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Global Bifurcation Results
for a
Semilinear Biharmonic Equation on all of IR

N. M. Stavrakakis and N. Zographopoulos

Abstract. We prove existence of positive solutions for the semilinear problem

(—A)u = Ag(z)f(u),  u(@)>0 (z€RY),  limz—ioou(z) =0

under the main hypothesis N > 4 and g € LN“(RN). First, we employ classical spectral
analysis for the existence of a simple positive principal eigenvalue for the linearized problem.
Next, we prove the existence of a global continuum of positive solutions for the problem above,
branching out from the first eigenvalue of the differential equation in the case that f(u) = u.
This fact is achieved by applying standard local and global bifurcation theory. It was possible
to carry out these methods by working between certain equivalent weighted and homogeneous
Sobolev spaces. .
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1. Introduction

In this paper we study existence and properties of solutions of the semilinear biharmonic
eigenvalue problem

(=A)u = Ag(z)f(u)  (z € RY) (1.1)x
u(z) >0 (z € RM), lim, |_.+°°u(.1:) =0, (1.2)

where A € R and N > 4. The general hypotheses, which will be assumed throughout
the paper, are the following ones: .

(@) g is a smooth function, at least of type C: °’(IRN) for some a € (0, 1), such that
g € LVA(RM) 0 L=(R) and g(z) 2 0.

(F) f: R+ [0,00) is a smooth function such that f(0) = 0, f(0) > 0 and f(u) > 0
for all u # 0. Also, f', f" € L™ and there is k* > 0 such that |f(s)] < k*|s| for
all s € R.
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The literature for the problem in the bounded domain case is quite complete. For
example, among others, we mention the papers of Ph. Clément et al. [6], R. Dalmasso
(8], D. E. Edmunds et al. [10] and Y.-G. Gu [16]. We also mention the existence and
non-existence results in the papers of E. Mitidieri [20], L. Peletier and R. C. A. M. van
der Vorst {23], and P. Pucci and J. Serrin [25] on the subject.

In general, in the unbounded domain case the problem becomes more complicate;
among other reasons

(i) compact operators are not expected and
(i) it is not clear a priori in which function spaces solutions of (1.1)x might lie.

In general, we need spaces which will control the asymptotic behavior of the solutions
(and their derivatives) at infinity and such spaces, as we will see in our case, are weighted
or/and homogeneous Sobolev spaces.

Recently many authors have studied nonlinear polyharmonic problems in unbounded
domains. We refer to more representative of them in the problem: in the radial case
the works of Y. Furusho and T. Kusano (13], T. Kusano et al. [17], E. S. Noussair et
al. [21], and C. A. Swanson and L. S. Yu [32, 33], in the non-radial sub- (super-) linear
case the works of W. Allegretto and L. S. Yu 2], F. Bernis [3], C. A. Swanson [31] as
well as the results on the one-dimensional problem by L. Peletier et al. [24]. Also, the
fixed point theory is used in several cases as in the paper of T. Kusano et al. [18] (see
also the references therein). Maximum principle results for the biharmonic equation
in unbounded domains are obtained recently by N. M. Stavrakakis and G. Sweers [30].
Uniqueness questions for the radial case are studied recently in the work of C. A. Swan-
son [32]. Let also notice that the study in the above mentioned papers (2, 3, 9, 11, 21,
31 - 33] is based in homogeneous Sobolev spaces of type similar to the one used here.

In all these papers the weight function is non-negative. To our knowledge the
only works, were the eigenvalue problem for the linear polyharmonic problem with
indefinite weight function is discussed, are those published by J. Fleckinger and her
co-workers (see, for example, A. Djellit (9], J. Fleckinger and M. L. Lapidus [11] and
the references therein). However, their weight function is of a certain fractional type
at infinity. Finally, for more general weights of L”-type, in the semilinear case for the
Laplace operator we refer to K. J. Brown and N. M. Stavrakakis [4] and for a quasilinear
eigenvalue problem to J. Fleckinger et al. [12].

