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Abstract. We present in this paper a coincidence theory for maps with closed graph and maps 
with continuous selections. Our theory relies on a new fixed point theorem for maps with closed 
graph. In addition, new minimax theorems and variational inequalities are presented. 
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1. Introduction 

In [17] we established a general nonlinear alternative of Leray-Schauder type for multi-
valued condensing maps with closed graphs (i.e. condensing ACG maps). Maps of this 
type arise naturally when discussing differential and integral inclusions in abstract spaces 
(in particular, when the dimension of the space is infinite). Our paper will be divided 
into three main sections. In Section 2 we establish some new fixed point theorems 
for condensing ACG maps and these results will then be used in Section 3 to establish 
general coincidence theorems for ACG and CS maps; CS maps will be maps which have 
a continuous selection (these include the well known V maps [2]). Section 4 presents 
some applications; in particular, new minimax theorems and variational inequalities are 
obtained. 

For the remainder of this section we describe the maps which we will consider 
throughout this paper. In this paper 2E (here E is a Fréchet space) denotes the family 
of non-empty subsets of E and CD(E) denotes the family of non-empty, closed, acyclic 
(see [9]) subsets of E. Let X be a Hausdorff topological vector space and Y a Fréchet 
space. 

Definition 1.1. We say F E ACC(X, Y) if F: X - CD(Y) has closed graph. 

Remark 1.1. In this paper we only consider acyclic maps. However, it is worth 
remarking that a similar theory could be derived if the acyclic maps are replaced by 
the approximable [14] maps of Gorniewicz and Granas, or the admissible [15] maps of 
Gorniewicz, or indeed the admissible [19] maps of Park. Since only minor adjusments 
are needed in these cases we leave the details to the reader. 
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We now state the nonlinear alternative of Leray-Schauder type for ACG maps [17]. 
For convenience we discuss the case when our space E is a Banach space (the extension 
to the case when E is a Frchet space is immediate). 

Theorem 1.1. Let E be  Banach space with U a open, convex subset of E and 
xo e U. Suppose F E ACG(U, E) is a condensing map (see [ 12]) with F(U) a bounded 
set in E. Then either 
(Al) F has a fixed point in U 

or 
(A2) there exists u E ÔU and A E (0,1) with u E AF(u) + (1 - .X){xo}. 

Let Z and W be subsets of Hausdorif topological spaces E1 and E2 , respectively. 
Definition 1.2. We say F E CS(Z, W) if there exists a continuous selection (single-

valued) s: Z -* W of F. 

CS maps contain many well known maps in the literature (as we will now show). 
Recall [2] a map F: Z - W is said to be of type , and we write F E I*(Z , W), if 
W is convex (i.e. a convex subset of a Hausdorif topological vector space), F(x) has 
convex values for all x E Z, and there exists a selection B : Z -* W of F such that 
B(x) 0 for all x E Z and the fibres B'(y) = {z : y E B(z)} are open (in Z) for all 
Y E W. 

Remark 1.2. If A,B : Z -* W, then B is a selection of A if B(x) c A(x) for all 
x E Z. 

Example 1.1. If Z is paracompact, W is convex and F E cI*(ZW) then [2] 
F e CS(Z, W). 

Recently [5, 8] the concept of -V map was generalized. We say F E DKT(Z, W), if 
W is convex, and there exists a map B: Z -+ W with co(B(x)) c F(x) for all x E Z, 
B(x) 54 0 for each x E Z and the fibres B'(y) are open (in Z) for each y E W. 

Example 1.2. If Z is paracompact, W is convex and F E DKT(Z, W), then [8: 
Theorem 3.21 (or [5: Theorem 1]) F E CS(Z, W). 

A map F E H(Z, W) (due to Horvath [6, 7]) if W is a contractible space, and there 
exists a selection B: Z - W of F with B(x) 0 0 for all x E Z, B - 1 (y) is open for all 
y e W, and for any open set U of Z the set flCEUF(x) is empty or contractible. 

