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Some Surprising Results on a One-Dimensional
Elliptic Boundary Value Blow-Up Problem

Y. J. Cheng

Abstract. In this paper we consider the one-dimensional elliptic boundary blow-up problem

Bpu = f(u) (a<t<b)}
u(a) = u(b) =

where Apu = (|u'(t)[P~2u'(t))" is the usual p-Laplace operator. We show that the structure of
the solutions can be very rich even for a simple function f which gives a leading that a simliar
results might hold also in higher dimensional spaces
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1. Introduction and formulation of main results

In the last few years there is a great of interests in the investigation of boundary blow-
up solutions for elliptic equations [2, 3, 7], which comes originally from differential
geometry {6] and electrohydrodynamics {5]. Very recently some existence results of two
(one positive and one sign-changing) solutions have been established in [1, 8). The
purpose of the present paper is to show through one-dimensional examples that the
structure of the solutions can be very rich even for a s:mple right-hand side. ~ More
"precisely, we consider the problem

u=Af(u) (a
p_f()_(<t<b)} W
u(a) = u(b) =

where
Apu = (Ju'(@))P~?u'(2))

is the p-Laplace operator as usual, A > 0 is a parameter, and f is a given continuous
function. By a solution u = u(t) of problem (1) we mean that u satisfies the equation in
(1), ie (Ju'(t)P~2u'(t)) = Af(u(t)) for all t € (a,b), and limg—ay u(t) = lime—p— u(t) =
+00. By a sign-changing solution u(t) of (1) we mean that there exist t,,t; € (q,b)
such that u(t;) > 0 and u(t;) < 0.

The results for problem (1) in this paper are summarized in the followmgs three
theorems.
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Theorem 1. For given positive constants q,€,s and a,r such thatg > p--1>r > s
let

fu) =ud +eu® (u>0) and  f(u) = alul” (x<0).
Then the following statements hold: ' '

(1) There ezists a constant Ay > 0 such that problem (1) has at least one sign-
changing solution sf A > Ay, and no such kind of solutions can ezist if A < A;.

(ii) There ezist a constant €o > 0 such that the solution is unigque if € > ¢o.
(iii) If € € (0,€0), then there are constants Ay < A3 < Ay such that problem (1)

has at least two sign-changing solutions if A € (A1, \y), has at least three sign-changing
solutions if A € (Az,A3)), and has a unique sign-changing solution if A > A4.
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Theorem 2. For given positive constants q,€,s and a,r, 6,7 such thatq,7 > p—1 >
r>s let

flw)=uf+eu® (u>0) and fu) = alu]” + 8lu|” (u <0).

Then:

(i) There are constants A > 0 and A_ > 0 such that problem (1) has at least
one sign-changing solution if A < A, has no sign-changing solutions if A > A, and the
solution is unique if A < A_.
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(ii) For small € and § satisfying € << § there are A} < A such that if A € (A, A2),
then problem (1) has at least four sign-changing solutions.

Next we consider for simplicity the semilinear (p = 2) problem

(2

u' = Af(u) (a<t< b)}
u(a) = u(b) = +o0.

For this simple problem we have the following, a somehow surprising result.

Theorem 3. For given positive constants a,q and 3 such that ¢ > 3 and § < 1 let
f(u) =au? (u>0) and f(u) = (1 + Bsin|ul)u] (v <0)

(AM(2) = (Z)?). Then the following results hold:

b—a

(i) There are A1, A2 > 0 such that problem (2) has at least one sign-changing
solution if A > A, and no sign-changing solutions if A\ < 1. The sign-changing solution
is unique, when A > A,.

(ii) For any integer n > 1 there ezists § > 0 such that problem (2) has at least n
distinct sign-changing solutions when A € (A(2) — 6, M(2) + 6).

(iii) For A = A(2) problem (2) has infinitely many sign-changing solutions.

