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The Generalized 
Riemann-Hilbert Boundary Value Problem


for Non-Homogeneous Polyanalytic

Differential Equation of Order n


in the Sobolev Space W,(D) 

Ali Self Mshimba 

Abstract. Given is a nonlinear non-homogeneous polyanalytic differential equation of order n 
in a simply-connected domain D in the complex plane. Initially we prove (under certain condi-
tions) the existence of its general solution in W,(D) by first transforming it into a system of 
integro-differential equations. Next we prove the solvability of a generalized Riemann-Hilbert 
problem for the differential equation. This is effected by first reducing the boundary value 
problem posed to a corresponding one for a polyanalytic function. The latter is then trans-
formed into n classical Riemann-Hilbert problems for holomorphic functions, whose solutions 
are known in the literature: 
Keywords: Polyanalytic functions, generalized Cauchy- Pompeiu integral operators of higher 

order, Riemann-Hilbert problem 
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1. Introduction 

We consider the following non-homogeneous polyanalytic differential equation of order 
n in a given simply-connected bounded domain D in the complex plane C: 

I""aw=F(z,w,ak})	 (1)

n m,k ENO , m + k n, (0,0) (m, k) (0, n), n E N. 

The right-hand side is a continuous function of its variables z E D, w and the partial 
derivatives of w of order not exceeding n and excluding	which are denoted here 
by {}. Following [5, 61 the general solution of equation (1) may be expressed in 
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the form

I W(Z)	(z) + ToflDF((,w((),	-k }) 3(m3(	
(2) 

ID 
= (z) + IL Ko , (z -	

3rn+k 
F (( w), 3

(rn3 }) 
ddij 

where 4 is a polyanalytic function of order n in D, and TO,,D is a generalized Cauchy-
Pompeiu type singular integral operator: 

{ (_m)!(_1)m
Z (n-1)!7r	 - 

(—n)!(-1)' 
Krn,n(z) =	(in - 1)!ir	 if n <0 - 	(3) 

rn_lyn_l	

\ 

/	 rn-I	n-i 

	

log 1 z 1 2 - j2 -	if m,n eN. (in - 1)!(n - 1)!7r
r=1	3=1 

When in = 1 or n = 1, the corresponding summation in the formula is dropped. The 
kernel Krn,n of the integral operator Tm,,jj has no singularity on D, except possibly at 
the origin. Moreover, it follows from the properties of the operators Tm,k,D (m + k < n) 
that To,, Df C W(D), if I E L(D) (1 < p < no) (cf. [2, 5, 6]). 

Suppose w E W , (D) is a solution of equation (1). Thus w may be expressed in 
the form (2), and hence we obtain 

Ow	 Ow 
- -Z+Tl, fl ,DF,	=1+To,n_l,DF 

3kw 3k	 3kw 3k 
= +T_k,,DF,	 -+To,k,DF (0<kn) 

and, in general,

__  
3z mO - -  3Z73yk + T-rn,nk,DF	(n > m,k; in + k n). 

Consequently, we arrive at the following result (cf. [12, 15, 21])). 

Theorem 1. The function w C Wn,p(D) (2 <p < no) defined by equation (2) is 
a general solution of the non-homogeneous polyanalytic equation (1) if and only if for a 
given in the domain D polyanalytic function 4 C W , (D) of order n, (w, {hrn,k }) is a 
solution of the system 

w(z) = '(z) + To,,DF((,w((), {hrnk)})(Z) 
3rn+k 

hm,k(Z) = 3zm8 + T_m,n_k,DF((,W((), {hrn,k(()})(Z)	 (4) 

n m,k E N0 ,m + k <n,(0,0) 56 (m, k) 54 (0,n),n C N.
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We note in passing that the integral operators Tm,k,D (m + k = 0 <in 2 + k2 ) are 
of singular Calderon- Zygmund type, and may be viewed as analogues of Vekua-type 
integral operators HD and liD defined by 

=  - JL ((z)2 ddi 

= -JL f (() 
d^d,7 

(cf. 18, 11, 17, 18, 221). They are singular and must be understood in the sense of 
Cauchy's principal value. Moreover, they satisfy the Calderon- Zygmund inequality (cf. 
[5, 6, 8, 17, 18, 22])

IiTm,n,DfIIp,D < Ap flf p,	 (5) 
where

A = ii Tm,n,D lip, A ^! A2 = 1 (1 <p < oo). 

