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The Generalized
Riemann-Hilbert Boundary Value Problem
for Non-Homogeneous Polyanalytic
Differential Equation of Order n
in the Sobolev Space W, ,(D)

Ali Seif Mshimba

Abstract. Given is a nonlinear non-homogeneous polyanalytic differential equation of order n
in a simply-connected domain D in the complex plane. Initially we prove (under certain condi-
tions) the existence of its general solution in W, ,(D) by first transforming it into a system of
integro-differential equations. Next we prove the solvability of a generalized Riemann-Hilbert
problem for the differential equation. This is effected by first reducing the boundary value
problem posed to a corresponding one for a polyanalytic function. The latter is then trans-
formed into n classical Riemann-Hilbert problems for holomorphic functions, whose solutions
are known in the literature:

Keywords: Polyanalytic functions, generalized Cauchy-Pompeiu integral operators of higher
order, Riemann-Hilbert problem

AMS subject classification: 30 G 30, 35J40,47G 10

1. Introduction

We consider the following non-homogeneous polyanalyticidiﬁ'erentia.l equation of order
n in a given simply-connected bounded domain D in the complex plane C:

5= (e { St
az" T 9zmazk (1)
"n2>m,k € No,m+k <n,(0,0)# (m,k) # (0,n),n € N. ’

.

The right-hand side is a continuous function of its variables z € D, w and the partial
derivatives of w of order not exceeding n and excluding %T_f."-, which are denoted here

by {%‘{- }. Following (5, 6] the general solution of equation (1) may be expressed in
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the form

w(z) = @(z)+To,,DF(c,w(<){a;+k })()

=9+ [[ Kantz - OF (c,0(0), { o +<':< ) dear

where ® is a polyanalytic function of order n in D, a.nd To,n,p is a generalized Cauchy-
Pompeiu type singular integral operator:

(=)™ iy

(2)

(n— D)t ifm <0
—-n)i(-D)" l—ne .
Knon(z) = ((m—)—(l)'7)r Zm-ign-l fn<0 (3)

m—1lsn-—1

m-—1 n—1
ud 2 1_s 1y
CEN (l°g 7= - 2 s) ifm,n € N.

r=1

When m = 1 or n = 1, the corresponding summation in the formula is dropped. The
kernel Ky, » of the integral operator T n,p has no singularity on D, except possibly at
the origin. Moreover, it follows from the properties of the operators Tp x,p (m+k < n)
that Ton,pf € Wa (D), if f € Lp(D) (1 < p < 00) (cf. [2, 5, 6]).

Suppose w € W, ,(D) is a solution of equation (1). Thus w may be expressed in
the form (2), and hence we obtain

o Jw
at:—‘b +T_yn,pF, o = &3+ To,n1,pF
ow 9% Fw P
_ — n <k<
Fy ak+TknDF 5k = 6"‘+T0 g, 0F (0<k<n)

and, in general,

am+k am+kq,
azma;izazmw*ﬂ'” k,0F (n>m,k;m+k <n).

Consequently, we arrive at the following result (cf. [12, 15, 21])).

Theorem 1. The function w € W, 5(D) (2 < p < o0) defined by equation (2) is
a general solution of the non-homogeneous polyanalytic equation (1) if and only if for o
giwen in the domain D polyanalytic function @ € W, ,(D) of order n, (w,{hm}) is a
solution of the system

w(z) = &(2) + To,n. 0F (¢, w(C), {hm£(C)})(2)
m+kq)

b k() = 5% £ T (G, 0(0), (i (OD)(2) (4)
n>myke No,m + k < n,(0,0) # (m, k) # (0,n),n € N.
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We note in passing that the integral operators Trn x,p (m + k=0 < m? + k?) are
of singular Calderon-Zygmund type, and may be viewed as analogues of Vekua-type
integral operators IIp and IIp defined by

not) =3 [, e
Tosto = -1 [ 2 s

(cf. [8, 11, 17, 18, 22]). They are singular and must be understood in the sense of
Cauchy'’s principal value. Moreover, they satisfy the Calderon-Zygmund inequality (cf.
(5, 6, 8, 17, 18, 22)])

