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Global Bifurcation Results 
fora 

Semilinear Biharmonic Equation on all of IR' 
N. M. Stavrakakis and N. Zographopoulos 

Abstract. We prove existence of positive solutions for the semilinear problem 

(—tt) 2 u Ag(x)f(u),	u(x) > 0 (x E RN),	lim1xi_+cou(x) = 0 

under the main hypothesis N > 4 and g E L"" 4 (R"). First, we employ classical spectral 
analysis for the existence of a simple positive principal cigenvalue for the linearized problem. 
Next, we prove the existence of a global continuum of positive solutions for the problem above, 
branching out from the first eigenvalue of the differential equation in the case that 1(u) = u. 
This fact is achieved by applying standard local and global bifurcation theory. It was possible 
to carry out these methods by working between certain equivalent weighted and homogeneous 
Sobolev spaces. 
Keywords: Biharmonic equations, nonlinear eigenvaluc problems, local and global bifurcation 

theory, maximum principle, indefinite weights 
AMS subject classification: 35 B 32, 35 B 40, 35 J 40, 35 J 65, 35 J 70, 35 H 12 

1. Introduction 
In this paper we study existence and properties of solutions of the semilinear biharmonic 
eigenvalue problem

(—A)2 u = Ag(x)f(u)	(x E RN)	 (1.1)A 
u(x) > 0 (x E RN), lim11_.+u(x) = 0,	 (1.2) 

where A E R and N > 4. The general hypotheses, which will be assumed throughout 
the paper, are the following ones: 

() g is a smooth function, at least of type C10(Rv), for some a E (0, 1), such that 
g E L'14 (R N ) fl L°°(R V ) and g(x) > 0. 

(F) f : R [0, co) is a smooth function such that 1(0) = 0, f'(0) > 0 and f(u) > 0 
for all u 0 0. Also, f',f" E Lm and there is k >0 such that lf( s )I < k*IsI for 
all s E R. 
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The literature for the problem in the bounded domain case is quite complete. For 
example, among others, we mention the papers of Ph. Clement et al. [6], R. Dalmasso 
[8], D. E. Edmunds et al. [10] and Y.-G. Gu [16). We also mention the existence and 
non-existence results in the papers of E. Mitidieri [20], L. Peletier and R. C. A. M. van 
der Vorst [23], and P. Pucci and J. Serrin [25] on the subject. 

In general, in the unbounded domain case the problem becomes more complicate; 
among other reasons 

(i) compact operators are not expected and 
(ii) it is not clear a priori in which function spaces solutions of (1.1) A might lie. 

In general, we need spaces which will control the asymptotic behavior of the solutions 
(and their derivatives) at infinity and such spaces, as we will see in our case, are weighted 
or/and homogeneous Sobolev spaces. 

Recently many authors have studied nonlinear polyharmonic problems in unbounded 
domains. We refer to more representative of them in the problem: in the radial case 
the works of Y. Furusho and T. Kusano [13), T. Kusano et al. [17], E. S. Noussair et 
al. [21], and C. A. Swanson and L. S. Yu [32, 331, in the non-radial sub- (super-) linear 
case the works of W. Allegretto and L. S. Yu [2], F. Bernis [3], C. A. Swanson [31] as 
well as the results on the one-dimensional problem by L. Peletier et al. [24]. Also, the 
fixed point theory is used in several cases as in the paper of T. Kusano et al. (18] (see 
also the references therein). Maximum principle results for the biharmonic equation 
in unbounded domains are obtained recently by N. M. Stavrakakis and G. Sweers [30). 
Uniqueness questions for the radial case are studied recently in the work of C. A. Swan-
son [32]. Let also notice that the study in the above mentioned papers [2, 3, 9, 11, 21, 
31 - 33] is based in homogeneous Sobolev spaces of type similar to the one used here. 