On the other hand, if m + k > 0, then Tm,k,D are regular or weakly singular integral 
operators, and they may be viewed as generalizations of the Cauchy-Pompeiu integral 
operators TD, TD, Tb and the potential operator PD given by 

1 AD --ded,7, iTDI(z)	
r (Z 

Tbf(z) 
= -JL ic:1)zi ddij,

TDI(z)=__JJ L)—ded71 
7r D(-Z 

PDI( z ) = Iff(()1ogi(_zIdedii. 

Moreover, since II Km,niil,D :5 C(m,n,D) =const, it follows from the convolution the-
orem of W. H. Young (see [17], for instance) that Tm,k,D maps the Banach space 
L(D) (1 p co) into itself, and the estimate 

IiTm,'c,Dfiip,D	C(rn, k, D) j 1fjjp,D	(1 p:5 cc, in + k > 0)	(6)

holds. 

2. Existence of the general solution 
We make the following assumptions on the right-hand side of equation (1): 
(Al) F(z, w, {hm,k }) is a continuous function of its variables z E D, w and the partial 

derivatives of w of order not exceeding n and excluding which are denoted 
here by {hmk}. 

(A2) There exists a tupel (w*,{h k }) (w',h k E L(D),2 <p < cc) such that 
F(z,w, {h k }) E L(D). 

(A3) F(z,w, {hm , k}) satisfies a Lipschitz condition of the form 

IF(., 	{hmk(Z)}) - F(z,ü(z), {vn,k(Z)} 

^L, max{ mmax Ihm,k(Z) - m,k( Z )i, w(z) - i(z)I} +k(n 

+ L2 max I hmk( Z ) - hm,k(Z) 
m+kn 

almost everywhere on D. While 0 < L 2 < 1, L 1 may take any positive value.
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Note. It follows from assumptions (A2) and (A3) that F(Z,W,{hm,k}) E L(D) 
(2 < p <co) if w and all the elements of {hm,k } belong to L(D). 

We introduce the following Banach space £(D) (2 <p < oo): 

= {(W,{hm,k})I W,hmk E L9(D)} 

n m,k ENO , m+k  < n,(O,O)(m,k) 54 (O,n),n EN. 

II( w , { hm,k })II = max {YII w II,D,	max II hm,kIIp,D, max II hmkIIp,D} (y > 0). m+k<n	 m+k=n 

Next we define a mapping P in £(D) through the right-hand side of (4). For any tuple 
(w, {hm,k }) E £(D) we set

(W, {Hm,k}) = P(w, {hmk})


W(z) = '1(z) + TO,TI,DF ((, wv), {hmk()})(z) 

3m+k 

	

Hm,k( Z) =	4) + T_m,n_k,DF((, w((), {hm,k(C)})(Z)	 (7) 

n m,k E NO , m+k  n,(0,0) (m,k) 54 (0,n),n EN 
4) E W , ( D) (2 <p < oc) a polyanalytic function in D. 

It follows immediately from the preceding discussion that P maps £(D) (2 <p < oo) 
into itself. 

We next show that, under certain conditions, P is contractive in £(D), so that 
we can apply the Banach fixed point theorem. To this end we consider the images 
(W, {Hmk}), (W, {Hm , k}) of (w, {hm , k}), (ü, & , k}) E £(D), respectively, under the 
mapping P. We then have 

7II 4' - Wp	7II T0,n,DIIp F(z,w, {hm ,k}) - F(z,t, Omk))IpD 

:5 7IIofl,DII (L 1 max I max II hm, - h m,kIIp,D, lw - wllPD} t O<	 km+k.cZn 

+L2 max ll h m,k _hm,klIpD) m-3-k=n 

lI To,fl,Ilp(L i + 7 L2 )I(w , { hm,k}) - ( i2, {hm,k})II. 