ITem,n.0fllp.0 < Aplifllp.0 (5)
where
Ap = ||Tmn,pllpy, Ap = A42=1 (1< p<oo).
On the other hand, if m + k > 0, then Ty, &, p are regular or weakly singular integral

operators, and they may be viewed as generalizations of the Cauchy-Pompeiu integral
operators Tp, T p, T and the potential operator Pp given by

Tof) =% [ L deawn  Tora=-1 [ -(%dsdn

T30 = -5 [ L4 f(‘) dedn, Pof(z) = 2 [[ fO1og1¢ - sl dgan

Moreover, since ||Km al1,p0 < C(m,n,D) =const, it follows from the convolution the-
orem of W. H. Young (see [17], for instance) that T, x,p maps the Banach space
L,(D) (1 £p £ o) into itself, and the estimate

1 Tm,k,pfllp,.0 < C(m,k,D)||fllp,p (1 <p<oo,m+k>0) (6)
holds.

2. Existence of the general solution

We make the following assumptions on the right-hand side of equation (1):

(A1) F(z,w,{hmk})is a continuous function of its variables z € D, w and the partial

derivatives of w of order not exceeding n and excluding %’.7‘”, which are denoted
here by {hmk}.

(A2) There exists a tupel (w*, {h;, ;}) (w*,h},; € Lp(D),2 < p < o) such that
F(z,w*, {h], 4}) € Lp(D).
(A3) F(z,w,{hm,}) satisfies a Lipschitz condition of the form

F(z,0(2), {hmx(:)}) = F(z,5(2), {%m,k(z»l
< Lumax{ max bms(e) = Fma(2)}, o) - (o)}
+ Ly mtilgn |hm,k(2) - hm,k(z)l

almost everywhere on D. While 0 < L; < 1, L, may take any positive value.
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Note. It follows from assumptions (A2) and (A3) that F(z,w,{hm, k}) € L,,(D)
(2 < p < 00) if w and all the elements of {hm,k} belong to Ly(D).

We introduce the following Banach space £,(D) (2 < p < oo):
LP(D) = {(w) {hm,k})l w:hm,k € LP(D)}
n2m,k € Ng,m+k <n,(0,0) # (m,k) #(0,n),n € N.
1w, {hm 4Dl = max {yllwlly.0, v max hmillpp, max lemllpo} (v >0).

Next we define a mapping P in £,(D) through the right-hand side of (4). For any tuple
(w, {hm,k}) € L(D) we set

(W, {Hm+}) = P(w, {hm})
W(2) = ®(2) + To,n, 0F (¢, w(C), {hmx(()})(2)

m+k
Hpmi(2) = py— ® + T n-k,0F (¢, w(C), {hm ()} (2) (7)

n>m,k € Noym + k< n,(0,0) # (m, k) # (0,n),n € N
® € W, (D) (2 < p<oo)a polyanalytic function in D.

It follows immediately from the preceding discussion that P maps £,(D) (2 < p < o0)
into itself.

We next show that, under certain conditions, P is contractive in £,(D), so that
we can apply the Banach fixed point theorem. To this end we consider the images

(W, {Hmx}), (W, {Hm}) of (w, {hmi}), (@, {hmi}) € L »(D), respectively, under the
mapping P. We then have

NW = Wiy < 1l1Ton,0l5[|F (2w, {hm i }) = F(2, @, {Fma D,

< W ool (£rmax { sz Wi = Bl = 0}

+ Ly max |lhm— zm,kllp,D)
< I To,n,pllp(L1 + YL2)||(w, {hm i }) = (B, (B i })||-
Similarly we obtain
WHumk = Hokllp,0 € 1T=m,nk, Dllp(Lr + ¥L2)||(w, {hm i }) = (@, (R}
~ 1 o~
1Ho.p = Hapllp < IT-0in-.0llp (2 L1 + Lz) 10, {him k) = (B, (Fm 1)

for 0 <m +k < nand a+ g =n with (a, 8) # (0,n). On account of the relations

_ | C(m,k,D) for0<m+k< n
N T-m,n-k,0ll = { IToll, form+k=n (1<p< o), (8)
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where I p is the strongly singular Vekua-type integral operator, we arrive at the estimate

(W, {Hen ) = (W, {Hm s D |
1
< (32 + £a) max { 11Tl 135 IT-m -t 0l 101 |

x ||(w, {hm,k}) - (w, {zmk})"

and P is contractive in Lp(D) (2 < p < 00) if

1
(32 + £a) max {310l v 005 1Tmnckls ol } <1 (9)

This condition may be satisfied if the constants Ly, L, and v can be chosen properly
and the domain D made sufficiently small. It is known (cf. (5, 6, 8, 12, 17, 18], for
instance) that

IMpllp 21 (1 <p< o0) and ~ ||Ipl]: =1.