Example 1.3. If Z is compact, W is contractible and F E H(Z, W), then [7] 
F E CS(Z, W). 

A map F E D(Z, W) (due to Ding [4]) if W is a contractible space, F has the local 
intersection property (i.e. for each x E Z we have F(x) 54 0 and there exists an open 
neighborhood N(x) of x such that fl ZEN(Z) F( z ) 54 0), and for any open set U of Z the 
set fl XE UF(x) is empty or contractible. 

Example 1.4. If Z is compact, W is contractible and F E D(Z, W), then [4: pp. 
55 - 561 (note f o 0 is the continuous selection) implies F E CS(Z, W). 

Remark 1.3. In fact, it is easy to see that Example 1.4 is a consequence of Example 
1.3.
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Remark 1.4. Many other examples of CS maps could be given here, using for 
example Michael's selection theorem, the selection theorem of Horvath [8], or indeed 
more recent selection theorems in the literature. 

2. Fixed point theory 

In this section we present some fixed point results for ACC maps. These results will 
then be used in Sections 3 and 4. We will state and prove our results when E is a 
Banach space (the extension to the case when E is a Fréchet space is immediate). 

Theorem 2.1. Let E be a Banach space with Q a closed, convex subset of E. 
Suppose F e ACG(Q,Q) is condensing with F(Q) a bounded set in Q . Then F has a 
fixed point in Q. 

Proof. Let x0 E Q. From [9, 111, there exists a compact, convex set X of Q with 
xo e X and F : X ....* 2X In addition, the values of F are closed and acyclic and 
also Fix has closed graph. Now 11: p. 465] implies Fix is upper semicontinuous. 
Consequently, F : X —* CD(X) is upper semicontinuous and X is compact. Now [9: 
Theorem 1] guarantees that F has a fixed point in X I 

Next we obtain a fixed point theorem for non-selfmaps. 

Theorem 2.2. Let E be a Banach space with Q a closed, convex subset of E and 
0 E Q . Let r : E - Q be a continuous retraction with r(z) E aQ for z E E\Q (see 
Remark 2.1) and suppose G : Q 2E is such that C(Q) is a bounded set in E with 
Gr E ACG(E,E) and Gr a condensing map. In addition, suppose 

if {(x3 , .X)}. 1 is a sequence in OQ x [0,1] converging to (x, A) ) 
with x E AG(x) and 0	A < 1, then there exists joE {1,2.....}	(2.1) 
with {A3 G(x3 )} c Q for each j ^: jo	 J 

holds. Then G has a fixed point in Q 
Remark 2.1. To justify the existence of a continuous retraction r : E - Q with 

r(z) E OQ for z E E\Q see [12]. 

Remark 2.2. If G E ACG(Q, E) is a compact map, then G r E ACC(E, E) (also, 
G r is compact so condensing). We must show Cr has closed graph. Let (xn) be a 
sequence in E, (y) asequence in E with (Xn,yn) — ( X0, Yo) and Yn E Gr(r) for every 
n. Let z,, = r(xn),zo = r(xo) and note (Z,yn) —i (zo,yo) with y E G(z) for every 
n. The closedness of C implies yo E C(Zo), i.e. I/o E Gr(xo). Thus G  E ACG(E,E) 
[Alternatively, one can notice that since C is a compact map, then C: Q - CD(E) is 
upper semicontinuous [1: p. 465] and so Cr : E — CD(E) is upper semicontinuous; 
note we can only apply this argument if C is a compact map]. 

Remark 2.3. If E is a Hilbert space and C E ACG(Q, E) is condensing, then 
G  E ACG(E, E) is condensing if we take r to be the nearest point projection. To see 
this recall r is non-expansive so G  : E - CD(E) is a condensing map. Of course, this
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result also holds for certain convex sets in Banach spaces where there is a nearest point 
retraction that is non-expansive (or more generally 1-set contractive). 