N A
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Figure 3

Remark. Problem (2) has a unique positive solution for all A > 0. The problems
treated in Theorems 1 and 2 have also a unique positive solution if A < Ag where Aq is
defined by

b—
= a{/p’,\o

oo
: / du
1, 04q 4 €y l+s 2
0 {/.,+1" Tty

a+1

and has no positive solution if A > Ao.
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2. Some basic analysis

1t is easy to see that the equation in (1) has an first intégral
1 . f
17|u'(t)|” =AF(u)+C with F(u) = /f(z) dz 3)
0

where % + ‘% = 1. Let to € (a,b) be 2 minimum point of u(t), which exists by the
boundary condition. Then u'(to) =0 and C = —AF(uo), uo = minu(t), and
[u'(8)]P = Ap'(F(u) — F(uo)) (a<t<b).

If f = f(u) is non-negative, then we see that u = u(t) is convex and the minimum point
t = to is unique. Consequetly, u'(t) < 0 for t € (a,to) and u'(t) > 0 for t € (to, b).
Moreover,

u'(t) = {/Ap F(u) — F(up))sign(t—to) (a<t<b).

Dlrect integration yields

“+o0

du
b—t)/p' A= _— =
(b=t) ¥ Z F(u) — F(uo) (

which implies to = -“—%'—b and thus u = u(t) must be symmetric.

to - 0.) {/pl/\

To establish the existence and the structure of solutions of problem (1) it suffices
to study the nonlinear integral equation

/ du _b-a Y (4)
. F(u) - Flw) 2 p‘,.

Obviously, a necessary condition for the existence of solutions for problem (1) is

/+°° oo (5)

{F(u)
and so throughout thlb paper we shall assume that this condition holds.
Rewriting the integral in (4) gives that it is equivalent to

du _ b—a
{/F(u +'uo) — F(uo) 2

P'A .. (6)

It follows from here that problem (1) has at most one (positive) solution under the
condition that f(u) is non-decreasing on R (or on R4 ). On the other hand, if f(u) > 0
for u > 0, then it has at least one p051t1ve solutlon for all A < Ag, where Mg € (0, +00]

is deﬁned by
+o00

[ == ™

VF(u)

By summarying, let Ay be as above. Then we have the following
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Theorem 4. If f(u) > 0 (u > 0), then problem (1) has at least one positive

solution for all A < Ag. Moreover, if f is also non-decreasing on Ry, then the solution
18 unsque.

Example. Consider the problem

Apu = AMu? +eu’) (a<t<b) } )

u(a) = u(b) = +oo

where 0 < 7 < g, € > 0 and ¢ > p — 1. Then condition (5) is satisfied, and further
Ao = +ooif s > p—1and Ay < 400 if s € (0,p — 1). Hence problem (8) has a unique
positive solution for all A > 0if ¢ >r > p—1,andforall A < A if 0 < s < p—1, where
Ao satisfies

du _b-a

L 14q 4 € gt 2
(/q+1u + .

pl/\o.

e

3. Proofs
To investigate solutions of problem (1) which change its sign, we define

fe(u) = f(u) (v 20) and f-(u) = f(-u) (u<0).
Then we have o

F(u) = Fi(u) = [ f4(z)dz foru>0
T =Fo(~u) = - o f-(z)dz foru<O.

Now equation (6) becomes

+oo vo

du / du b—a
+ = ' A (9)
!V&M+RM)O F(w) - F(w) | 2
where vg = —ug > 0. First observe that the first integral in (9) is strictly decreasing in

v if f_(u) is non-negative. For the second integral in (9), using

Vo

‘Uods

0/ F_(v:)u—- F_(u) - 0/ {/F_(vo) — F_(svo)

and

F_(vo) — F_(sw) = /f_ ((s +t—sthvo)(1 - s)vg dt,
0
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we see that it is decreasing or increasing in vo if f_(u)u!~? is increasing or decreasing,
respectively. Therefore, if f_(u) is non-negative and f_(u)u'~P is increasing, then
(9) has at most one solutlon which gives the uniqueness of sign-changing solutions of
problem (1). On the other hand, if f_(u)u'~? is decreasing, then the first and the
second integrals in (9) will compete to each other and thus the existence of a multiple
solution is possible. In particular, if