Similarly we obtain 

	

7ll'Ln,k - Hm,kllp,D	ll T m,nk,D)lp( L l + 7L2)I(w, {hmk}) - (, &',kj)jj 

	

ll H ,s - H ll	lI T O,nsDllp( IL l + L2 )
11
(w, {hm ,k }) - (iv, {m,k})lI 

for 0 < rn + k <n and a + 0 = n with (a, fl) 54 (0, n). On account of the relations 

- IC(m,k,D) for0<m--k<n 
IT_mn_k DII - ¶  11 11 DI1p	for m + k =	(1 < p < cc),	(8)
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where UD is the strongly singular Vekua- type integral operator, we arrive at the estimate 

II(', (H. , k	 k})II

Max II T_mn_kDIiPil H DllP} + L2 ) Max {
m+k<n 

X 11 (w, {hm,k}) - (ü, {hmk})II 

and P is contractive in £p(D) (2 <p < oo) if 

C L
1 + L2 Max j-fjjT.,.,D11p, It Max il T_ m,n_k,Dli p , ll fl Dil} <1	(9) 

m+k<n 

This condition may be satisfied if the constants L 1 , L2 and 7 can be chosen properly 
and the domain D made sufficiently small. It is known (cf. [5, 6, 8, 12, 17, 18], for 
instance) that

I H DIIp ^! 1 (1 <p < oo)	and	IllDI12 = 1. 

Thus for a chosen £(D) (2 <p <oo) we need L2 , 0 < L2 < 1, such that L2II II DIIP < ' - 
Next we choose the constant 7 > 0 large enough so that, for the given L 1 > 0, (L1 + 
L2)iifljj lip < 1 also holds. Finally, since IITo,n,DlIp and II T_m,n_k,Dllp, 0 < m + k <n, 
vary directly with the area of the domain D, we may satisfy estimate (9) eventually be 
reducing the size of D. 

If estimate (9) is realized, then P has a unique fixed element (w, {hm,k}) E £(D) 
(2 <p < no) and ti, is the general solution of equation (1) corresponding to the given in 
D polyanalytic function 4D E W , (D) of order n. Moveover, zb € W , (D) (2 <p < no): 

ti(z) = (z) + TO,,DF ((, W((), {hm,k(})(Z)


h,,k( z ) =	 + T_,n,n_k,DF((,th), {hm,k()})(z) 


n rn,k E N0 , m + k n,(0, 0) 96 (m, k) 54 (0, n), n € N. 

Theorem 2. Under assumptions (Al) - (A3) and (9) the non-homogeneous poly-
analytic differential equation (1) admits a uniquely defined solution to € W , (D) (2 < 
P < no) given by equation (2) for every prescribed in the domain D polyanalytzc function 

E W, ,,,(D). This solution defines a mapping from 'I' - to = R((1).
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3. The eneralized Riemann-Hilbert problem for polyanalytic 
functions 

We consider the following boundary value problem for a polyanalytic function 4 of order 
n:

--=0	onD={z: IzI<1}
(10)


	

Re I(ak + zbk)3 n-k3 k-i (i) - Ck( t )	on 3D (k	1,...,n) 

where ak,bk,ck e W1 _ 1, (3D) (2 < p < ) are prescribed real-valued functions on 
3D. Moreover, (ak + ibk)(t) 0 0 for all t € 3D. 

