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Some Surprising Results on a One-Dimensional 
Elliptic Boundary Value Blow-Up Problem 

Y. J. Cheng 

Abstract. In this paper we consider the one-dimensional elliptic boundary blow-up problem 

puf(iz) (a<t<b) 
u(a) = u(b) = +oo 

where i,u = ( Ii (L)j 2ul(t))l is the usual p-Laplace operator. We show that the structure of 
the solutions can be very rich even for a simple function I which gives a leading that a simliar 
results might hold also in higher dimensional spaces 
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1. Introduction and formulation of main results 
In the last few years there is a great of interests in the investigation of boundary blow- 
up solutions for elliptic equations [2, 3, 7), which comes originally from differential 
geometry [6] and electrohydrodynamics [5]. Very recently some existence results of two 
(one positive and one sign-changing) solutions have been established in [1, 8). The 
purpose of the present paper is to show through one-dimensional examples that the 
structure of the solutions can be very rich even for a simple right-hand side. More 
precisely,- we consider the problem 

Apu = .\f(u) (a < t < b) }

	
(1) 

u(a) = u(b) = +oo 

where
= (Iu'(i)I2u'(t))' 

is the p-Laplace operator as usual, A > 0 is a parameter, and f is a given continuous 
function. By a solution u = u(t) of problem (1) we mean that u satisfies the equation in 
(1), i.e. (Iu'(t)I'2u'(t))' = .Af(u(t)) for all i E (a, b), and limg.... a + u(t) = limt.....,,_ u(t) = 
+oc. By a sign-changing solution u(t) of (1) we mean that there exist t1, t 2 E (a, b) 
such that u(i i ) > 0 and u(t2 ) < 0. 

The results for problem (1) in this paper are summarized in the followings three 
theorems.	 . 
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Theorem 1. Forgiven positive Constants q,c,s and a, r ouch thai q > p-- i > r > . 
let

f(u)=u+eu' (u>O)	and	f(u)= c I u I' (u<O) 

Then the following statements hold: 
(i) There exists a constant A 1 > 0 such that problem (1) has at least one sign-

changing solution if A> A 1 , and no such kind of solutions can exist if A < A1. 
(ii) There exist a constant co> 0 such that the solution is unique if e 2 Co. 

(iii) If e E (0,eo), then there are constants A 2 < A 3 A4 such that problem (1) 
has at least two sign-changing solutions if A E ( A l, A4 ), has at least three sign-changing 
solutions if A E (A 2 , A 3 )), and has a unique sign-changing solution if A> A4. 

0 

Figure 1 

Theorem 2. For given positive constants q, e, s and a, r, 6, i- such that q, r > p—i > 
r > s let

1(u)	+ eu s (u 2 0)	and	1(u) = I u I T + 6 1 u 1' (u 0). 

Then: 
(1) There are constants A > 0 and A_ > 0 such that problem (1) has at least 

one sign-changing solution if A < A, has no sign-changing solutions if A > A, and the 
solution is unique if A < A_.

Figure 2
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(ii) For small e and 6 satisfying c << 6 there are A, < A 2 such that if A E (A ' , A2), 
then problem (1) has at least four sign-changing solution,. 

Next we consider for simplicity the semilinear (p = 2) problem 

	

= Af(u) (a <t < b) 
j	 (2) 

u(a) u(b) = +oo.	J 
For this simple problem we have the following, a somehow surprising result. 

Theorem 3. For given positive constants a, q and fi such that q > 3 and fi < 1 let 

1(u) = allq (u 20)	and	1(u) =(1 +ø sin lul)juI (u <0) 

(A(2) = (! )2). Then the following results hold: 

(i) There are A l , A2 > 0 such that problem (2) has at least one sign-changing 
solution if A > A, and no sign-changing solutions if A < A 1 . The sign-changing solution 
is unique, when A > A2. 

(ii) For any integer n 2 1 there exists 6 > 0 such that problem (2) has at least n 
distinct sign-changing solutions when A E (A(2) - 6,A(2) + 6). 

(iii) For A = A(2) problem (2) has infinitely many sign-changing solutions. 

Figure 3 

Remark. Problem (2) has a unique positive solution for all A > 0. The problems 
treated in Theorems 1 and 2 have also a unique positive solution if A < .X 0 where A 0 is 
defined by

CO

du	 b  

/ Vr l +q + u = 

and has no positive solution if A > A0.