In all these papers the weight function is non-negative. To our knowledge the 
only works, were the eigenvalue problem for the linear polyharmonic problem with 
indefinite weight function is discussed, are those published by J. Fleckinger and her 
co-workers (see, for example, A. Djellit [9], J. Fleckinger and M. L. Lapidus [11] and 
the references therein). However, their weight function is of a certain fractional type 
at infinity. Finally, for more general weights of L'°-type, in the semilinear case for the 
Laplace operator we refer to K. J. Brown and N. M. Stavrakakis [4] and for a quasilinear 
eigenvalue problem to J. Fleckinger et al. [12]. 

To be able to carry out our study and especially to apply the bifurcation methods, 
we introduce certain equivalent weighted and homogeneous Sobolev spaces. This is done 
in Section 2. We construct two function spaces which will form the base to develop our 
theory for both the linear and semilinear problem. These spaces are, on the one hand, 
the Hilbert space V2 , i.e. the closure of the C0(RV)functions with respect to the norm 

aI 
IItIII2 

= I JR1 
ILuI2dx - -gIudx}	2 N 

for an appropriate positive constant a to be chosen later and, on the other hand, the 
standard "energy" space V22 , i.e. the closure of the C 0(R)functions with respect to 
the norm

11U112v2,2 
= 
jdx.
 

u2
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Also, we briefly state results, to be used later, concerning the existence, regularity and 
the asymptotic behavior of the first positive principal eigenvalue A, of the linearized 
problem (2.1)A. 

In Section 3, we study the existence of a local continuum of positive solutions 
branching out from the first eigenvalue of the semilinear biharmonic problem (1.1) A -
(1.2). 

Finally, we get the global character of this continuum in Section 4. This fact is 
achieved by applying standard global bifurcation theory in the homogeneous Sobolev 
space V2'2. 

Notation: We denote by B(z) the open ball with center z E R'V and radius r. 
For simplicity we use the symbol 11 - 11 p for the norm 1j ' and LP for the space 
LP(R") (1 p oo). The end of proofs is marked by the sign I 

2. Space setting - the linearized problem 

In this section we shall discuss the existence of non-zero simple principal eigenvalues for 
the linearized biharmonic problem 

= Ag(x)u	(x E R")	 (2.1)A 
U(X) > 0 (x E RN), lim11_+,,,u(x) = 0.	 (2.2) 

To simplify notation but without loss of generality we shall assume that f'(0) = 1, so 
that equation (2.1) A becomes the linearization of equation (1.1) A . The proofs of all 
results presented in this section are given in detail by L. Peletier and N. M. Stavrakakis 
in [22]. Also, the main results where announced in [28]. 

The natural space setting for the eigenfunctions of this problem, as we show next, 
will be the space V22(R1v), i.e. the closure of the C0(RN)functions with respect to 
the norm

11U11V2.2 = (fR1 
I AU12dx) 1/2 

It can be shown (see, for example, in C. A. Swanson [30]) that 

V2 '2 = { E L(R''): IV 2 uI E L2 (R"4) 

and that there exists K > 0 such that for all u E V2'2 

2N < K 11U11D2,2. 

So E)2,2 (R') is a reflexive Banach space. 
Our approach is based on the following inequality of generalized Poincaré type.
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Lemma 2.1. Suppose g E L"/4 (R"). Then there exists a 1/KIIgI 4 > 0 such 
that

I k u 1
2dx > a I l g l u2dx, 

JIRN	 JffN 

for all u E C00o(R1'). 

Thus if g E LN/4(RJ'') and a > 0 is as in Lemma 2.1, we can define an inner product 
onC(R")by	

a 
(u,v)2 = j LuLvdx - - IR iv

 guvdx. 
JRN  

Next we define V2 to be the completion of C(RN ) with respect to the above 
product. The space V2 depends on the function g; it is natural to expect that V2 grows 
as II becomes smaller. However, under condition () we prove that V2 is independent 
of this function. In fact, the space V2 is characterized by the following 

Lemma 2.2. Suppose g E L' n/4 ( R N ) . Then V2 = V2'2. 