du
—— =40 and lim f_(u)u'"? =0,
/t; Y Fe(u) o S0
then the left side in (9) goes to infinity, when vy goes either to zero or to infinity. Hence

there is A_ > 0 such that problem (1) has at least two sign-changing solutions for
A > A_, and no sign-changing solution if A < A_. A typical example is

fe(w) =) au® and  fo(u)=) Bju"

where a;,8; > 0 and ¢; > p—1 > r;. When f; and f_ are simply given by au?
and Bu” (¢ > p—1 > r), respectively, then we have a complete charaterization of
signchanging solutions, namely, two solutions if A > A_, a unique solution if A = A_,
and no solutions if A < A_. In other situations the multiplicity of sign-changing solutions
can be very complicated and three representive examples are as in Theorems 1 - 3.

Proof of Theorem 1. To this end we study the function in the left-hand side of
(9). In this case we have

1 €
_ o+1 1+ _ r+1
Fy(u) q+1u +1+Su and F_(u) e
and
1 1
/ vo ds 1- 4 . ds
= c2 9, with ¢; =
J 3/F_(v0) = F_(sv) J %/a(l—s)/(1+7)

and the function in (9) is

du 1-rti
+ecavy * =: F.(vp). (10)
</_uq+1 —u”“’-{- o r+l

The first conclusion of Theorem 1 follows from that F(vo) > 0 s continuous on [0, +00)
and goes to infinity, as vp — 00. To get a complete picture for the existence of sign-
changing solutions we let

1 (L+r)(g—%) rt+1
k=1 e kg = +——2" £ ki =1 —
1 ( + )( +1 p)) 2 1+S 3 P
and
+ oo
= y9t! € 1+s r+1) 7 L B
(o) = [ (ot o o)
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Then F,(vo) = g(vo) + c2v0 . We first study the property of g(vo) in a neighbourhood
of the origin.

14r
By the change of variable u = a:vg—i—‘ we get for vg > 0

+o0 ‘d
g(vo) = / z
{/_ xq-H
‘d
9(0) = / :
=
Consequently,
+o0
g(vO)k_g(O) - _ / G(‘Uo,l‘)dl
vy'
0
where
1 1
G(‘Uo, ) - .
</q+_l z0+1yg? + 5 21+ {/ ) quvo + it

Writing the difference as an integral we see

o 1 €
= AR 1+s 0) " df
G(vo,2) p(r+1)/(q+1z ULt S -
0

which implies that G(vo, £) is decreasing in vg. Since

—eft

, 1
__« € 14s « ®
G(O"z)_p(r+1)/(l+s$ +1+r0) d
0

is integrable over (0, +00), due to s € (0,p—1), we deduce by the dominate convergence
theorem that

—9("°1h 9(0) / G(0,2)dz < 0.

vo —00

Thus we obtain that near the origin F, is increasing if ky > 1— Epﬂ, which is equivalent
to r > s, and is decreasing when r < s. Similarly, we get that

1

et
lim_g'(vo)vg* TG 2/ T I
vp— 00 p J q+ l 1 +r
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which implies that F, is increasing for large vy > 0, because ¢ > p — 1. Since % is

-l
increasing in € and tends to (1 — '—F) c2vy * uniformly in vy as € — 00, we deduce in

the case r > s that there is an €9 > 0 such that min.,0
when ¢ =0,

doe > 0 for € > €9. Moreover,

1— 4t 1— o+t
Fo(vo) =1 P + Cag °

for 1 — 2— <0<1-—tt > ! and thus Qg < 0 for small vg > 0. Further, F, (vo) — Fy(vo)
on compacta in C'(0,+00) as ¢ — 0 and we assert that €9 > 0 and min,, 3£« < 0 for
€ € (0,e0). Whence, we obtain that the sign-changing solution is unique when € 2 -
If € € (0,¢€0), using the fact that F is increasing for both small and large vo, we deduce
that there are 0 < v; < v; < v3 < 400 such that F, is increasing on (0, v, ) and (v3, +00)
and is decreasing on (v;,v;). Thus let
M =minF(v), A2 =Fe(vi), A3=Fe(vz), A= Flr(na)x Fe(vo).

