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An Integral Operator Representation 

of 

Classical Periodic Pseudo different iãl Operators 

G. Vainikko 

Abstract. In this note we prove that every classical 1-periodic pseudodifferential operator A 
of order a € R \ No can be represented in the form 

(Au)(t) = f [(t - s)a(t,$) + K(t - s)a(t,$) + a(t,$)J(s)ds 

where Oj and a are C'-smooth 1-periodic functions and ?C are 1-periodic functions or dis- 
tributions with Fourier coefficients k(n) = n i 0 and (n) = n°sign(n) (0 $ n € 7L) with 
respect to-the trigonometric orthonormal basis {e"''},Ez of L 2 (0, 1). Some explicit formulae 
for	are given. The case of operators of order a E No is discussed, too. 

Keywords: Classical periodic pseudodifferential operators, periodic integral operators, asymp-
totic expansions 
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1. Periodic pseudo differential operators 

By H' (A E R) we denote the Sobolev space of 1-periodic functions or distributions u 
having a finite norm

uk = ( fl2Ai(fl)I2)1 

nEZ 

where

ü(n) = I u(t)e_mTh2ntdt = ( u, e_m2lrt) 
Jo 

are the Fourier coefficients of u and n = max{1, In1j. As usual, £(H", H's ) denotes the 
space of linear bounded operators from H' into HA. Every operator A E £(H", H's ) is 
of the form 
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U(t) = >	
(n )ei.2rf 	(Au)(t)	E a(t, n)ü(n)e" 2 '	 (1) 

nEZ	 nEZ 

(and one writes A = Op a) where 

o(t, n) = 

is called the symbol of A. Indeed, the Fourier series 

U(t) =	
ü(n)e2nl 

nEZ 

of u E H' converges in H A , therefore the series 

	

(Au)(t) =	I(n)AH2rt =
	ü(n)a(t, n)em2ni 

nEZ	 nEZ 

converges in H. Clearly, a(t,n) is 1-periodic in t. 
A complex-valued function 

a = a(t,n)	(t E R,ri E 7L) 

is called a periodic symbol of degree a (a E R), denoted a E °, if it is C°°-smooth 
and 1-periodic in t and satisfies the inequalities 

()
a) 

&a(t,n)	Cikfl	(j,k E N0 ,t E R,n E Z).	 (2)


Here No = {O} U N = {O, 1,2,...), and A is the (forward) difference operator: 

(L)(n) = i4' (n + 1) - 4'(n) 

for t/ : Z -* C. An operator A Opa of form (1) with a E E is called a periodic 
pseudodifferential operator of order a, denoted A E OpEn . This definition originates 
from [1, 2). Equivalent definitions can be found in [2 - 4, 12]. It occurs (see, e.g., [12]) 
that A E £(HA , H n ) for any ..\ E R if A E Op E'. 

Introduce a C°°-smooth function h: R - R satisfying 

10
l 

h  5(R), i.e. sup Ie'h()P < c: (j,k EN0) 
(ER 

V Ic E N 3 h k E S(R) such that h() (kh)(e) (C E R) 

(see [12] for a construction of h). The formula 

	

a(t, )	> a(t, n)h( - n)	( E R) 
nEZ
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defines a prolongation a : R x R — C of a E E°. It occurs that (2) implies the 
inequalities

()
ôjk 

() a(t,) <C3 j1 + II)0_1c	(j,k E No; t, € R). 

Indeed,
— n) = h( + 1 — n) -	- n) = —h( — n) 

where 2K is the backward difference operator, thus 

()
jk

	

	 a i

() a(i, ) =	() a(t, n)h (t) (e — n) 

nEZ 

= > () a(t,n)1h,( -n) 
nEZ 

= (_1)k()a(i,n)hk(e — n) 
nEZ 

= >hk	n)(L2a(t,n) 
nEZ 

(summation by parts on the last step). Since h k € S(R) we have Ihk( - ) I Cr(1 + 
- n I)' with any r > 0; we take r > k — kI + 1. Due to (2), we obtain (3): 

()
j5k 
() a(t,	CrCjk	(1 + I — nI)"f'	c,k(1 +


nEZ 

The converse is also true: if a : R x R —* C satisfies (3), then its restriction to R x 7L 
satisfies (2). Thus we may assume that the symbol a € E G is defined and C°°-smooth 
on R x R, 1-periodic in t and satisfies (3). Nevertheless, only the values on R x Z of a 
are used to define A = OP  € Op". 