Thus for a chosen £,(D) (2 < p < 0o) we need Lq, 0 < Lz < 1, such that L2||HD||,, < 1.
Next we choose the constant v > 0 large enough so that, for the given L; > 0, ( L, +
L)|Ip|l, < 1 also holds. Finally, since ||To,n,pllp and || T-m,n-k,bllp, 0 < m + k < n,

vary directly with the area of the domain D, we ma.y satisfy estimate (9) eventually be
reducing the size of D.

If estimate (9) is realized, then P has a unique fixed element (w, {hmx}) € L,(D)
(2 < p < ) and w is the general solution of equation (1) corresponding to the given in
D polyanalytic function ® € W, ,(D) of order n. Moveover, w € Wy, ,(D) (2 < p < o0):

w(z) = ®(2) + To.0,0F (¢, 9(C), {hm ()} (2)

m+kq)

bma(2) = g + Tomok 0F (€ 0(C) Lhma (1))

n>m,k € Ng,m+k <n,(0,0) # (m, k) #(0,n),n € N.

Theorem 2. Under assumptions (Al) - (A3) and (9) the non-homogeneous poly-
analytic differential equation (1) admits a uniquely defined solution w € W, ,(D) (2 <
p < 00) given by equation (2) for every prescribed in the domain D polyanalytic function
® € W, ,(D). This solution defines a mapping from & — w = R(P).
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3. The generalized Rlemann-Hllbert problem for polyanalytic
functions

We consider the following boundary value problem for a polyanalytic function ® of order
n: e
az"
b)) 2 E
Re (ak“}‘l k)a—nW (t)—ck(t) on 0D (k:l,...,n)

=0 on D={z:|z|] <1}
(10)

where ax, bk, cx € Wi _1 ,(8D) (2 < p < 00) are prescribed real-valued functions on
90D. Moreover, (akx + tbi)(t) # 0 for all t € D.
A polyanalytic function ® of order n may be expressed as

n—1

¢ =P(z,7) = ZE"yﬁ,,(Z) (¢, holomorphic).
. =0

Thus .
ol x_1/ 0 d\n—k, 0 O \k-1' S
Bzn—Kkoyk-1 it 1(5 + a—z) (c’)_z B %) Z:;)zp¢p(z)

n—k k—1

S S5
a=0 =0
’ ﬂ—za;zi ("_"‘ﬂ)’_p - ﬂ%%(z)-

Since on 8Dt = % we shall replace z by % in the expression above and then reduce
the given boundary conditions for the polyanalytic function @ to n eqivalent Riemann-
Hilbert boundary value problems for some holomorphic functions Gx (k = 1,...,n)
which are defined in terms of the holomorphic functions ¢, (p =0,...,n —1). Thus

an—l(p n—k k-1 n— -1
a—ay_‘zgz( 00
. dn-o-8-1
Xp—¥+p (P—a—ﬂ)' . " Trmampi 02
Hence "1d
Re [(ak + ibk)ank—akl](t)
n—k k—1
=Re[(ak+bk)(t)tl_nik IZZ( l)ﬂ( )( ﬁl)
a=0 8=0
n-—1 dr-o- p-1

P! nta+f-p-1
X z — ¢ —p- —_— 1,
—a - B g-11°F
piargp—a=B) dtn—e=
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- Re [(ax + ibx)(1) ¥ "G (8)] = ex(t) Ck=1m) (11)
where . . . e -
«(2) 2;;( )(' 2 )(5) . "
x p;ﬂ ﬁ__ﬂ_)! zn+a+ﬂ—p—1i_nm 0u(2).