Then problem (1) has no sign-changing solutions if A < A; and has at least two sign-
changing solutions A € (A1, A4). In particular, it has at least three sign-changing solu-
tions if A € (A2, A3) and has a unique sign-changing solution as A > As. The proof is
complete I

Proof of Theorem 2. The idea is the same as in the proof of Theorem 1, so we
will be sketch in many places. In view of

g+1 € 1+s : _ % 41 6 r+1

q+lu +l+su and F_(u) 1Y +—T+1u

it follows that equation (9) takes the form

Fy(u) =

“+oo

/ du
) </; uttl 4+ w4 F ()

(11)

/ ‘U()d(l) _ b ; a (/ap_'/\
{/r(:c) vet! + 7(z) w3 !

where P
_ X 1 __ % _.
r(z) = r+l(1 ™) and T(z) 7._+1(1 z"T).
Likely as in the proof of Theorem 1 we define
L(vo) = €1(vo) + £2(vo)

where

du

’ el(’Uo) =

+ o0
0

+ F_(w)

1 udt
+

vod:t

Zg(v = I —_ —
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The key points to prove that the function L{vg) have a graph as shown in Figure 2 are

p-q=1 p—r-=1

L(vo) = Fo(vo) =c1vy * +cayy * ‘when e=6=0
which has the property Fj(vo)(vo —v) > 0 for some v > 0 and L converges to Fy on
compacta of (0,4+00) in C! as¢,6 — 0 and L — 0 as vp — +c0.

To complete the proof we need to show two more things: Monotonicity of L near
the origin and L(0) < L(vz) where v is the second local maximum of L. But

L(0) = cls*ﬁ‘«fa' and  L(677) > (677 = 26509

for some constants ¢; > 0 and c; > 0 from which it follows that if € and ¢ satisfy

—-p-1
e Faen < 62693.'—'3 then we are done.

To get the monotonicity of L in the nearby of the origin, we exploit the technique
in the proof of Theorem 1 and can show that

+

oo 1 e

a P
d:c/ r+16) d8 <0

0

11 El(vo) - 21(0) _
vo—0 k‘ ] = p(r + l)

o

where we have used that r > 7 and F_ v (1 + 0(1)) as vg — 0,

lim

vo ~—0

1
82 (‘vo) k— ZQ(O) dz and lim L(‘Uo) k— L(O)
o oM w=0 ol

‘Fina.]l);, the uniqueness follows from the results in [4] that the function ¢; has the
following property: there is v > 0 such that ¢, (vo) > 0 for vg € (0,v) and £4(vp) < 0
for vy € (v,+00). Then L'(vp) < 0 for vg € [v +00) since clearly £} (vo) < 0 for v > 0.
The proof is complete i

Proof of Theorem 3. By virtue of p = 2 and

Fy(u)=

1
- ag and F_(u) = 5 u? 4 B(sinu — ucosu)
q

we have that

du o
Fr(u) + F_(v0) = (‘I)( vg + ﬂ(smvo — v cosvo)) =: g1(vo)

N

o\'§

vo dz

/\/ﬁ:/ T = 1l
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where
h(z,v) = e(z) v + Be(z,v0)

&(z,v0) = sinvg — sin(zvo) — vo(cos vy — z cos(zvy))

+o00 -1
a ]
— 1 q+1) d
c(q) /(; ( + pa u u

2
e(z) =
and the function in the left-hand side of (9) takes the form

91(vo) + g2(vo) := H(vo).
Clearly, H is well defined and continuous on (0, +00). Since ¢ > 3, we see that

g1(vo) — +oo as vy — 0+
and
gl(vo) - 0
! da: o as vy — 400
g2(vo) —
e(r

and therefore H(0+) = 400 a.nd H(+o00) =

To show the results (ii) and (iii) we need to prove that H oscillates around the line
H = 7=, and first show that g; oscillates around H = 7-