Proof of Theorem 2.2. Let 

H = {x E E: x E Gr(x)}. 

Notice H 0 0 by Theorem 2.1. Also, H is closed. To see this let ( X n) be a sequence in 
H (i.e. x E Gr(xn)) with x,, —* x 0 e E. The closedness of Cr implies x 0 E Cr(so), 
i.e. x 0 E H. In fact, H is compact since H c Gr(H) and G  is condensing. It remains 
to show H fl Q 0 0. Suppose H fl Q = 0. Then there exists 6> 0 with dist(H, Q) > 6. 
Choose rn E {1,2,...} such that 1< 6rn. Fix i E {m,m+ 1,...}. Let 

U,	
{	 1• 

zJ 

where d is the metric associated with the Banach space E. Then H  t7 = 0. Now 
Theorem 1.1 (applied with G  for F and Uj for U) implies (since HflU1 = 0) that there 
exists (ye, A) E ôU1 x (0,1) with Yi E A,Gr(y1 ). Notice in particular since y, E ÔLT1 that 

	

{A1Cr(y1)} g Q	for each i E {m,nz + 1,...}.	 (2.2) 

Let
D= fx E	ACr(x) for some AE [0, ii}. 

Now D is closed. To see this let (Zn) be a sequence in D and (An) a sequence in [0, 1] 
with (x c , An) - (So, A 0 ). Without loss of generality assume An —' A 0 E (0, 1). Since 
5n E D, there exists Yn E Gr(xn) with 5n = Anyn. Now x, - so and Yn 
The closedness of Cr implies C r(xo) so x 0 E D [Alternatively, it is easy to see 
that R E x [0,1] —* CD(E), given by R(x,A) = A Cr(s), has closed graph so it is 
immediate that D is closed]. In fact, D is compact since 

D ç (Gr(D) U {o}). 

This together with d(y,,Q) = and 1,\ j 1 5 1 (for j E {ra,m + 1,...)) implies that we 
may assume without loss of generality that A, -.+ A* and y, - y E ÔQ. Also, since 
yj E A,Cr(y,) one has (since R given above has closed graph) that y E A*Cr(y*). 
Now A* 54 1 since H fl Q = 0. Thus 0 < A* < 1. But in this case (2.1), with x, = r(y,) 
and s =	= r(y*) , implies that there exists jo E {1,2.....} with {A,Gr(y)}	Q for 
each j	jo This contradicts (2.2). Thus H fl Q 0 0, i.e. there exists x E Q with
x E Cr(s) = C(s)I
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3. Coincidence theory 

Our first result generalizes some well known result in the literature (see [4: Theorem 1] 
and the references in 141). 

Theorem 3.1. Let E be a Banach space with Q a closed, convex subset of E and 
Y any subset of a Hausdorff topological vector space. Suppose G E CS(Q,Y) (and let 
t : Q -b Y be a continuous selection of G) and F E ACG(Y, Q) . Let J = F o t 
Q -+ 2Q be defined by J(x) = F o t(x) and suppose J is a condensing map with J(Q) 
a bounded set in Q. Then G and F- ' have a coincidence, i.e. there exists x 0 E Q 
with G(xo) fl F'(xo) 54 0 (i.e. there exists (x0 ,y0 ) E Q x Y with x0 € F(yo) and 
Yo € G(xo)). 

Proof. Notice (see Remark 2.2) that J € ACG(Q,Q). Apply Theorem 2.1 to 
deduce that there exists xo E Q with x 0 E Ft(xo). Thus x0 E F(yo) where yo t(xo) € 
G(xo), i.e. Yo E G(xo) flF1(xo)I 

We next obtain a generalization of Theorem 3.1 by using Theorem 2.2. 