The solution of the Riemann-Hilbert problem (11) is known (see [9, 11, 14, 16]). If
kg := index [(ax — ibx),dD] > 0, then the general solution Gy is given with the aid of
the Schwarz integral as

217G () = Xi(2) i1 Rex(t) tt2 2z l
Gi(z) = ori [/w (ax +ibe)(t) X F(t) (t = 2)t 4+ Pu )] (13)

where Py, is a polynomial of degree not exceeding ki and X, is the canonical solution
of the corresponding homogeneous problem

Xi(z) = 2"+ exp T'x(2)

1 —2,—2x, (@K —b)(H)) t+2
Tx(e) = ;= /{’Dlog ((—1)" *t (@ T ibk)(t)) (t—z)t dt-

If any of the i is negative, then the corresponding Riemann-Hilbert problem has a
unique solution, bounded at infinity for instance, if and only if the conditions

ck(t) i o o
/aD (ak+ibk)(t)X:’(t)tdt_0 (G=0,...,—2rk = 2) (14)

are fulfilled, and in that case the solution is given by (13) as well, with the obvious
modification that we set P, (z) =0 (cf. {9, 11, 16]).
We investigate the possibility for the satisfaction of the solvability conditions (14).
For this purpose we consider the modified Riemann-Hilbert problem (cf. [4, 25])

Re [i*-'t'-"(ak+ibk)(t)c;(t)] = cx(t) — _Ki Mt on 8D (11)

s=xKp+1

where A_, = A, are constants yet to be determined appropriately. The modified problem
is uniquely solvable for k¢ < 0, and the solution G to the original Riemann-Hilbert
problem (11) has the representation

1ong () = Xk(2) it NN ,
o =32 [ e (4 3 M)

s=xKx+1

(cf. (4, 25)).
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In order that a Riemann-Hilbert problem with non-negative index to be uniquely
solvable 2x¢ + 1 point conditions need to be imposed on the solution Gk. These con-
ditions can be expressed in terms of the solution @ of the given polyanalytic equation
(10). Suppose r among the n Riemann-Hilbert problems (11) have non-negative indices,
whose sum is N. Then, we demand that

Im [ik_l(ak +ibk)(Ti)TJ']—nGk(Tf)] =d (] =12,...,N +7)
7; € 0D, T # 7, for m £ n,d; € R.

It can be shown that 2! "G(z) € W1 ,,(0) (2 <p< 00,k =1,...,n) and estimates of
the form ‘

"Zl_nGk“P,D S Ck(akv bk’P, D) “Ck”p,aD_ A ;
Hz'~"Gkll1,p,0 < Ki(ax, bk, p, D) llexlli-1 00

hold (cf. [12, 14, 15)).

Suppose we have determined all n holomorphic functions G (k=1,...,n) uniquely.
We proceed to compute the required polyanalytic function @ by expressing the holo-
morphic functions ¢, (p = 0,...,n — 1) in terms of Gx. We shall make use of the
following three facts: , : .

(15)

(k=l,...,n;2<b<m) - (16)

1. Derivatives of ¢ with respect to z,y can easily be expressed by the holomorphic
functions Gi. It follows from (12) that

o Ie L@ @\nev—i @ @ etr i
sy = (5 4 ) (-7 L7

p=0

=iq+un'-§_)§(_1)ﬂ(n_Q;V._.?.)(Q‘;V)

a=0
aep dn—a—ﬂ-l

P,
X Gl g o)

= i"+"zl'"Gq+y+j(z)

on 0D (ie z=1). ‘
2. Derivatives of ¢ with respect to z,Z can be expressed by the derivatives with
respect to z,y, and hence in terms of G;. Indeed, on D we have
an-id . n—k, 8 9 \k-Jj
ST (L 2) T L2
Ozn—kgzt—) dr 9y 0z Oy
n—k k—j

=2 Y S (P8 ()

¢=0 v=0

(17)

n—k k—j

=27 S (U ) ()i ()

g=0 v=0
n—k

j—n _1-n n — ky 3 | v k_.;
=27"2 Z( . )Z_:(“l)( Y )Gq+,+,~(z)

9=0
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forn>k>j.
3. The holomorphic functions ¢, can be expressed by the derivatives of the poly-

analytic function ¢ with respect to z and Z.

an-1e gn-! n-—1
—_ — =P = — [} _ .
gz ! gz"] p§=0:z ©p(z) = (n = 1)lpn-1(2)

Thus

On the other hand, it follows from (17), with k = n and j = 1, that
aﬂ_l@ 1-n = v n—1
P (2z2) ,,Z_:_o(_l) ( Y )G,,+l1(z) on dD.

