u + 0) + D(t)9*(u + 0))AJ P 

+ [A(i)a*(u —0) + B(t)/3'(u —0) + (C(t)1*(u —0) + D(t)9*(u - 0))A] Q 
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and

WU = P [A(u + 0)a*() + B(u+ 0)fl*(i) + (C(u + 0)7(O + D(u + 0)9*())A1 

+ Q [A(u - Ø)*() + B(u - 0)/3*() + (C(u - 0)7*() + D(u - 0)9*(i))A1 

are normally solvable, and the norms of their MoorePenrose inverses are uniformly 
bounded with respect to u E r. 

The proof of this corollary follows from Theorem 5.9 and from [3: Theorem 25]. 
Note that the Fredhoimness of the operators W, and W u is sufficient for the uniform 
boundedness of their Moore-Penrose inverses (cf. [15]). 

Remark 5.4. In order to regularize the sequence {A} of (28) practically, we have 
to consider the matrix sequence ({'I'(A)},

+dô	\ 

(Mn(	

c 

cn + dO)M M(a& + bfl)Mh) 

These matrices can be regularized (in the sense of (26)) using their singular value decom-
positions (see [17]). After then we can apply the mapping 'IP` to regularized matrices 
in order to get the corresponding regularization for the initial sequence (28). 
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