A symbol a € E is called classical or polyhomogeneous, denoted a €, if it 
admits an asymptotic expansion 

Ecri(t,C),	i.e. a -	 a €	- N (Ne N)	(4) 0  

where a3 €	are positively homogeneous of degree a — j in for II 2 1: 

a3 (t,re)	ra(t,)	(II 2 1,r. 2 1). 

Clearly,

a3(t, ) - { a
.i(t 1)°	=: at(t)°'	for e > 1	

(5) 
aJ( t)leI' for	—1

(3)
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with a± E C 100 (R) where C(R) denotes the set of 1-periodic C oo-smooth functions on 
R. The corresponding A = Op a is called a classical periodic p3eudodiffereniial operator 
of order a, denoted A E OpYJ'1 . It follows from (4) and (5) that 

A>2Aj,	i.e. A_>2A j EOp N (NEN) 

where
A, = [at(i)P +	 Opa3 

= >2 ü(n)eiT12nt 

n>o 
PTh = > fi(n)e in21ri 

n<O 

Lu = >2nA ü(n)e tTz21rt (A E R). 
nEZ 

Let us comment on the polyhomogenuity of a symbol. It occurs that a symbol 
a E belongs to > if and only if II a( t , ) behaves in a regular manner as —* ±00, 
or equivalently, a. (t, i) = I7I'a(i,) with 'i = behaves in a regular manner as 77 — ± 0. 
Namely, if a has C'-smooth continuations to ij = +0 and ij —0, then the Taylor 
expansions

N—I
I I 8 = >2 4 (t)i72 + O(i")	(t - +0, a(t) =	a(t,ij)+o) 

j=o 
N—I 

= >2 aT( t ) ? ' + O( 7i'T )	(17 — —0, a(i) = 
j=o 

hold true for all N € N. Returning to = and a(t,e) = II a ( t,e) we have 

N—i 

= >2 at(t)II' +O(eN)	( —4 +00) 

j=O 
N—I 

a(t,e) = >:: a, (t)jfla_ j + O(E°')	(C  
j=o 

and it can be checked that by those a± the asymptotic expansion (4) - (5) is defined.
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2. Integral operator representation of periodic 
pseudo differential operators 

Here we follow some ideas from [3, 5, 8 - 10]. For A E Op Ea (a < -1) and u E H° = 
L2 (0, 1) we have

(Au)(t) =

	

	a(t, n)ü(n)e"2"

nEZ

o(t, n)e2t f u(s)eu?2r3ds 
nEZ 

= J 
E a(t, n)emn2	)u(s) ds 

. nEZ 

= J(t,i - s)u(s)ds 

0 

where the series
)C(t, s) =	c(t, n)eTh21T3 

nEZ 

converges uniformly in t, s E R due to the estimate Ia(t, n )I	C0O! (see (2)). Thus

AC(t, s) is continuous on R x R. Moreover, K(t, s) is C oo -smooth for .s E R \ Z (and then 

- s) is C°°-smooth for t - s 0 Z). Indeed, consider the product 

	

(e- i27rq - 1)ftC(i, s) =	
o(t, n)(e nI)2ns - e2273) 

nEZ 

	

=	[a(i, n + 1) - a(t, n)] e"'27" 
nEZ 

	

=	[I.a(t,n)Jeu127T3. 

nEZ 

Repeating the multiplications by (e- i2,-, - 1) we obtain 

	

- 1)'C(t, s) =	[L'u(t, n)] emTh2lT3	(1 E N). 
nEZ 

Now estimate (2) yields that (e 2 73 - 1) 1 1kC(t, s) is 1-times continuously differentiable on 
R x lit Since 1 is arbitrary, ftC(t, s) is infinitely smooth for (t, .$) satisfying e 2 7r3 - 1 0, 
i.e. for s E R\Z. Also the case a € [-1,0) can be treated, but then K(t,t-s) is weakly 
singular for i = s. 