Hence we may conclude that

onn(2) = o 1),(22)‘-"2( (", )Gus(s)  on 0D.

Next we have, on the one hand,

an—Zq) an—Z
(3" pn-a(2) + 2" pnma(2)

= (n = 2)!pnoa(2) + (0 = D)Zens(2).

On the other hand, we deduce from (17), with k = n and j = 2, that

n n—2 _
?’_,,Z_(f = 227" 1" "Z( 1)"( ) v+2(2) on 8D.

So we can obtain for ¢,_2 the representation

92=n 1~ nZ( l)u(

ool = g [T $)Gusale) = (n = 1)1 pns(2)

on 8D.
,¥1, Po. Suppose we have computed @pn_1,¢n-2,-

Similarly we compute ¢n_3,...

¢n—j+1. Then we compute p,_; as
n—1 -
on P

e o) S Peua) = (n = en-i(2) + Y eul2) ooy

gz"-1 gz o i
On the other hand, for k = n for_mu]a (17) yields

s JEPTANR SN T I
LR e

“ey
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We thus arrive at the general representation

r{ . n—1

Pn-j(z) = (n—i?)![?_"zl—" Z( 1)* ( ])Gu+j(2) - Z ®(2) %]

v=0 p=n—j+1

for on_; (5 =1,...,n). Hence all n holomorphic functions vj (3=0,...,n—1) are
uniquely determmable and with them the polyanalytic function ® as well. Furthermore
since ak, bk, cx € Wl__ »(@D) (2 < p < o0), we conclude that z! "G (z) € W, ,,(D)

(cf. [1, 10, 12, 14, 15, 19 20}). It thus follows from (12) that

. n—1 - " m—a—1 )
tl Gl(t) - Zo( ) Z (] _ O’)' din—a—1 (pJ(t) € Wl—,l’,p(aD)
and, in particular,
n—a—1

FoatPi) €Wl ,(BD)  (j,a=0,...,n—1).

Hence et
e 1c,o_,EW,__,,(c')D) (J=0,1,...,n-1).

It now follows from the properties of traces of functions that

pj € Wn_%lp(aD) and ¢;, ® € W, (D) G=1,...,n)

and the estimates

121150 < C1(p, D) max |lekl5,0p

S (Gyk=1,...,n2<p< o0 18
1215.0 < Ca(p, D) max ||Ck||1—§,p,ao} ( )

hold (cf. 1, 10, 12, 14, 15, 19, 20}).

4. The generalized Riemann-Hilbert problem for equatlon (1)
We now take up the following boundary value problem for the function w:
8" w omtky
. ﬁ—F(Z,w,{azm—aEk}) qn D

n—1

o lw . .
Re [(ak + lbk) W] (t) = Ck(t) on 8D (k = 1,. . ,Tl) (19)

n2mkeNyym+k<n,(0,0)# (m,k)#(0,n),neN



The Generalized Riemann-Hilbert Boundary Value Problem 621

where ag, by, cx € W,_%’p(aD) (2 < p < o0) are prescribed real-valued functions on
8D with (ax + 1bg)(t) # 0 for all ¢t € 8D.

It was shown earlier that for every polyanalytic function & € W, ,(D) (2 < p < o0)
there exists a unique solution w € Wy, (D) to the partial differential equation (1). This
solution is represented by (2). We shall now exploit the arbitrariness of the polyanalytic
function @ to construct the solution of the boundary value problem (1), (19). For this
purpose we shall write @ as

=& 4+ Py

where ®., ®(,, ) are solutions of the boundary value problems

g,
Re (a, + lb )W (t) = C)(t) on 6D
. !
n—1
= —Re [(a, + lb]) azn—_jay—]TI—To,n,DF(',w, {hm,k}) (t)

= gw,h),;(t) on 0D

forj =1,...,n. Since F(z,w, {hm}) € Lp(D) (2 < p < ), then Ty »,pF € Wy p(D)
(cf. [5, 6]). Moreover,

azyf—:_a;k——lTo,n,DF(z)
e w - ky &= k-1 g1
= 1,k 1 2 (77. o ) ;(_1)‘9( ﬂ ) azn—a—ﬂ—laza'*'ﬂ TO,n,DF(Z)
n—k _ k-1 ‘-
= k! Z—:o (n o k) Bz_:()(—l)ﬂ( ; l)Ta+ﬂ+1_n,n_0_ﬂ,DF(Z)
€ WI,P(D)a

ice. gy, € Wio1 5(8D) (2<p<o0ij= 1,...,n) (<f. 1, 10, 11, 12, 19, 20)).