Thus we may henceforth suppose that lll • 1112, the norm in V2 , coincides with the 
norm in V2 ' 2 and that the inner product in V2 is given by 

(u, V) = f1N LuLvdx. 

Proceeding as for example in [4), we define a bilinear form by 

	

0(u,v) = IR N 
guvdx	(u,v E V2). 

By the fact that V2 9 L7i(RN) we obtain that 3 is bounded in V2 . Hence by the Riesz 
Representation Theorem we can define a bounded linear operator M such that 

13(u , V) = (Mu, V)	(u,v E V2). 

It is standard to check the following result. 

Lemma 2.3. Suppose g E L N1 4 (llU") . Then the operator Mis selfadjoint and 
compact. 

By means of classical spectral methods we have proved the existence, positivity and 
principality of the first eigenvalue. These results are given by the following 

Theorem 2.4. Equation (2.1) A admits a positive first eigenvalue A 1 given by 

Al.	 2

l = "'(Mu,u)=l U 

The associated eigenfunciion 0 belongs to E)2,2 (R'). 

For the weak formulation of the problem the following result is necessary.
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Theorem 2.5. Suppose that g satisfies hypothesis () and u E V2 ' 2 . Then there 
exists a sequence {R} C R with R —+ooas n - +00 such that 

3Vu	 f	aL hm	Vu—dS 0 urn u—dS= 0. 
n—oo JaBR*	an -	°°JaBR 

Having in mind the application of bifurcation theory to the study of problem (2. 1),\, 
information concerning the dimension of the eigenspace associated to the principal eigen-
values of the linearized biharmonic problem (2.1),, are of basic importance. The main 
results in this direction, needed in the rest of the paper, can be stated as follows. 

Theorem 2.6. Let g satisfy hypothesis (a). Then we have: 
(i) The cigenspace corresponding to the principal eigenvalue A is of dimension 1. 

(ii) A, is the only cigenvalue of (2.1).\ to which a positive eigenfunction corresponds. 

The proof of this theorem is long and technical. We again refer to [21) for the 
detailed proof. 

Remark 2.7. The algebraic and the geometric multiplicities of the eigenvalues of 
the problem under discussion are equal since the operator M is compact and selfadjoint 
(see Lemma 2.3.) (see E. Zeidler [34]). 

3. Local bifurcation results 
In this section we shall obtain results on the existence of solutions for the nonlinear 
problem (1.1),,-(1.2), close to (A ' , 0), by considering local bifurcation of solutions from 
the zero solution. First, we state a general asymptotic and regularity result for the 
solutions of this problem. Using Agmon's theorem (see [1: Theorem 6.11) and Serrin's 
estimates from [27) (see also [15: Theorems 8.17 and 9.19]) we can prove the L'-character 
and the C4 "-regularity as well as the asymptotic properties of the solutions of (1.1),,. 
For these technics we refer also to S. Luckhaus [19]. The main results of this and the 
next section were announced in the paper [29]. 

Lemma 3.1. Suppose that u E V2 '2 is a solution of equation (1.1),,. Then: 
(i) u is a classical solution, i.e. u E C4 "(R'). Moreover, for any x0 E R' and 

p> 1 we have
lUll W 4 .P(B i (zo)) 15 C II u II..ri.4 ,	 ( 3.1) 

where C = C(xo,A,N,m, li g li, 111u1112). 
(ii) Du(x) decay uniformly to zero as lxi - + 00, for all lfii 3. 
Proof. For the detailed proof we refer to [2: Lemma 511 
To apply local bifurcation theory we introduce the nonlinear operator F: R x V2 

V2 through the relation 

(P(A,u),ç6) = IRN
zueç6dx - AJgf(u)çdx	 (3.2), 

for all 46 E V2 , where (.,.) denotes the inner product in V2'2
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Lemma 3.2. The operator P is well defined by (3.2). 