Theorem 3.2. Let E be a Banach space, Q a closed, convex subset of E, 0 E Q 
and Y any subset of a Hausdorff topological vector space. Suppose C € CS(Q, Y) (and 
let t: ,Q-+Ybea continuous selection ofG) and F: y_2E Let J=Fot: Q 2 
be defined by J(x) = F o t(x) and suppose J(Q) is a bounded set in E. Let r : E - Q 
be a continuous retraction with r(z) € EIQ for z € E\Q and suppose Jr € ACG(E, E) 
is a condensing map. In addition, suppose 

if {(x,	is a sequence in c9Q x [0,1] converging to (x, A) 1 
with x € AJ(x) and 0< A <1, then there exists joE {1,2,...}	(3.1) 
with {A3 J(x3 )} c Q for each j ^! Jo	 J

holds. Then G and F-' have a coincidence. 

Proof. Apply Theorem 2.2 and deduce that there exists xo E Q with x 0 E Ft(xo)I 
Remark 3.1. In Theorems 3.1 and 3.2 it is possible to replace ACG maps with 

AP (see [14] for definition) maps or Ad (see [15]) maps. 

Theorem 3.3. Let E be a Banach space with Q and C closed, convex subsets of 
E. Suppose GE ACG(Q,C) and FE ACG(C,Q). Define the map 'F by 

'P(x,y)=F(y)xG(x)	for (x,y)€QxC 

and assume 'P : Q x C - 2QXC is a condensing map with 'I'(Q x C) a bounded set in 
Q x C. Then G and F-' have a coincidence, i.e. there exists (x 0 ,y0 ) € Q x C with 
I/o E G(xo) fl F(xo). 

Proof. Notice we have immediately that 'I' E ACG(Q x C, Q x C). Now apply 
Theorem 2.1 to deduce that there exists ( X0, Yo) E Q x C with (x0 , y0 ) E 'I'(xo,yo) I 

Remark 3.2. We could of course obtain a generalization of Theorem 3.3 if instead 
of Theorem 2.1 we use Theorem 2.2; we leave the details to the reader.
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4. Applications 

Iii this section we first establish some generalized quasi variational inequalities. Then 
we present new analytic alternatives and minimax inequalities. 

Our first three results improve results in [13] (in particular, Theorems 2.5 and 2.6 
there can be improved using the ideas in this section). 

Theorem 4.1. Let E be a Banach space with Q a closed, convex subset of E. 
Suppose the following conditions are satisfied: 

f: Q x Q -* IR is an upper semicontinuous function	 (4.1) 

G: Q — 2 Q has compact values	 (4.2) 

C: Q —*2Q is an upper semzcontinuous map	 (4.3) 

J the map M (marginal function), defined by 
M(x) = supY Ec( 1 )f(x , y) for x E Q, is lower semicontinuous 

and I the map , defined by (x) = {y E C(x): f(x,y) = M(x)} 
for x E Q, is condensing with '(Q) a bounded set in Q;	(4.5) 
also, (x) is acyclic for each x E Q. 

Then there exists z E Q with 

z E G(z)	and	f(z,z) = M(z) 

(i.e. there exists reQ with z E C(z) and f(z,y)	f(z,z) for ally e C(z)). 

Proof. Now since f is upper semicontinuous and C is upper semicontinuous with 
compact values, then [1: p. 4731 implies M is continuous. In addition, notice [1: p. 44] 
implies for each x E Q that (x) is non-empty and compact. This together with (4.5) 
implies 'I' : Q — CD(Q). Next we show that the graph of ' is closed. Let (x, y,,) be 
a sequence in graph ((D) with (x n ,yn ) — (x, y) in Q x Q . Then 

	

f (XI y) ^! limsup f(x,y) = urn sup M(x) = liminf M(x) = M(x).	(4.6) 

In addition, I/n C C(x) together with x - X, I/ -+ y and the fact that C is upper 
semicontinuous implies [20] that y E C(x). Thus y E C(x) and f(x, y) ^! M(x) = 
SUP ZEG(z) f(x, z). Consequently, f(x, y) = M(x) so (x, y) e graph(). Thus 1 : Q —p 