For u € H' (1 € N0 ) integration by parts yields 

	

I	 I 

1 
u(n) = f u(s)emTh2lrsds = (2rin)' I 0(s)e_27T3ds 

	

0	 0
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and

	

(Au)(t) = / )C,(t, t - s)uW (s) ds,	K, (t, s) = 

Now already for a E E with ce < 1 - 1, the series converges uniformly and defines a 
continuous kernel IC I on R x R; for s E R \ Z, AC,(t, s) is again C°°-smooth. 

One can try to represent AC and AC, in the form of products 

AC(t, t - s) = a(t, s)#c(t - s)	and	ftC,(t, t - s) = a,(t, s)frc I (t - s), 

respectively, where a and a l are C'-smooth on the whole IR x R whereas ec and ,c, 
are C°°-smooth on R \ Z. With some specifications we shall succeed in the case of 
classical periodic pseudodifferential operators. For a general (non-classical) periodic 
pseudodifferential operator a similar representations does not exist. 

We point out also the following inverse result from [11]. 
Theorem 1. An integral operator defined by 

(Au)(t) = / ic(t - s)a(t, s)u(s) ds 

with a C"-smooth 1-biperiodic function a and 1-periodic function or distribution K 

belongs to Op	if K satisfies

	

Ck	(k E N0 ,n E Z) 

or, equivalently, if the extended function k : R - C (defined by k() 
= nEZ k(n)h(e - 

ii) or in some other way) satisfies
C,

	

(1 + II)	(k E N0 , E R). 

Thereby A has asymiotic expansions A -S-.	-O A, with 

(Au)(t) = a(t) / ic(t - s)u(s) ds = a(t)
nEZ 
 kj(n)ü(n)e21rt 

where 
-	1 
sc,(n) = — &ic(n) (n E 7L) 

15	 15	.	 10	10 

respectively	
1 (d))()i	(n E Z)1 = j! d 

	

1 5))	

.	J 

	

a, (t) = (-
	

a(t, s)
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3. Integral operator representation of classical periodic 
pseudo differential operators 

Here we first formulate and at the end prove the main results of the paper. 
Theorem 2. Every operator A E Op Y2 1 with a E R\ No can be represented in the 

form

(Au)(t) = / [ic(t — s)a+(t,$) + iç(t — s)a(t,$) + a(t, s)] u(s) ds	(6) 

where a±,a € C°(R x R), i.e. a±,a are C'-smooth and 1-periodic with respect to 
both arguments and sc are 1-periodic functions or distributions defined by their Fourier 
coefficients

k(n) = InI	1

	

(OnEZ).	 (7) 
= ni sign(ri) j 

Conversely, every integral operator of form (6) —(7) with a,a € C°(R x R) belongs 
to OpF. 

Note that (7) define n± uniquely up to a constant addend(0). Changing k(0), 
only the coefficient a E C(R x R) changes in (6). In (6), the integral means the usual 
Lebesgue integral for a < O and uE H° = L'(0, 1). Fora > O and u E H' ( > 
a + ) the integral can be understood as the dual product between H' and H, since 

E H. The case of u € H" with an arbitrary A E R can be understood through 
the approximation of u by smooth functions, e.g. 

Au = urn APNU,	PNU = > ü(n)ett27rt 
N—.00

InI:5N 

Here PNU — u in H" and APNU —* Au in H" for u € H" (recall that A € 
£(H", H"°) for any A € R if A E Op E'). 

Now consider the case a E No excluded from Theorem 2. 
Theorem 3. Every operator A € Op °, with a = m € No has the representation 

(Au)(t) =	[ct(t)u(m)(t) + C(i)(HoU(mi))(t)] .