Polyanalytic functions which satisfy boundary conditions of the form (20) have been
constructed earlier, and we deduce from there that @, ®(, 4y € W, p(D) (2 < p < )
and, in particular, the estimates

12(w,myllp,0 < C(P, D) l|9(w,h)jllp.00 £ Ci(p, D) | To,n,0F |h,p,0 21)
H®(w,m)llk.p.0 < Co(p, D) | To,n,DF lnt1-k,p,D

- hold for k,j =1,...,nand 2 < p < oco.

We now deﬁne a mapping Q in the Banach space L,(D) (2 < p < oo) For any
tuple (w, {hm,k}) € Lp(D) we set

. (W) {Hm,k}) = Q(wa {hm,k})
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where
W(z) = QC(‘Z) + <I>(w,h)(""') + TO,n,DF(C,w(C)’ {hmJ‘(C)})(Z)
m+k .
Humi(z) = afm—;k (®c(2) + B(w,h)(2)) + T=m,n-k,0F (¢, w(C), {hm x(¢)}) ()

n2>2m,k € No,m+k <n,(0,0) # (m,k) # (0,n),n € N.

The operator Q is uniquely defined, and it maps the Banach space £,(D) (2 < p < o)
into itself. Moreover, the following result holds.

Theorem 3. If (w,{hm}) is a fized point of the operator Q, then w is the solution
of the given differential equation (1) which also satisfies the boundary conditions (19).

We next derive the conditions to be imposed in order that Q has a fixed point. Sup-
pose (W, {Hm}),(W,{Hmi}) are the respective images of (w, {hmt}), (@, {hmx}) €
Lp(D) (2 <p<oo). If we set

e=%wm -5y and  f=F(zw {hnt}) = F(z, 3, {hm}),

then
~ - am+ks0
W_W'=‘p+T0,n,Df’ Hm,k_}{m,k_ azma__k +T—mn kDF
and
YIW = Wllp,p

< 7(Ci(p, DY 1To,n,0ll1,p + ITo,n0l15 ) 1,

< (Lvmax{ mgx Vi = Frnillys I = .0}

+Ly max Whok = sl )1(C1(5 D) [ Tomollp + om0l
< (CI(P,D) To,n,ll1,p + ”To.n,D“P)(Ll +7La)||(w, {hm,k}) = (&, (R })]]-
Similary we arrive at

W Hun b = Hrkllp.p < (Ca(p, D) 1T lIn-m-tp + 1 T-mn—,5l
x (L1 + vL2) ||(w, {hm}) = (B, {Rm k)|

|Ho, = Hogllp,p < (C3(p, D) 1 To,n,Dll1,p + I T-a,n-5.,0l5)

< (%Ll + Lo ) || (@, (b }) = (@, (o i}

for0<m+k <n,a+f =nand (a,B) # (0,n). Consequently, on account of relations
(8), we arrive at the estimate

W, {Hm i }) = (W, B Dllp < 8 1l(w, {hm k) = (@, (B i} (22)
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where (I;Ll + Lz)_lx is the maximum of the three quantities

7(Ci(p, D) | To,n,0lI1.5 + IITo,n,Dll5)

7 max {Co(p, D) |To,nblin-m-rkt1.5 + I T-mn-t,0ll5}

C3(p, D) | To,n,pll1,p + T, -

If x < 1, then the mapping Q is contractive in £L,(D) (2 < p < 00) and it has therefore
exactly one fixed element (w, {hm}) € Lp(D), by the Banach fixed point theorem.

The contractiveness of Q imposes certain restrictions on the constants L,, L,y and
the size of the domain D. Going through an argument similar to the one presented earlier
for the case of the existence of a general solution, we can secure the contractiveness of
Q, and hence the existence of a solution w € W, ,(D) (2 < p < o0) of the boundary
value problem posed. It is easy to establish that the solution is unique.

Theorem 4. Under the assumptions (Al) - (A3), (15) and x < 1 the general-
szed Riemann- Hilbert boundary value problem (1),(19) admits a unique solution w €
Wap(D) (2 <p< o).