CD(Q) has closed graph and so 4 E ACC(Q, Q) . Now Theorem 2.1 implies has a 
fixed point z € Q, i.e. z E 4(z). That is z € C(z) and f(z,z) = M(z)I 

Theorem 4.2. Let E be a Hilbert space with Q a closed, convex subset of E and 
0 € Q. Suppose the following conditions are satisfied: 

f: Q x E —* JR is an upper seinicontinuous function	 (4.7)
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C: Q	2E has compact values	 (4.8) 
G: Q	2E is an upper semzcontinuous map	 (4.9) 

J the map M, defined by M(x) = supyEG(Z)f(x,y)	
410

for x € Q, is lower semicontinuous 

the map 4, defined by 4'(x) = {y € C(x) : f(x,y) = M(x)} 

for x € Q, is condensing with (Q) a bounded set in E;	(4.11)
also , cI(x) is acyclic for each x € Q 

and
if {(x, A)}. 1 is a sequence in c9Q x [0, 1] converging to (x, \) 

with x E )t4(x) and 0 < \ < 1, then there exists io E 11,2,...)	(4.12)
with {)(x,)) c Q for each j 2 io 

Then there exists z € Q with 

	

z € G(z)	and	f(z,z) = M(z). 

	

Proof. As in Theorem 4.1, M is continuous and in fact	€ ACG(Q,E). Let
r : E -* Q be the nearest point projection (note r is non-expansive). Then we have 
immediately that cJ r € ACG(E, E) and 4 r is a condensing map (see Remark 2.3). 
Apply Theorem 2.2 to deduce that 4 has a fixed point in Q  

Remark 4.1. There is an analogue of Theorem 4.2 in the case when E is a Banach 
space; we leave the details to the reader. 

Our next result replaces sup with inf in Theorem 4.1. 
Theorem 4.3. Let E be a Banach space with Q a closed, convex subset of E. 

Suppose the following conditions are satisfied: 

f: Q x Q - R is a continuous function (4.13) 

G: Q - 2' has compact values (4.14) 
C: Q - 2Q is a continuous map (4.15)

and
the map 'I', defined by 111 (x) = { y € G(x) f(x,y) = N(x)} for x € Q 
(here N(x) = inf f(x,z)), is condensing with '11(Q) a bounded set in Q; ( zEG(z)	 4.16) 
also, P(x) is acyclic for each x E Q. 

Then there exists w € Q with 

w€C(w)	and	f(w,w)=N(w) 

(i.e. there exists w € Q with w € C(w) and f(w,y) 2 f(w,w) for ally € C(w)) 
Proof. Now El: pp. 472 - 473] imply N is continuous. As in Theorem 4.1 it is 

easy to check that 11': Q - CD(Q) and in fact 'P € ACG(Q, Q) (note in (4.6) we-have 
equality now since f is continuous). Now Theorem 2.1 implies that there exists w € Q 
with w € '11(w)I
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Remark 4.2. We could also obtain a generalization of Theorem 4.3 if we use 
Theorem 2.2 instead of Theorem 2.1; we leave the details to the reader. 

Remark 4.3. The results in [ 3, 16] could also be easily improved using the ideas 
above. 

Next we establish some new analytic alternatives. These improve results in the 
literature [2, 10, 14, 15]. 

Theorem 4.4. Let E be a Banach space with Q a closed, convex subset of E and 
Y any subset of a Hausdorff topological vector space. Suppose F E ACG(Y, Q) and 
f: QxY—R. FixaER and let 

G(x) = {y E Y: f(x,y) > a) for x EQ. 

Suppose the following condition is satisfied: 

if G(x) 0 for every x E Q, then C E CS(Q, Y) 

(and let t Q - Y be a continuous selection of G)	
(4.17)

and J = F o t : Q - 2 (defined by J(x) = F o t(x)) 

is a condensing map with J(Q) a bounded set in Q. 