	 (8) 

+ / [k	s) + K i (t — s)a+(t,:1(t — s)a_(t,$) + a(t, s)] u(s) ds 

where c E C100(R) and a±,a E C'°(R x R), H0 is the Hubert transformation 

1 
(Hou)(t)	-- p.v. f cot ir(s - t)u(s) ds =	l (n)e 327Tt - 

z
0	 n>l	 n<-1
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and

+ = -21og sin 7rt	 (9) 

K :1 is the 1-periodic extension oft -* -27rit from [0, 1) to R	(10) 

(these functions satisfy (7) with a = -1). 

Remark 1. Using the periodic Dirac delta function and its derivatives one can also 
(8) represent as an integral operator. 

	

Remark 2. Clearly,	C therefore we actually have different possibleCI 

11integral operator representations of an operator A E Op. For instance, A E Op E CI 

with an m E N can be represented in the form (6) with a = -1 and r,- , defined in (9) 
- (10); the order -m of the operator can be discovered by properties of the coefficients 

(a))	
= 0	(t E R;j = 0,... ,m -2). 

Operators of type (6) have been examined in [6, 121. They often appear solving boundary 
integral equations on closed curves (see, e.g., [5 - 7, 12]). 

Proof of Theorem 2. Let A E Op E,, i.e. its symbol a(t,) has the asymptotic 
expansion (4) with ai of form (5). We regularize the functions in the neighbourhood 
of = 0 putting

5fl(0)=0
(ER\{0}) 

where Oo E C°°(R) satisfies

(e)-{' for lel>1 
- 0 for 1615 1 

Thus we have

	

E[(i)j() + b(t) j (e)sign()]	 (U) 

where

bt(t) = [at(t) + a(t)]	and	b7 (t) = [a(t) - a(t)]. 

On the other hand, by Theorem 1 the integral operator defined in (6) is a (classical) 
periodic pseudodifferential operator with the symbol & having the asymptotical expan-
sion

	

a\3	 lôi 

	

+	 (sign(e)(—.) 
i=o
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Representation (6) of A E Op°1 takes place if 	&J .e. —& E	°°. For a E R\ No

this means that a± E C'°(R x R) satisfy 

a(a-1)•..(a—j+1) 1 ô)i 

	

j!
a(t,$) 1	= b(t)	(t E R,j E N0). 

3=i 

Thus, to prove Theorem 2, we simply have to solve the following elementary problem: 
given b3 E Cr(IR) (j E N0 ), construct a E C'°(R x R) such that 

(

ai


	

b—) 
a(t,$)	= b(t)	(i E R,j E No). 

A solution may be given by a regularization and periodization of the Taylor series: 

	

a(i, s) 
=-

	 (S - 

Here x E C'°(R) satisfies x(s) = s for si < -, and 7,bN E C100(R) (N E N) satisfies 

- { 1 for it' < L 
ON(t)

	

= 0 for	
8N

 

More concretely, we define 

VIN( t ) =	(Nt +j) where tk E C°°(R) with (i)	11 for t ^ 
JEZ	 10 for itI>. 

The numbers N, > 1 should be chosen so that the series itself and the series after 
applying ())() (j,k E N0 ) will converge uniformly for t,s E R. A sufficient 
condition is given by N, ^! d, where 

d, = max max Ib(t)I. 
0<n<1 o<i<1 

j 8k 
Indeed, applying () (-, we obtain a finite number of series of the type 

(n) 

	

(l—p)! [x(s - t)1'(s — t)	(ri	j; p, q	j + k) 

(notice that x(s) = s for s E SUPPNI n [ — i, ])• For 1 > n the members of the last 
series can be estimated by 

d,	t	 ______ (4N,)cqN, <	Cq 4_(lP)-l+P++1 
(l—p)! 

guaranteeing uniform convergence of the series I
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Proof of Theorem 3. For a = m E No, we present (11) as the sum 