A polyanalytic function of order n may be expressed as 

= (z,) = E (z)	(	holomorphic). 0  

Thus
=	3	3 n-k 3	3 kI n-i 

0xk0yk	 a- + )	(b- - )-
 

12"cpp(z)

P=O 

n-k k-I 
jk_I	(_1)fl(flk)( k-i 

a	/3 ) =0 /9=0 
n-I

	

p!	p-a-fl d' 

P n+13	

_çp(z). 
(p - a - 3)!	dzn-n-ø-I 

= 

Since on 3D i = - we shall replace T by in the expression above and then reduce 
the given boundary conditions for the polyanalytic function to n eqivalent Riemann-
Hilbert boundary value problems for some holomorphic functions Gk (k = 1,...,n) 
which are defined in terms of the holomorphic functions cap (p = 0,... , - 1). Thus 

an -I n-k k-I 
k-i	E( l)/9 (n_k) k 

a=0 /9=0 
n-I

	

P!	
dn_a_/9_i_cpp(z). 

E
p=c+ (p - a - /3)!	dzn_a-P---i 

f3 

Hence
Re I(ak +ibk)	

3n_i	
](t) ôxnkôyk

n-k k-I 

	

= Re[(ak + bk)(t)tI_njk_I	(_i)/9(fl -

ak)(1) 

a=0 /9=0 
n-i

P!	jn+a+/9-p-I dI_0_1 

p=+/9 (P - a - /3)!	dtn--0-1
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i.e.
Re [(ak + ibk )(t) jk_ijl_nck(j)] = ck( i )	(k = 1,.. . ,n)	(11) 

where
n-k k-i 

Gk(z)= >(l)pnk 
k—i 

a )(	) aOfi=O	 (12) 

X	 zn+P d' 
E (p - a - /3)!	 dz'' 

The solution of the Riemann-Hilbert problem (ii) is known (see [9, 11, 14, 16]). If 
index [(a k - ibk), 3D] ^! 0, then the general solution Gk is given with the aid of 

the Schwarz integral as

zkck(t)	t+z	

I 
z'Ck(z) 

= Xk(z) 

{J (a + ibk)(t)X(i) (I - z)i di + P
k (z)	(13) 

2zri 

where P,c & is a polynomial of degree not exceeding Kk and X,ç is the canonical solution 
of the corresponding homogeneous problem 

Xk(z) =	exp rk(z) 

rk(z) = JÔ D 
log ((_l)2t21 (ak - ibk)(t)\1 I + 

(ak + ibk)(i)) (I - z)t di. 

If any of the 1k is negative, then the corresponding R.iemann-Hilbert problem has a 
unique solution, bounded at infinity for instance, if and only if the conditions 

JaD
Ck(i) 

(a, + ibk)(i)X(t) t' 
. dt = 0	(j =	, — 2kk —2)	(14) 

are fulfilled, and in that case the solution is given by (13) as well, with the obvious 
modification that we set Pjz) 0 (cf. [9, 11, i6]). 

We investigate the possibility for the satisfaction of the solvability conditions (14). 
For this purpose we consider the modified Riemann-Hilbert problem (cf. [4, 25]) 

Re [i''t'(ak + ibk)(i) Gk( t )] = Ck(t) -	 on 3D	(ii)' 
3'ck+l 

where ) = T. are constants yet to be determined appropriately. The modified problem 
is uniquely solvable for 'c < 0, and the solution Gk to the original Riemann-Hilbert 
problem (11) has the representation

ki i+z Xk(z) 

18D	

1-k	 __

2i 	(ak + ibk)(i)X(i) (Ck(t -
	

(t - z)t 
di	(13)' z''Gk(z) = 

(cf. [4, 25]).
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In order that a Riemann-Hilbert problem with non-negative index to be uniquely 
solvable 21ck + 1 point conditions need to be imposed on the solution Gk . These con-
ditions can be expressed in terms of the solution 4 i of the given polyanalytic equation 
(10). Suppose r among the n Riemann-Hilbert problems (11) have non-negative indices, 
whose sum is N. Then, we demand that 

Tm [ik_I(ak + ib k )( Tj ) TJ"G k (rj )] = di (j = 1,2,... , N + r)	
(15) Tj E SD,Tm 54 r,3 form 54 n, d. ER. 