Choosing vo = nm (n € N is even) we get

h(z,nm) = (n7)’e(z) — ﬂ(sin(mr.r) +nmr(l - :ccos(mr:c)))
< (nm)’e(z) - ﬂ(mr(l ~z) —sin (nn(1 - :r:)))

< (nm)’e(z)
thereafter
(n7) > nmrdz ™
nmw —_— = —
92 ,/e(z)(mr)2 V)
Analogously, for odd integer n, gg(mr) <%

To show the function H is also osc1llat1ng, it suffices to show that, for odd n,
H(nm) < 7 since g; > 0 and gz2(nw) > == " for even n. For this purpose, first we have

1
x nmr nmw
— — ga(nn) = - dz
V2 g(, ) / (\/e(z)(mr)2 \/e(z)(m)wﬂe(r,m))

l nrfe(z,nw)

. 1
- [.dz - 5
2/ ~0/ (e(z)(nm)? + 68 ¢e(z,nm))?

0

dé

lV

zdz, -

/ n7rﬂ (z, n7r)
AT

1
2 e(z)(nm)? + ﬂe(a: n7r))



Some Results on an Elliptic Blow-Up .Problem 535

due to g(z,nw) > 0 for all z € (0,1). Using f_(u) > (1 — B)u, we deduce that
1
e(z)(n7)? + Be(z,nm) = nr(l — z) / f-((z +t - tz)nw) dt
)

> nn(l —z) /(1 —'ﬂ)(a: +t—tr)nwdt
0

1
> 1(1- )1 - 2)mr)?
for all z € (0,1). Thereafter

% — g2(nm) 2 '6

2B (my e(x nm)

5 dz,
(1-78): s (1 - z)3

and by a change of variable z = 71@’-_—x (thenz=1-%

+

oo

Md 2’/6(1—%,711()({2
(1—:1:)2 / z
+

! nw LT AT nT
nw( —cosz—2)+(—51nz—2+z—2cos-z—2— z

where we have used n being an odd integer. Change variables once more, we obtain

+/°°(1 —cos—)dz = 73'0(1—cos$)\/777_rdw > C\/rl_;r
' 7=

where C = [;¥(1 — cos %) dz. On the other hand,

+o0 +o0 on

/ - sm— + nr cos —)dz / L dz = 2nn.
Z

1 1

Whence .

&(z,nm) n7r)

dz > 2(Cnny/n —2n7r
/ a-o ( Jr )
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and consequetly for large n the estimate

(nm) > —2L__Cam)}

V2T S 0T

holds. Combing the above estimates, we obtain by noting g;(nr) < Cl(mr)ﬁ_1 that

7~ Hom =7 - g1(n) —an(n) > Co(nm) ™ = Cy(nm) T > 0
2

since —1 > 747 — 1 (this is the source for the condition on g). v
Assertions (ii) and (iii) follow from the oscillatory property of H. Using
' T w

7 odim (v0) = 400 (mr)<\/§

we deduce from the continuity of H that the minimum of H(vg) on (0, +00) achives and
thus the equation H(vg) = y is solvable if and only. if 4 > min H(vo) which complete
the proof of assertion (i) B

lim H(v) =
Vo —O00

4. Final remarks

In this note we have only carried out some basic calculations to exhibit the rich structure
for boundary blow-up problems, even it is very elementary (just calculus), but it is
certainly not easy to give a complete bifurcation picture for all involved parameters, for
instance q,7,s,7,¢,6,a in Theorem 2. From our one-dimensional examples we can see
that there is a big difference between Dirichlet boundary value problems and boundary
bolw-up problems. If the boundary is Dirichlet, then there are infinitely many sign
solutions in the superlinear case, but it can_ have only finite number of sign solutions
for boundary bolw-up problems (note, the function in (2) is not superlinear at —00).
As our examples are of one-dimensional character, one may say that it would not be
representive, 'so it will be interesting to study those equations in two-dimensional or
higher dimensional domains. E i
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