Then either 
(Al) there exists zo E Q with f(zo,y) < a for ally E Y (i.e. there exists zo E Q with 

G(zo) = 0) 
01 

(A2) there exists (x0 ,y0 ) E Q x V with x0 E F(yo) and f(xo,yo) > a 
occurs. 

Remark 4.4. For maps (and a similar comment applies for DKT and H maps) 
it is possible to replace "if C(x) 54 0 for every r E Q, then G E *(Qy) in (4.17) 
by "if B(x) 54 0 for every x E Q, then G E *(Q, Y)" (here B is the selection of G as 
described in the definition of 4 * maps). Of course, statement (Al) would now become 
"there exists zo E Q with B(zo) = 0". A similar remark will apply for Theorem 4.5. 

Remark 4.5. Conditions so that "if G(x) 54 0 for every x E Q, then G E *(Q, Y)" 
may be found in [15] (conditions of this type are standard in the literature, see [2, 10]). 

Proof of Theorem 4.4. Either G(x) 54 0 for every x E Q or not. If G(x) 0 for 
every x E Q, then C E CS(Q,Y) and Theorem 3.1 implies that there exists ( X 0, Yo) E 
Q x Y with x 0 E F(yo) and Yo E C(xo) (i.e. x 0 E F(yo) and f(xo,yo) > a) so statement 
(A2) occurs. If G(x) 54 0 for every x E Q does not hold, then there exists z0 E Q with 
G(zo) = 0, i.e. there exists Zo E Q with f(zo,y) a for all y E Y so statement (Al) 
occurs U 

Theorem 4.5. Let E be a Hubert space, Q a closed, convex subset of E, 0 E Q 
and Y any subset of a Hausdorff topological vector space. Suppose F E ACG(Y, E) and 
f: QxY—R. FixaERand let 

G(x)={YEY: f(x,y)>a} for xEQ.
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Suppose the following condition is satisfied: 

if G(x) 54 0 for every x E Q, then GE CS(Q,Y) 
(and let t : Q -* Y be a continuous selection of G) 
with J=Foi:Q_,2E (defined byJ(x)_—Fot(x)) 
a condensing map , J(Q) a bounded set in E,	 (4.18)
and if {(x,, A)} 1 is a sequence in c9Q x [0, 11 converging to (x, A) 
with x  AJ(x) and 0< A <1, then there exists joE {1,2.....} 
with {A,J(x,)} ç Q for each j > io• 

Then either 
(Al) there exists zO E 	with f(zo,y) a for ally E Y (i.e. there exists z0 E 	with

G(zo) = 0) 
or 
(A2) there exists (x 0 , yo) E Q x Y with xo E F(yo) and f(xo,yo) > a 

occurs. 

Proof. If G(x) 54 0 for every x E Q does not hold, then as in Theorem 4.4 statement 
(Al) occurs. It remains to consider the case G(x) 54 0 for every x E Q . Then C E 
CS(Q, Y). Let r: E - Q be the nearest point projection. We have immediately that 
Jr E ACG(E, E) and Jr is a condensing map. Now Theorem 3.2 implies that there 
exists (xo,y0 ) E Q x Y with x0 E F(yo) and Yo E G(xo), i.e. statement (A2) occurs I 

Theorem 4.6. Let E be a Banach space with Q and C closed, convex subsets of 
E. Let f,g: Q x C - R with 

9(x, Y) <f(x,y) for all (x,y) E 	x C.	 (4.19)

Fix a E R and let
G(x) {y E C: g(x, y) > a} for r E Q 

and
F(y){xEQ: f(x,y)<a} for yEC. 

Suppose the following condition is satisfied: 

if G(x) 54 0 for every x E Q and F(y) 54 0 for every y E C, 
then GE ACG(Q,C) and FE ACG(C,Q) with 'I': Q x C .' 2QXC 

(defined by W(x,y) = F(y) x G(x)) a condensing map 

and 'Je(Q x C) is a bounded set in Q x C. 