It can be shown that z''G k (z) E W1, (0) (2 <p < oo, k = 1,. . . , n) and estimates of 
the form 

	

Il z ' GkIIp,D	ck( Zk, bk,p,D) IICkIIp,3D 

	

IIz1GkII1,p,D	K(a, bk,p, D) IICkIIl_1,pÔD	
(k = 1,..., n; 2 <p < oo)	(16) 

hold (cf. [12, 14, 15]). 
Suppose we have determined all n holomorphic functions Gk (k = 1,... , n) uniquely. 

We proceed to compute the required polyanalytic function 1 by expressing the holo-
morpbic functions v',, (p = 0,... ,n - 1) in terms of Gk. We shall make use of the 
following three facts: 

1. Derivatives of 4P with respect to x, y can easily be expressed by the holomorphic 
functions Gk. It follows from (12) that 

+ / 5	5 \ n-q-u-j / 5	5 \ q+v = 2q	+	 -	)	co,,(z) 

n-g-v-j g+v 

n-i	
d'°-' 

X	
(p	fi)!	dz' p cr+ 9 

-  Z q+v Z	c, 1-n	f -  
on SD (i.e. T  

2. Derivatives of 1' with respect to z, T can be expressed by the derivatives with 
respect to x, y, and hence in terms of Gk. Indeed, on SD we have 

/ 5	5 ...n-k / 5	5 k-j 
—2 t --- 1— +z— 1


	

5zh1cSi'j -	Sx	Sy)	'.Sx	Sy) 

= 2	(_1)qjq+P(n - k) (k i) 

q=O v0 
n-kk-j	 .	 (17) 

= 2''	(_1)qq+v (fl - k) (k i)i+vzi_flGq+v+j(z) 
q=O=O 

= 2'z'	
(fl k)	(1)v (k	)Gq++j(z)
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for n > k > j. 

3. The holomorphic functions	can be expressed by the derivatives of the poly-
analytic function 4 with respect to z and T. 

Thus

	

3n—I	an_i n—i 
= n—I E'7p(z) = (n 

P=O 

On the other hand, it follows from (17), with k = n and j = 1, that 

n—I 

	

= (2z)'	(_i)(	')G+ 1 (z)	on 3D. 
v=O 

Hence we may conclude that

n—I
I n - 

11  

1 

	

pn_i(z) = (
n	

(2z)' —n	
(_ J)" (

	 G,, +I 	on 3D. 
-i)! 

Next we have, on the one hand, 

	

3n_2	3n_2 

	

n-2 =	n-2 (n_22(Z) +1n_i(z)) 

= (n - 2)! cpn_2(z) + (n - 

On the other hand, we deduce from (17), with k = n and j = 2, that 

3n_2	 n-2-
22_n zi_ n	(_iY(	2 )a +2 (z)	on 3D. 

- 

So we can obtain for	the representation 

1 
cn_2(z)	( - 2)!

 I22_nZI_n n-2
	

(fl - 

L o	
2)G+2(z) - (n - i)!n_i(Z) 

n	 I = 

on 3D. 
Similarly we compute Pn3 1 ... , p i , c°o• Suppose we have computed 'Pn-i, 1Pn-2 

con-j--i. Then we compute	as 

3n—j	3n_j n—i	 n—i 

	

n—j = 49.n—j	Pcpp(z) = (71 —j)!çn_j(Z) +	 (z) 3n-j 

	

p=fl-,	 pn-j+1 

On the other hand, for k = n formula (17) yields 

v=O
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We thus arrive at the general representation 

________	 niyP 1 n_j(z)	
1	I2_nzi_n	(-1) 

(fl 
i) G+ (z) -	p(z)	

J

(n—j)!