528	Y. J. Cheng 

2. Some basic analysis	 - 
It is easy to see that the equation in (1) has an first integral 

Iu'(t)I = AF(u) + C	with F(u) 

= / f(x)dx	 (3) 

where I +	= 1. Let t 0 e (a, b) be a minimum point of u(t), which exists by the 
boundary condition. Then u'(to) = 0 and C = —AF(uo),uo = min. u(t), and 

Iu'(t)I = .Xp'(F(u) -, F(uo))	(a < t < b). 

If f = f(u) is non-negative, then we see that u = u(t) is convex and the minimum point 
t = to is unique. Consequetly, u'(t) 0 for i E (a, to) and u'(t) ^! 0 for t E (to, b). 
Moreover,

	

u'(t) = ç/Ap'(F(u) - F(uo)) sign (t - to)	(a < t < b) 

Direct integration yields 

(b - t0)	
= I 	F(uo) 

= (to - 
UO 

which implies t0 =2 and thus u = u(t) must be symmetric. 
To establish the existence and the structure of solutions of problem (1) it suffices 

to study the nonlinear integral equation 
+00 

	

I(
du	b — a ^

VTA. 4) 
VF (u ) -- F(uo) 2 

WO 

Obviously, a necessary condition for the existence of solutions for problem (1) is 
.1+00 du 

J
, _.<+oo	 (5) 

and so throughout this paper we shall assume that this condition holds. 
Rewriting the integral in (4) gives that it is equivalent to 

+00 
I	 du	 b — a =-/.	. (6) j	F(u + uo) — F(u o )	2 

It follows from here that problem (1) has at most one (positive) solution under the 
condition that 1(u) is non-decreasing on R (or on R+). On the other hand, if 1(u) > 0 
for u > 0, then it has at least one positive solution for all A < Ao, where A0 E (0, +] 
is defined by

+00 

Bysummarying, let A 0 be as above. Then we have the following
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Theorem 4. If f(u) > 0 (u > 0), then problem (1) has at least one positive 
solution for all A < ,\ o . Moreover, if f is also non-decreasing on R+, then the solution 
is unique. 

Example. Consider the problem

(a<t <b)j	
(8

u(a) = u(b) = +oo J 

where 0 < r < q, e > 0 and q > p - 1. Then condition (5) is satisfied, and further 
A0 = +oo ifs > p - 1 and A 0 < +00 ifs E (O,p - 1). Hence problem (8) has a unique 
positive solution for all A > 0 if q > r 2 p — i , and for all A < A 0 if 0 < s < p — i, where 
A0 satisfies

+00

du 

3. Proofs 

To investigate solutions of problem (1) which change its sign, we define 

f+(u)=f(u) (u 0)	and	f_(u)=f(—u) (u<0). 

Then we have

IF+(u)=ff+(x)dx	for u>0 

	

F(u)=	 - 
1_F_(_u)=_fouf_(x)dx for u<0. 

Now equation (6) becomes 

+00 

f

	

 
du	

J 
 

J	F+(u)+F_(vo)+yF____du
	 b — a 

0	
(vo)—F_(u)2'	

(9) 

where v0 = —u 0 > 0. First observe that the first integral in (9) is strictly decreasing in 
vç if f(u) is non-negative. For the second integral in (9), using 

V0	 1 
[	du	 [	v0ds 

J VF_ 	- F_(u) I /F_(vo) - F_(svo) 

and	
1 

F_(vo) - F_(svo)= / f ((s + t - st)vo)(i - 5)vü dt,
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we see that it is decreasing or increasing in vo if f_(u)u P is increasing or decreasing, 
respectively. Therefore, if f_(u) is non-negative and f_(u)u' P is increasing, then 
(9) has at most one solution, which gives the uniqueness of sign-changing solutions of 
problem (1). On the other hand, if f_(u)u P is decreasing, then the first and the 
second integrals in (9) will compete to each other and thus the existence of a multiple 
solution is possible. In particular, if 

P du

	

= +00	and	lim f_(u)u' ' = 0,J ,o VF+(u)	 tL+oO 

then the left side in (9) goes to infinity, when vo goes either to zero or to infinity. Hence 
there is A_ > 0 such that problem (1) has at least two sign-changing solutions for 
A > A., and no sign-changing solution if A < A. A typical example is 

	

f+(u)=>au.	and	
f_(u)=>13ju"2 

where a 1 ,,8 > 0 and q > p - 1 > r. When f and f	au "
and	

simply given by a" 
and f3u" (q > p - 1 > r), respectively, then we have a complete charaterization of 
signchanging solutions, namely, two solutions if A > A_, a unique solution if A = 
and no solutions if A < A_. In other situations the multiplicity of sign-changing solutions 
can be very complicated and three representive examples are as in Theorems 1 - 3. 