Then either 
(Al) there exists z0 E Q with g(zo,y) a for ally E C 

or
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(A2) there exists w 0 E C with f(x,wo) 2 a for all x E Q 
occurs. 

Remark 4.6. Conditions so that "if G(x) 0 for every x E Q, then G E ACG(Q, 
C)" may be found in [14]. 

Proof of Theorem 4.6. There are three cases to consider. 
Case (i): G(x) 54 0 for every x E Q and F(y) 0 0 for every y E C. In this case 

Theorem 3.3 implies that there exists ( X 0, Yo) E Q x C with yo E G(xo) and Zo E F(yo), 
i.e. f(xo,yo) <a < g(xo,yo). This contradicts (4.19). 

Case (ii): G(x) 0 0 for every x E Q does not hold. Then there exists zo E Q with 
G(zo) = 0, i.e. statement (Al) occurs. 

Case (iii): F(y) 36 0 for every y E C does not hold. Then there exists wO E C with 
F(wo) = 0, i.e. statement (A2) occurs I 

Finally, in this section we obtain two new minimax theorems. 

Theorem 4.7. Let E be a Banach space with Q a closed, convex subset of E and 
Y any subset of a Hausdorff topological vector space. Suppose F E ACG(Y, Q) and 
f: QxY-4R. Define for each aER 

Ga(X) {y E Y: f(x,y) >a} for x EQ. 

Suppose the following condition is satisfied: 

for any a E R, if G,(x) 54 0 for every x E Q, then G. E CS(Q, Y) 

(and let t 4 , : Q - Y be a continuous selection of G 0 ) -	
(4.21) 

and J=FOta Q_2Q (defined byJ,(x) =Fot0(x)) 

is a condensing map with Ja(Q) a bounded set in Q. 

Then
inf sup f(x,y) <sup {f(x,y): x  Q,y E Y,x E F(y)j.	(4.22) 
xEQ YEY 

Remark 4.7. Other results could be obtained if we use Remark 4.4. 

Proof of Theorem 4.7. Let 

a = sup {f(x,y): x  Q,y E Y,x E F(y)}. 

The case a = oo is trivial, so from now on we assume a < oo. Apply Theorem 4.4. 
Notice statement (A2) cannot occur (see the definition of a). Then there exists zO E Q 
with f(zo,y) <a for ally E Y. That is 5UPYEY f(zo,y) <a so (4.22) follows I 

Theorem 4.8. Let E be a Hilbert space, Q a closed, convex subset of E, 0 E Q 
and Y any subset of a Hausdorff topological vector space. Suppose F E ACC(Y, E) and 
f: Q x Y - R. Define for each a E R, 

G,,,(x)={yEY:f(x,y)>a}	for xeQ.
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Suppose the following condition is satisfied: 

for any a E R, if G0 (x) 54 0 for every x E Q, then C 0 E CS(Q, Y) 
(and let t0 : Q -, Y be a continuous selection of C0) 
with J0 = Fot 0 : Q -p 2 E(defined by J0 (x) = Foi0(x)) 
a condensing map , J0 (Q) a bounded set in E,	 (4.23)
and if {(x,, A)} 1 is a sequence in ÔQ x [0,1] converging *to (x, A) 
with x E AJ0(x) and 0 < A < 1, then there exists jo E {1, 2.....} 
with {A,J0 (x,)} c Q for each .y 2 jo 

Then
inf sup f(x,y)< sup {f(x,y): XEQ,YEY,XEF(y)}. 
xEQ yEY 

Proof. Let
a = sup {f(x, y) : x  Q,yE Y,xE F(y)} 

and assume without loss of generality that a < oo. Apply Theorem 4.5 so there exists 
z0 E  with f(zo,y) a for ally E Y  
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