p=n-j-f 1 

for (j = 1,... ,n). Hence all n holomorphic functions Wj (j = 0,... ,n -1) are 
uniquely determinable, and with them the polyanalytic function I as well. Furthermore, 
since ak,bk,ck E W1- . , ( (9D) (2 <p < ), we conclude that z'"Ck(z) € W1,(D) 
(cf. [1, 10, 12, 14, 15, 19, 20]). It thus follows from (12) that 

	

n-I	n-i	 n-a-i 
il_NC (I)	(fl 1)	

(j —a)! 1
	din-a-I	(t) € W1_,(aD) 

and, in particular, 

d"_a_I 
din-a-I (t) E W1_,(oD)	(j, =	.	- 1). 

Hence
-1 

dtn-1"°) E W1_1,9(ÔD)	(j = 0,1,...,n -1). 

It now follows from the properties of traces of functions that 

	

€ Wy, _ j ,p (ÔD) and	j, 1 € W,(D)	(j = l,...,n) 

and the estimates 

IIIIp,D	C1 (p, D) max IPckIIp,aD k 
IjIj,p,D	C2(p , D) max IIckIIIlPaD	

(j,k = 1,.. .,n;2 <p < co)	(18) 
k	P 

hold (cf. [1, 10, 12, 14, 15, 19, 20]). 

4. The generalized Riemann-Hilbert problem for equation (1) 

We now take up the following boundary value problem for the function w: 

ô'w	/	f am+k W 1)
on D 

Re{(ak+ibk)

w  an_l 
ôxn_kOyk_i ] (t) = ck( t) on ÔD	(k = 1,..., n)	(19) 

n m,k € No, m+k n,(0,0)(m,k) 54(0,n),n EN
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where ak,bk,ck E W1 _ * (aD) (2 < p < cc) are prescribed real-valued functions on 
OD with (ak + ibk )(t) 54 0 for all i E ÔD. 

It was shown earlier that for every polyanalytic function CF E W , (D) (2 <p < oo) 
there exists a unique solution w E Wn,p(D) to the partial differential equation (1). This 
solution is represented by (2). We shall now exploit the arbitrariness of the polyanalytic 
function CF to construct the solution of the boundary value problem (1), (19). For this 
purpose we shall write CF as

CF = CFc + CF(,h) 

where CF, CF W h) are solutions of the boundary value problems 

1 
Re I(ai +ib,) 

an-lk c 1(i) = c,(i) on
ôx2_)ôyJ_1 j 

Re [(ai + i	
an—i

b))	 CF(wh)] (t)	 (20) 
5xiay)

an-1	 1 

	

= —Re I(ai + ib)	 TO,,DF(.,W, {hmk})j(i) 

gW, h) ,) (t) on 

for  = 1,... ,n. Since F(Z,W,{hm,k}) E L(D) (2< p <cc), then TO ,,DF E Wn,p(D) 
(cf. [5, 6]). Moreover, 

-1 

ôxnôy	TO,n,DF(Z) 

	

n-k	k k-I 1	an_i = k-I	(fl	

)	

( i)$ (k	
) Ozn-n--10+$ TO,n,DF(Z) 

c,=O 

	

n-k	k-i 
= jk_i	(fl k)	

(_i)(k 1)T0+fl+I_n,n_a_DF(Z) 

	

a0	9=0 

E W1,(D), 

i.e. 9(w,h),j E W_1 , (aD) (2 < p < oo;j = 1,... ,n) (cf. [1, 10, 11, 12, 19, 20]). 
Polyanalytic functions which satisfy boundary conditions of the form (20) have been 

constructed earlier, and we deduce from there that CF, CF,h) E W , (D) (2 <p < oo) 
and, in particular, the estimates 