Proof. For fixed u E V2 ' 2 we define the functional 

F(0) =iuAq5dx - 
fRN 

gf(u)cbdx, .fM N

for E V2 ' 2 . Since f satisfies hypothesis (.T), then f E L 77---4 (R N ) and so for some 
constant K1

F()I	II Lu II2 IIII2 + IAI 11911N14 Ilf( u )lI ZN N-4 
K1 (ll1.u ll2 + JAI 1191lN14 llf(tL )ll..) Ik'1lV2 

So F is a bounded linear functional. Hence by the Riesz Representation Theorem we 
may define P as in (3.2) U 

Lemma 3.3. The operator P defined by (3.2) is continuous and for N = 5,6,... , 12 
Fréchet differentiable with continuous Fréchet derivatives given by 

(P(A,u)cb) =  IRN	- IRN 
gf'(u)bdx, 

(PA(A,U),) = 
IRN 

gf(u)dx, 

(PA(A,u)cb) = 
-LN 

gf'(u)bdx, 

for all 0,b E V2'2. 

Proof. For completeness we juct sketch the proof. 
(i) To prove the continuity of P, we have 

(P(A, u) - P(/L, w), 

= (P(.X, u) - P(A, w), v) + (P(A, w) - P(i, w), v) 

= fN( - Lw)Lvdx 

+ A	g(f(u) - f(w))v dx + IA - If
N 

gf(w)v dx 

{i + A sup II9IlN1 4 llf'(u + rw )Iloo}Il u - WIIvZ,2lIVIlv2,2 
rE(O,1) 

+ c I A - Al IglIN/41iw11v2,ZIIvIIDZ.2. 

So  is continuous at any (A, u) E R x V2'2 

(ii) Let u, h E V2 '2 and 

P(A, u, h) = P(.X, u + h) - P(A, u) - PU (A, u)h.
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Then we have

II P ( , u + h) - P(A,u) - Pu(A,tz)hII,2,2 

51AI If g(f(u +h)—f(u) —f'(u)h)P(A,u,h)dx JN
I.,? 111	''). u, h)II, .)	sup	u + th)II,. IIgIIqh 12P( ii	up II 

IE(O,1) 

wherep= 2N and= 1,i.e. q - 
- 2N Hence for N = 5,6,..., 12 we get that 

q> q- and so g E L(1RN). Hence we have 

II P ( A , u + ii) - P,u) - Pu(.\,u)hII22
2 < A sup IIf"(u + th)II,,c, IIII IIIZI1V2,2 

iE(O,1) 

= o(IIhIIv2,2). 

So P is Fréchet differentiable in R x V2'2 

(iii) Let u, v, 0 E V2 ' 2 . Then we have 

- Pu(p,v)h,çb) 

(P(A,u)h - P(,v)h,) + (P(,v)h - P(z,v)h, 

:5 JAI JR_ g(f'(u) —f'(v))hqdx + IA—NI 
URN 

gf'(v)dx 

.X	sup IIf"(tu + (1 - t)v)II	II9II	lu - qI.p2.2 ll h lIv 2 . 2 IIlID2.2 
LE(O,1) 

+ IA - Ju l I19IlN14 Ilf'(v )lI	JjhjJp llII, 

where p = N4 and q =	for N = 5,6,... , 12. Hence we have that P, is continuous

in R x V2 '2 I 

Next we have the following local result. 

Theorem 3.4 (Local Bifurcation). There exist,, co > 0 and continuous functions 
(— e0 , 0 ) - R and ' : ( —Eo,Eo) - []1 such that ij(0) = A l , i'(0) = 0 and every 

non-trivial solution of P(A, u) = 0 in a small neighbourhood of (A,, 0) is of the form 
= (77(e),eçb+et,b(e)). 

Proof. We shall prove that the operator P satisfies all the hypotheses of the local 
bifurcation theorem in M. Crandall and P. Rabinowitz [7]. 