Proof of Theorem 1. To this end we study the function in the left-hand side of 
(9). In this case we have 

F+(u) =	+ _
11 tLI+3 

q+1	1+s 

and

I	
vods

=c2v0 
F_(vo) - F_(svo) 

and the function in (9) is

and	F_(u)=----u'' 
r+1 

with C2 _f	ds 

-	/a(1 - sr+I)/(1 + r) 

du	 1_th 

/	

+c2vo ' =: F(vo).	(10) 
I+s	a	r-4-I 

+ rv;: V0 

The first conclusion of Theorem 1 follows from that Fe(vo) > 0 is continuous on [0, +00) 
and goes to infinity, as Va - co. To get a complete picture for the existence of sign-
changing solutions we let 

k 1
= (

1 + r)( 1
	1	

k2	
(1 + r)(q - s)	r + 1 

-),	
= 

s+lp	 1+s	
'	k3=1—

P 
and

J(__u'+	 --
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Then F(vo) = g(vo) +	We first study the property of g(vo) in a neighbourhood 
of the origin. 

By the change of variable u = x v 
W. we get for Va > 0 

+00	
kjdx V0 

g(vo)= / 

+00	
v'dx 

g(0)= /

1+s 

Consequently,
+00 

g(vo)—g(0) - 

- - J G(vo,x)dx V '  
0 

where

G(vo,x)= _______ 1 	- 

/4r 
q+I2 

+ j-- X 

Writing the difference as an integral we see 

1 

/
L q+12 

+ j-j- X	+ q+1	0

a 

	

p(r + 
1) f ( q x Vo + ---- x + _-_e)	d9 G(vo,x) =

1+s	1+r	- 
0 

which implies that G(vo, x) is decreasing in v0. Since 

G(0, x)
a	J(j s	1+r

--_x'i+-_--e" ' d9 =
) p(r + 1)

0 

is integrable over (0, +), due to s E (O,p- 1), we deduce by the dominate convergence 
theorem that

+00 

lim 
g(vo)—g(0) - 

vo —. 0	v'	- - J G(0,x)dx <0. 
0 

Thus we obtain that near the origin Fe is increasing if k 1 > 1 -	which is equivalent
to r > s, and is decreasing when r < s. Similarly, we get that 

1 

urn g ' (vo)v0	-- 
= a 

f (Lq+i + a ' 
\q+1	

dx 
P  

0
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which implies that F is increasing for large V > 0, because q > p - 1. Since	is 
r+1	

dvo 
increasing in e and tends to (1 - L)c2 v0 ' uniformly in v0 as e - oo, we deduce in 
the case i- > s that there is an 	0 such that min0 4j' > 0 for e > Eo. Moreover,
when e = 0,

Fo(vo) = c1v0	+ c2 v0 

for 1 -	<0 < 1—	and thus 4JE <0 for small v > 0. Further, F(v0 ) - Fo(vo)
on compacta in C'(O, +) as 6 -* 0 and we assert that co > 0 and min 0 - < 0 for dvo 
6 E (0,eo). Whence, we obtain that the sign-changing solution is unique when e 60. 
If e E (0,60), using the fact that F is increasing for both small and large v0 , we deduce 
that there are 0 < v 1 < v2 v3 < + cx such that F is increasing on (0, vi) and (v3 , +) 
and is decreasing on ( V I, V2) . Thus let 

A l = minF(vo), A 2 = F(v,), A3 = F(v2 ), A4 = max F(vo). 
F(vo)=0 

Then problem (1) has no sign-changing solutions if A < A 1 and has at least two sign-
changing solutions A E (A ' , A4 ). In particular, it has at least three sign-changing solu-
tions if A e (A2 , A 3 ) and has a unique sign-changing solution as A > A4 . The proof is 
complete I 

Proof of Theorem 2. The idea is the same asin the proof of Theorem 1, so we 
will be sketch in many places. In view of 

1	+1	6	 +1	8	r-4-i F(u)=r___u +	1+—u ' and F_(u)=—u" +—u q+1	1+s	 r+1	T+1 

it follows that equation (9) takes the form 

A 

	

I	u+1+u1+3+F(v0)	

(11) 

	

+ f	vodx	
= r(x)v	+ .r(x)v0 r+i 

where
r(x)=_--j(1_x1+1)	and 

Likely as in the proof of Theorem 1 we define 

L(vo) = e,(vo) + £2(VO) 

where

	

 

£i(vo)=	 du 

/ iluQ+1+&+9+F_(vo) 

-	
vodx	 ----	 - - _____--

e2 (VO
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The key points to prove that the function L(vo) have a graph as shown in Figure 2 are

L(vo) = Fo(vo) = c 1 v0 P + C2 v0 '	when e = 8 = 0 

which has the property F(vo)(vo - v) > 0 for some v > 0 and L converges to Fo on 
compacta of (0, +oo) in C' as e, 8 -+ 0 and L -* 0 as v0 - +00. 