II CF (w,h)IIp,D :5 C(p, D) II g(,h)II,aD	C1 (p, D) I ITo ,n,DFIIi,p,D  

II CF (w,)IIk,p,D	C2(p,D) IITO,n,DFIIn+I_k,p,D	
(21 ) 

hold for k,j=1,...,n and 2<p<oc. 
We now define a mapping Q in the Banach space £(D) (2 < p < cc). For any 

tuple (w, {hm,k}) E £(D) we set 

(W, {Hm,k}) = Q(w, {hmk})
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where
W(z) =	(z) + (w,h)( Z ) + To,n,DF((,w), {hm,k(()})(z) 

Hm,k(Z) = 5zm8 ((z) + (w,h)(z)) + T_m,n_k,DF((, w 

n m, k E N0 , m + k n, (0, 0) 51 (m, k) 0 (0, n), n E N. 
The operator Q is uniquely defined, and it maps the Banach space £(D) (2 <p < oc) 
into itself. Moreover, the following result holds: 

Theorem 3. If (w, { hm,k }) is a fixed point of the operator Q, then w is the solution 
of the given differential equation (1) which also satisfies the boundary conditions (19). 

We next derive the conditions to be imposed in order that Q has a fixed point. Sup-
pose (W, {Hm,k}),(W, {Hm,k}) are the respective images of (w, {hm,k}), (ii, &,k 1) E

 £(D) (2 <p<oo). Ifweset 

= (w,h) -	 and	f = F(z,w, {hm , k}) - F(z,iii, {hm,k}), 

then
am+k 

W - W	+ To,n,Df,	Hmk - Hmk = 8zmak + T_m,n_k,DF


and 

7II	-	IIp,D 

<7(C i (p,D) lI T0 ,n,Dlll,p + I To,fl,DllP)lI flip, D 

< 
(L1 

max{ 
m
max ll hm,k - 'l m,kllp,D, 11 w WIIp,D} +k<n 

+L 2 max II hm,k - hmkIlPD)7(CI(P D) II T0,n,DII1,p + IlTonDIIP) m-fk=n 

<(C i (p, D) II T0,n,DIII,p + II T0,nDIIP)( L l + yL2)M(w, {hm,k}) - (ü, {hm,k})l. 

Similary we arrive at 

7 ll Hm,k - Hm,k II p,D

	

	(C2(P,D) II TO,n,Dlln_m_k,p + IIT_m,n_k,DIIP) 


x (L 1 + 7L2 ) (w, {h m,k }) - (ia, {hmk}) 

and
IIH	- 1 cI1p,D	(c3 (p, D) II TO, n,DIIi,p + IIT_O,n_s,DIIP) 

+ L2) 11(w, {hm,k})	(, J^m, k )) Jj c 
for 0 < m + k <n, a +,3 n and (a, fl) 0 (0, n). Consequently, on account of relations 
(8), we arrive at the estimate 

II(MT, {Hm,k}) - (W, {m,k})lIp	II( w , {hm,k}) - (ü, {hm,k })II	(22)
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where ( I-L i + L2)'c is the maximum of the three quantities 

7 (Ci(p,D) ii To,n,Dlll,p + liTon,Dllp) 

max {C2(p,D) iI TOn,Dlln_m_k+1,p + I1T_m,n_kDiip} m+k<n 

C3 (p, D) li To,n,Dill,p + 1I U D lip - 

If #c < 1, then the mapping Q is contractive in £(D) (2 <p < x) and it has therefore 
exactly one fixed element (w, {hm , k}) E £(D), by the Banach fixed point theorem. 

The contractiveness of Q imposes certain restrictions on the constants L 1 , L2 ,7 and 
the size of the domain D. Going through an argument similar to the one presented earlier 
for the case of the existence of a general solution, we can secure the contractiveness of 
Q, and hence the existence of a solution w E W , (D) (2 <p < ) of the boundary 
value problem posed. It is easy to establish that the solution is unique. 

Theorem 4. Under the assumptions(A1) - (A3), (15) and tc < 1 the general-
ized Riemann-Hlbert boundary value problem (1),(19) admits a unique solution w E 
W , (D) (2 <p < oo). 
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