(i) The operator P(A 1 , 0) is linear, compact, selfadjoint and P(A 1 , 0)0 = 0 if and 
only if 0 € V2 is a solution of equation (2.1) A,. Therefore N(P(A 1 , 0)) = [] where 
is the principal eigenfunction of (2.1) A1 . So tI' € R(P(A 1 , 0)) if and only if there exists 
w € V22 (R lv ) and (0,4) = (Po(A1,0)w,q). But selfadjointness of P(A 1 ,0) implies 
that

(P(Aj,0)w,çt) = (w,P(Aj,O)) = (w,0) = 0.
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Hence R(P(A 1 ,0)) = 
(ii) Let w E N(P(A 1 ,0)) fl R(P(A1,0)). Then P(A i3 O)w = 0 and there exists 

E D22(RN) such that (P(A1,0)b,w) = (w,w). Again selfadjointness implies that 
0 = (0, PA i3O)w) = (w, w). So

1/2 
(w,w) = HwIIv2,2 = (JRI ii)	=0. 

Then using Lemma 3.11(u) we obtain that to 0 in RN, i.e. 

N(P(A 1 , 0)) fl R(PA 1 , 0)) = {0}. 

Also, it is easy to see that 

N(P(A 1 , 0)) R(P(A 1 ) 0)) = V22(RN). 

(iii) Finally, we have that PA( A l , 0)	R(P(A 1 , 0)) (transversality condition) since 

(PAu(Al,0)ç,q5) = IR N g02 dx <0 

and the proof is completed I 

The last statement of this section describes the sign of solutions of equation (1.1)A 
close to the bifurcation point. 

Theorem 3.5. Let (A,, u,) be solutions of equation (1.1) A given by Theorem 3.4, 
E > 0. Then there exists e 0 > 0 such that ue > 0 in R' whenever 0 < C <CO. 

Proof. From the above theorem we have that u = c+Eb(c) satisfies (1.1),, where 
A = 17(e). We have

ij('700gf(E 
+ COW)(_)2,(e) =	 - 

C 

which implies that

p(x)O(e) = (77(E) - Ai)gq+ 

where p(x) = ij(e)g [i + i f"((e, x))u] and e(e, x) lies between 0 and u(x). Whenever 
0 <	e, it is easy to prove that, for some positive constant C, IUe(x)I	C for all

x E R N , and so p is uniformly bounded (i.e. I p I I. < +oo). Moreover, 

II4II 2N < 1 g 100 11011 2N < 1 g 100 hhchIv, 

(_)25(E) -

 

and

	

11goU,11 21 < u g h00 hhhh	11-jhIU	21	Ihhh00 IIhh	IhtL ehhV2 . -	 N-4
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If N = 5,6,7 and =then s > N. Hence by Lemma 3.1 with p = = 
there exists a constant K > 0 (independent of e) such that 

	

sup ltl'(e)(x)i 5 I(llgll,,{(ij (e) —	)11011v2 + illi	11-J V2 
lzl:5Ro 

Since O(x) > 0 for all x in the compact set BR,, = {x E RN : lxi < Rol, it follows 
that there exists Cl > 0 such that (x) + '(e)(x) > 0 for all x R0 provided that 
0 < e < ei . Suppose 0 < e < El and that ue(xo) < 0 for some xo e RN. We put 
equation (1.1) A in form of the system

=	) 

	

—Ave = .\g(x)f(u) J
	 (3.3) 

where we know by Lemma 3.1 that limizi...+ue(x) = lim Ixl .... + ve(x ) = 0. Since 
g(x)f(u) 2 0 in RN x R+, for any x 0 E R' we may apply the maximum principle on 
the ball Br(x0 ), for r large enough to obtain v, (xo) 2 infixir vc (x). Letting r . +oo 
we get that —Au > 0 so u 2 0. Therefore applying the maximum principle again (see 
[15: Theorem 8.181) on the non-trivial solution ue we get that u > 0. 

Since lim 11 ..u(x) = 0, it follows that there must exist x 1 , Ixil > R, such that 
tie attains a negative minimum at x 1 . But then 

—Au(x 1 ) = Xg(x i )f(u(x i )) >0, 

which is impossible. Hence u(x) > 0 for all x E R" whenever 0 < C < C ! I 

4. Global continuation of the branch 

To discuss the global nature of the continuum of solutions bifurcating from	, 0), we 
write the operator P in the form P(A,u) = u — .XR(u), where 

	

(R(u),) =j.g(x)f(u(x))(x)dx	( ED22) 

Also, we assume that R satisfies the relation 

R(u) = Mu + fl(u), 

where M denotes the same linear operator as in Section 2, i.e.