To complete the proof we need to show two more things: Monotonicity of L near 
the origin and L(0) < L(v 2 ) where v2 is the second local maximum of L. But 

L(0) = c,e T'	and	L() > £2(6) = c28 

for some constants c 1 > 0 and c2 > 0 from which it follows that if e and 8 satisfy 
c,Y 5 c28r, then we are done. 

To get the monotonicity of L in the nearby of the origin, we exploit the technique 
in the proof of Theorem 1 and can show that 

+00	1 

lim _____ 	
-	a J dxJ (_!._+' + ---- 6\	dO <0 

	

vo-0	v,k,.	- p(r+1)	\1+s	r+1 I 
0	0 

where we have used that r > r and F_(vo) =j- v'(1 + o(1)) as vo -' 0, 

	

hm	 >0. and	urn £2 (vo) - £2(0) — 

J	 o 

dx	 L(vo) - L(0) <0. 
k3	-	 v—.0 V0 

Finall, the uniqueness follows from the results in [4J that the function £2 has the 
following property: there is v > 0 such that £(vo) > 0 for v0 E (0, v) and 4(v0 ) < 0 
for v0 e (v,+oo). Then L'(vo) <0 for vo € [v,+oo) since clearly 4(v0 ) < 0 for v0 >0. 
The proof is complete I 

Proof of Theorem 3. By virtue of p = 2 and 

q+1
	and

	
F_(u)= u2+/(sinu_u cos u) 

we have that 

+00
du 

_______________	 I' _____	
T 

¶.[F+(u)+F_(vo) = c(q)(v 
+/3(sinvo — vocosvo)) 	g,(vo) 1 

V0 

J
 du 

F	
___

vo 
0 

VT— .F(u)f v0dx 
0	

h(x,) 
=:g2(vo)
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where
h(x,vo) = e(x)v + 13e(x,vo) 

C(x,vo) = sinvo - sin(xvo) - vo( cos vo - xcOs(Xvo)) 
+00	 _.'. 

C (q ) =f	(1+_-_j u) 2 d 

1 - x2 
2 

and the function in the left-hand side of (9) takes the form 

9 1 (vo) + 9 2 (vo) := H(vo). 

Clearly, H is well defined and continuous on (0, +oo). Since q > 3, we see that 
as vo—*0+ 

and
g1(vo) —*0

dx	ir	as vo —* -{-oo 
92(Vo) 1 

and therefore H(0+) = +oo and H(+oo) = 

To show the results (ii) and (iii) we need to prove that H oscillates around the line 
H =	, and first show that g oscillates around H = 

Choosing vo = nir (n E N is even) we get 

h(x,nir) = (nx) 2 e(x) - /3(sin(nirx) +nir(1 - xcos(nirx))) 

<(n)2e(x) - fi(n7r(1 - x) - sin (n7r(i - x))) 
^ (j.)2(;) 

thereafter
fnirdx 

92(nlr) 
> J	e(x)(nir)2 

Analogously, for odd integer n, 92(n7r) < 

To show the function H is also oscillating, it suffices to show that, for odd n, 
H(riir) <	since g > 0 and 92 (n7r) >	for even n. For this purpose, first we have 

	

92(fl) 
=/ 

(ye(x)(n)2 - e ( xxn )	$e(x,nx)) 
dx 

= f . dx J	nir/9(x, nir)	
d92 (e(x)(nir)2 + O3 e(x, nir)) 

1 f	n7r/3(x,n1r)	
d — I	 •_ _	 -----

(e(x)(nir) 2 +	(x, nir))
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due to e(x, nir) > 0 for all x E (0,1). Using f- (u) ^! (1 - 13)u, we deduce that 

e(x)(n)2 + ,8 e(x, n) = n(1 - x)J f ((x + i - tx)n) dt 

> n7r(1 _x)f(1 –fl)(x+t–tx)n7rdt 

> (1 - fl)(1 - x)(n)2 

for all x E (0, 1). Thereafter 

ir	 2/9 (rit.)_2J e(x,nir)
dx, 

(1–$)	 (1–x) 
0 

and by a change of variable z = - (then x = 1 - 

+00 

J e(x,nir)  
x) 