C = am + e[m] 

with

am(t,) = i)m j () + b(t)mj(e)sign()] 

and
a[mJ(te) = >i

	[bt(t)4m_j(e) + b;(t)ctm_j(e)sign(e)] 
jm+I 

= >: [b+	(t)1() + j+m+1 
j=o 

and the representation (8) - (10) for A E Opj follows immediately from Theorem 2. 
Thereby,

c(t) = (2j)3_mb(t)	(0 <j < m) 

and the theorem is proved I 

Remark 3. As it can be seen from the proof, also some non-classical periodic 
pseudodifferential operators have an integral operator representation similar to (6). 
Namely, if a E ° has an asymptotic expansion 

a(t,	 + a(i)7o3)()sign(e)] 

where

1 
y E C(R) with 7'(e)I c(1 + I)°	( € R,i E No) I 

then A = Op o, can be represented in the form 

(Au)(t) = J [K+(t - s)a+(t,$) + r.—(t - s)a_(t,$) + a(t, s)] u(s) ds 

0 

where

I k(n) = 7(n) 
a,a E C'°(R x R)	and	

i k_(n) = 7(n)sign(n) 
(0 n E Z).



An Integral Operator Representation	697 

4. Functions s 

Here we present some formulae of functions n± satisfying (7). For a = —1 these formulae 
are well-known (see (9) - (10)). Consider the case —1 <a < 0. Introduce the function 

= jIQI_1 +	[(t + 	jj	(0 < t	1,—i <a < 0)	(12) 

where

yj = J (t +j)1°''dt= j- j [(i + 1)1I _jIaI] 

Note that the series in (12) converges uniformly in t € [0, 11, since fj as the mean value 
of (t + j)1QI	in (0, 11 has a representation y = (t, + j)' with a tj E (0, 1), and 

(i + j)' - ' - lj = ( t + j)' - (t, + i)' = ( l a l - 1)(t,+ j)" 2 (t - t3) 

•	(i + j)' -	(1 - IaI)i'2 
where t E (t, i) C (0, 1). Clearly, also the series obtained after differentiations con-
verge uniformly. Thus, r, € C°°(0, 11. Moreover, 'a is decreasing and 0 < ia(t) < 
t 1 °	(0 < t < 1). 

Define
= 1[c0 (i) ± ic(1 - i)j	(0 <t < 1)	 (13) 

where

Ca	 I


c
la1"17r t 

( 
ak I c — 	—2i(2yr(aI)sin----- 

J


and co 

r(3) = I 0- 1 e — t dt	(0< fi < 1) 
0 

is the Euler function. We preserve the designations i also for the 1-periodic extensions 
of those functions and assert that 

k(n) = InI,	)
(0nEZ, —1<a<0).	 (14) 

k (n ) = IriI sign(n)j 
To prove this we first find the Fourier coefficients of Ka(i) (0 < t 1) which we also 
regard as extended up to a 1-periodic function. Clearly, 

= f tI 0 I_ I d = 

](t + j)I 0 l_ l e_ mn2 di (0 n E Z) 
j=O 0
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With the changes of variables
t+) =5 

2 I n I s = T } 
we have

00 = J 
i—U 

= f 
= (2InI)0 I Tlal-le -sign(n) 'rdT 

It is known that

JTIe±TdT = e :" 12-ft r(,O)	(0 < 3 < 1) 

(see, e.g., [13: p. 69] for a proof). Thus 

k0(n) =	 (0 54 n E 7L). 

The Fourier coefficient of functions v and w such that w(t) = v(1 - t) are related by 
th(n) = i(—n). Therefore, the Fourier coefficients of #c defined by (13) are as follows: 

=	(27r)or (IaI) (e	ign(n)f 101 ± e* si5n ( n )flI)InI	(0 54 n E 7L). 

This results to (14). 
Now we have formulae of	satisfying (7) for —1 a < 0. The following obvious 

remark makes possible to extend the result for other a E R. 

Remark 4. The formulae 

= 2i	- k(0)] ds 

Ut	 .(a<0) 

= 27rif[c(s) -	(0)] ds 

and
1  

k 1 (t) =
irzt	 (aER) 

ç 1 (t) = 

hold where	means the periodic distribution derivative. 
Acknowledgement The author thanks Professor M. S. Agranovich for a useful 

discussion.
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