Acknowledgement. This work was carried out during the author’s 1998 visit to
the Free University of Berlin in the Federal Republic of Germany under the DAAD
sponsorship. The author wishes to thank DAAD and his host, Prof. Dr. Heinrich
Begehr of the I. Mathematics Institute for the support and encouragement.

References

[1] Adams, R. A.: Sobolev Spaces. New York: Academic Press 1975.

[2] Akal, M. S.: Boundary Value Problems for Complez Elliptic Partial Differential Equations
of Higher Order. Dissertation. Berlin: Free University 1996. Aachen: Shaker-Verlag 1996.

(3] Balk, M. B.: Polyanalytic Functions. Berlin: Akademie Verlag 1991.

(4] Begehr, H.: Complez Analytic Methods for Partial Differential Equations. Singapore:
World Sci. Publ. Co. 1994.

[5] Begehr, H. and G. N. Hile: A hierarchy of integral operators. Rocky Mountains J. Math.
27 (1997), 669 — 706.

[6] Begehr, H. and G. N. Hile: Higher Order Cauchy-Pompeiu operators. In: Proceedings of
Operator Theory for Complex and Hypercomplex Analysis, Mexico City 1994 (eds.: E
Remires de Arellano et al.). Providence: Amer. Math. Soc. 1998, pp. 41 - 49.

[7] Begehr, H. and G. C. Wen: Nonlinear Elliptic Boundary Value Problems and Their Ap-
" plications. Harlow: Longman Ltd. 1996.

[8] Calderon, A. P. and A. Zygmund: On the ezistence of singular integrals. Acta Math. 88
(1957), 85 - 139.

[9] Gakhov, F. D.: Boundary Value Problems. Oxford: Pergamon Press 1966.
(10) Kufner, A., John, O. and S. Fucik: Function Spaces. Leyden: Noordhoff Int. Publ. 1977.
(11] Monakhov, V. N.: Boundary Value Problems. New Jersey: Amer. Math. Soc. 1983.



624 Ali Seif Mshimba

[12] Mshimba, A. S.: Construction of the solution to the Dirichlet boundary value problem in
W1,5(G) for systems of elliptic partial differential equations in the plane. Math. Nachr.
99 (1980), 145 - 163.

(13] Mshimba, A. S.: On the L, norms of some singular integral operators. Afrika Mathe-
matika 5 (1983), 34 - 46. :

[14] Mshimba, A. S.: The Hilbert boundary value problem for holomorphic functions in Sobolev
spaces. Appl. Anal. 30 (1988), 87 - 99.

(15] Mshimba, A. S.: The Cauchy-Lebesgue integral and boundary value problems. Compl.
Var. 16 (1991), 307 - 313.

(16] Muskhelishvili, N. L.: Singuldre Integralgleichungen. Berlin: Akademie- Verlag 1965.
(17] Neri, U.: Singular Integrals. Berlin et al.: Springer-Verlag 1971.

[18] Stein, E. M.: Singular Integrals and Differentiability of Functions. Princeton: Univ. Press
1970.

[19] Triebel, H.: Interpolation Theory, Functions Spaces, Differential Operators. Amsterdam:
North Holland Publ. Co. 1978.

[20] Triebel, H.: Theory of Function Spaces I. Basel: Birkhauser Verlag 1983.

[21) Tutschke, W.: Die neuen Methoden der Komplezen Analysis und thre Anwendungen auf
nichtlineare Differentialgleichungssysteme (Sitzungsber. Akad. Wiss. DDR: Vol. 17N).
Berlin: Dt. Verlag Wiss. 1976.

[22] Vekua, I. N.: Generalized Analytic Functions. Oxford: Pergamon Press 1962.

(23] Vekua, I. N.: New Methods of Solving Elliptic Equations. Amsterdam: North Holland
Publ. Co. 1967.

[24] Wen, G. C. and H. Begehr: Boundary Value Problems for Elliptic Equations and Systems.
Harlow: Longman Ltd. 1990.

[25] Xu, Z. Y.: Nonlinear Poincaré problem for a system of first order elliptic equations in the
plane. Compl. Var. 7 (1987), 363 ~ 381.

Received 17.07.1998; in revised form 16.02.1999