3 dx = 2 J c(i - -  -,nir)dz 
(1— 

	

0	 1	 S 

+00

	

1\	 '' \ = 2 1 (_sin 
n7r

(-_j-) +nir(1– (1__Cos 
n7r 
--fldz

	

Z2 1	z-JI 

+00
fliT	 fliT	fliT	fliT \ 

= 2J (nr(1 –cos—)+(–sin— + -cos)dz Z2	z2
	z2	

z21 

where we have used n being an odd integer. Change variables once more, we obtain 

+00	 +00 
/	 flir\ J (1_cos_-)dz=J(1_ Cos _ivdw>Cvc 

W21 

where C = f, +00 - cos )dz. On the other hand, 

+00	 +00 
( -sin	

fliT	fliT\	 (2n 
z2 

iT 
I I - sin -z2 + -z2 

cos -
z2 / 

)dz < I	dz 2niT. 
J \	 J  
1	 1 

	

Whence	
f (x, niT) 

dx > 2(çniT	- 2niT)
(1–x) 

0
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and consequetly for large n the estimate

2/3	-i _-g2(nlr)	
(1 - ) 3 C(nir) 2 

holds. Combing the above estimates, we obtain by noting g i (nir) Ci (nir)4F' that 

ir 
- - H(nir) = - 92(n7r) - g 1 (n7r) 2 C2 (n ir)+ - Cj (nir)ih' > 0 

since - > 2 - 1 (this is the source for the condition on q). 
Assertions (ii) and (iii) follow from the oscillatory property of H. Using 

urn H(vo) =	 lim H(vo) = +,	H(nir) < vo — oo	 v0-.O+ 

we deduce from the continuity of H that the minimum of H(vo) on (0, +oo) achives and 
thus the equation H(vo) = is solvable if and only if z minH(vo) which complete 
the proof of assertion (i) I 

4. Final remarks 

In this note we have only carried out some basic calculations to exhibit the rich structure 
for boundary blow-up problems, even it is very elementary (just calculus), but it is 
certainly not easy to give a complete bifurcation picture for all involved parameters, for 
instance q,r,s,T,e,6,a in Theorem 2. Fromour one-dimensional examples we can see 
that there is a big difference between Dirichlet boundary value problems and boundary 
bolw-up problems. If the boundary is Dirichlet, then there are infinitely many sign 
solutions in the superlinear case, but it can have only finite number of sign solutions 
for boundary bolw-up problems (note, the function in (2) is not superlinear at —oo). 
As our examples are of one-dimensional character, one may say that it would not be 
representive, so it will be interesting to study those equations in two-dimensional or 
higher dimensional domains.	 . 

References 

[1] Aftalion, A. and W. Reichel: Existence of two boundary blow-up solutions for semilinear 
elliptic equations. J. Duff. Equ. 141 (1997), 400 - 421. 

[2] l3andle, C. and M. Essén: On the solutions of quasilinear elliptic problems with boundary 
blow-up. In: Partial Differential Equations of Elliptic Type (Symposia Mathematica: Vol. 
35; ads.: A. Alvino at al.). Univ. Press, Cambridge (1994), pp. 93 - 111. 

[3] Bandle, C. and M. Marcus: Asymptotic behaviour of solutions and their derivatives, for	- 
semilinear elliptic Problems with -boundary- blow-up.—A n n—.Inst.— Hen ri-Poicar6-12-(1995)_ 
155 - 171.



Some Results on an Elliptic Blow-Up Problem	537 

[4] Cheng, Y. J.: On an open problem of Ambrosetti, Brezis and Cerami. Duff. mt. Equ. (to 
appear). 

5] Keller, J. B.: Electrohydrodynamics. Part I: The equilibrium of a charged gas in a con-
tainer. J. Rat. Mech. Anal. 5 (1956), 715 - 724. 

[6] Loewner, C. and L. Nirenberg: Partial differential equations invariant under conformal or 
projective transformations. In: Contribution to Analysis (ed.: L. Ahlfors). Acad. Press, 
New York (1974), pp. 245 - 272. 

[7] Matero, J.: Nonlinear Elliptic Problems with Boundary Blow-Up. Diss. in Math. 6. 
Uppsala: Univ. 1997. 

[8] Mckenna, P. J., Reichel, W. and W. Walter: Symmetry and multiplicity for nonlinear 
elliptic differential equations with boundary blow-up. Nonlin. Anal. Theory, Methods and 
Appl. 28 (1997), 1213 - 1225. - 

Received 26.10.1998; in revised form 21.04.1999