	

(MU, V) = JRN guvdx	(u,v ED2'2) 

and ?1(u) = O (ili u lli) as lil u l112 —* 0, for some 3> 1. 
It is shown in Section 2 that A 1 is an eigenvalue of L and by Theorem 2.6 the 

eigenspace associated with A 1 has algebraic and geometric (see Remark 2.7) multiplicity 
1. Also, as f is a Lipschitz function, it can be proved by modifying slightly the proof of 
Lemma 2.3 that R is a compact operator (see in [221). Thus we can apply the classical 
global bifurcation theorem (see P. Rabinowitz [261) to obtain the following
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Theoprem 4.1. There exists a continuum C of non-zero solutions of problem 
(1.1).\ —(1.2) bifurcating from ( A 1 ,0), which is either 

(i) unbounded 
or

(ii) contains a point (A,0), where A 54 A, is an eigenvalue of (2.1).\. 
Moreover, C has a connected subset C+ C C - {(i(e), ue) - :^ e < 0} for some 

e > 0 such that C+ also satisfies one of the above alternatives. Close to the bifurcation 
point ( A ' , 0), C+ consists of the curve e - (t(e), u) (0 < e c0). 

The following lemmas describe the nature of solutions lying on C+. 
Lemma 4.2. There exists A. > 0 such that A > A. whenever (A, u) € C+. 
Proof. Suppose u E V2 is a solution of problem (1.1) A —(1.2). Multiplying equation 

(1.1) A by u, integrating over 11R, letting R - oo and using Theorem 2.5 we obtain 

IIIuIII= 
fRIV  

VuI2dx  
f 

gf(u)udx 
N 

< Ak'914 I1U
II2N	(where If(u)I < Vu for all u) 

N-4 

< AK1 11911N14 IIIuII, 
where K, is a constant and the result follows. Therefore we may get that A. = 
11K, 11911N/4 >01 

In order to proceed further we must investigate the L'-closeness of solutions which 
are close in R x V2 ' 2 ; since V2 ' 2 does not embed into L(RN), this is not immediately 
obvious. Actually, we can prove 

Lemma 4.3. Let N <8. Then there exist constants K, > 0 and K2 > 0 such that 
IuA(x) - u,1(x)I < K, JA - p 1 + K2II uA - U ,jIID 2 , 2 ,	for all x E RN, 

whenever p is close to A and uA,u e V2 ' 2 are solutions of equations (1.1) A and (1. 1),, 
respectively. 

Proof. Indeed, it is easy to see that 
- u) = g{Af(u A ) - "f(u)}. 

Hence by Lemma 3.1 there exists C > 0 such that 
IuA(x) - u(x)1 

sup U),(J) - u(y)I 
yEB1(x) 

^ C j11 U A - U IIL,(B 2 (r)) + II [Af(u A ) - Pf(u$L)JIIP} 

(where p = and by Lemma 3.1 2p =	> N, so N < 8) 

^ C1111 u - u III2 + C2 IIgII oo {II(A - p)f(U A)IIp + II p If(uA) - f(u))II} 

C1 III u - U jIII2 + C2I A - I 19100 hIIu hhI2 + C3110 I 19100 III U A - Ug1112,
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where C1, C2 and C3 are constants and the result follows I 

Theorem 4.4. C+ contains no points of the form (A, 0), where A 54 Al. 

Proof. Suppose that there exists (A, u) E C such that u(x 0 ) < 0 for some x0 E RN. 
By Theorem 3.5, u(x) > 0 for all x e RN whenever (A,u) E C is close to (A1,0). 
Moreover, by Lemma 4.3, points in C+ which are close in R x V must also be close in 
R x Loo (R N ) . Hence there must exist (Ao,uo) E C+ such that uo(x) 2 0 for all x E R' 
but u Q (Zuj) 0 for some x 0 E RN , and in any neighbourhood of (Ao,uo) we can find 
a point (A, fl) € C with u(x) < 0 for some x E RN . Let B denote any open ball 
containing x 0 . Then 

	

—Luo(x) - Ag(x) 
f(uo(x)) uo(x) = 0	on B 

-

	

u0(x) 2 0	on aB. J 

It follows from the Serrin Maximum principle (see [14]) that u 0 0 on B. Hence u 0 0 
on Rh'. 

Thus we can construct a sequence {(A,u)} c C+ such that u(x) > 0 for all 
n E N and x E R h', u, -+ 0 in VE and A -+ A 0 . Let v,, = Since u, = 
AM(u) + AR(u) we have

vn = AM(v)
hun liv 

Since M is compact, there exists a subsequence of {v} (which we again denote by 
{v}) such that {M(v)} is convergent. Since 0, {v} is convergent to 
v0 , say, and vo = A 0 M(vo). Since v,, 2 0 for all n E N, v0 2 0. Since by Theorem 2.6 A1 
is the only positive eigenvalue corresponding to a positive eigenfunction, it follows that 
A 1 = A0 . Thus (A 0 , uo) = ( A 1 , 0) and this contradicts the fact that every neighbourhood 
of (Ao,uo) must contain a solution (A, ü) E C+ with ü(x) <0, for some x E RN . Hence 
u(x) >0 for all x  RN whenever (A, u) E C I 

Corollary 4.5. C+ must connect ( A 1 ,0) to cc in R x V2'2. 
The next theorem shows that C+ cannot become unbounded at a finite value of A; 

in order to obtain this result we must impose some further restrictions on I and g. 

Theorem 4.6. Suppose that, for some y E (0, 1), f(s)	isi at infinity and g E 
LP(R N ) , where r < 2N-(+i)(N-4) Then there exists a continuous function K: : R+ _9 

R such that 11iUlhI2	AC(A) whenever (A,u) E C. 

Proof. As in Lemma 4.2 we obtain that if u satisfies problem (1.1)A - (1.2), then 

l u hhi = A fRN 
gf(u)udx <AK IR N i g l u ' dx < AKhlghh1hiuhik 
  P	(1+y)q 

where q issuch that I + = 1. We set (1 +7)q = N4 Then we get =q	2N 

< 2. We obtain li u il	AKiIghi'lIuhI. So 11u112	AKlhghI	AC(A) and the proof 
is complete U
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As an immediate consequence of the previous results we can give the following 
complete description of the continuum C+. 

Theorem 4.7 (Global Bifurcation). Suppose that N = 5,6,7, for some	6 
(0, 1), Sf(s)

	

	Is at infinity and g > 0, g E LP(RN) n L00(RN) where 1 < p <

Then there exists a continuum C+ c IR x V22 of solutions of problem 

(1.1),, —(1.2) bifurcating from the zero solution at ( A 1 ,0) such that: 
(1) If (A, u) E C, then A > A > 0, u E L°° and u(x) > 0 for all x E RN 

(II) {A : (A, u) E C for some u 6 D 2 ' 2 1 D (Ai,00l. 
In particular, problem (1.1) A —(1.2) has a non-trivial solution u E V 22 such that u(x) > 
0 for all x 6 R' whenever A> A1. 

Remark 4.7. The restriction on the dimension seems to be relared, via the Sobolev 
embeddings, to the certain technique used. For example, in the case of the Laplacian 
problem the authors of the work [4] have proved that the restriction on the dimen-
sion appearing there, based on the bifurcation technique, may be removed by an other 
method (super- and sub-solutions) as it is proved in the work [5]. However, in the work 
[5] we got a general existence result, instead of the more geometric inside in the problem 
we gained by applying bifurcation methods. We guess that the dimension restriction is 
the price we have to pay for the geometric clarity of the solution branches. 
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