To be able to carry out our study and especially to apply the bifurcation methods,
we introduce certain equivalent weighted and homogeneous Sobolev spaces. This is done
in Section 2. We construct two function spaces which will form the base to develop our
theory for both the linear and semilinear problem. These spaces are, on the one hand,
the Hilbert space Vs, i.e. the closure of the C§°(R™)-functions with respect to the norm

..
e = { [ | 1aufiaz - § [ olupaz}
RN RN

for an appropriate positive constant a to be chosen later and, on the other hand, the
standard “energy” space D?:2, i.e. the closure of the C§°(R)-functions with respect to
the norm

el Byes = /R |Aufdz.
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Also, we briefly state results, to be used later, concerning the existence, regularity and
the asymptotic behavior of the first positive principal eigenvalue A; of the linearized
problem (2.1),.

In Section 3, we study the existence of a local continuum of positive solutions

branching out from the first eigenvalue of the semilinear biharmonic problem (1.1)j-
(1.2).

Finally, we get the global character of this continuum in Section 4. This fact is
achieved by applying standard global bifurcation theory in the homogeneous Sobolev
space D?2.

Notation: We denote by B,(z) the open ball with center 2 € R" and radius r.
For simplicity we use the symbol || - ||, for the norm || - || ) and L? for the space
LP(RVN) (1 < p < o0). The end of proofs is marked by the sign B

2. Space setting - the linearized problem

In this section we shall discuss the existence of non-zero simple principal eigenvalues for
the linearized biharmonic problem

(—=A)u = Ag(z)u (z € RM) (2.1),
u(z) >0 (z € RY), limp—toou(z) = 0. (2.2)
To simplify notation but without loss of generality we shall assume that f'(0) = 1, so
that equation (2.1)x becomes the linearization of equation (1.1)x. The proofs of all

results presented in this section are given in detail by L. Peletier and N. M. Stavrakakis
in [22]. Also, the main results where announced in [28].

The natural space setting for the eigenfunctions of this problem, as we show next,
will be the space D?2(RV), i.e. the closure of the C§°(RN)-functions with respect to

the norm
1/2
llullpa: = (/ |Au|2dz) .
RN
It can be shown (see, for example, in C. A. Swanson [30]) that
D = {u e LRV |V2u| € L’(RN)}

and that there exists K > 0 such that for all u € D??

lull g, < K lfullpes

So D??(R¥) is a reflexive Banach space.

Our approach is based on the following inequality of generalized Poincaré type.
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Lemma 2.1. Suppose g € LN/4(RN). Then there ezists a = 1/K||g||1/2 > 0 such

N/4
that .
/ Aufdz > a / 9] [uPdz,
RN RN

for all u € C(RY).

Thus if g € LN/4(RN) and @ > 0 is as in Lemma 2.1, we can define an inner product
on CP(RN) by

(u,v)2 = AulAvdzr - g/ guvdz.
RN 2 Jry

Next we define V, to be the completion of C§°(RN) with respect to the above
product. The space V, depends on the function g; it is natural to expect that V, grows
as |g| becomes smaller. However, under condition (G) we prove that V, is independent
of this function. In fact, the space V; is characterized by the following

Lemma 2.2. Suppose g € LN/4(RYN). Then V, = D2,

Thus we may henceforth suppose that ||| - |||z, the norm in V,, coincides with the
norm in D% and that the inner product in V;, is given by

(u,v)=/ Aulvdz.
RN

Proceeding as for example in [4], we define a bilinear form by
Bu,v) = / guvdz (u,v € V).
RN

By the fact that V, C L¥-%(RV) we obtain that 8 is bounded in V,. Hence by the Riesz
Representation Theorem we can-define a bounded linear operator M such that

Blu,v) = (Mu,v) (u,v € V).

It is standard to check the following result. .

Lemma 2.3. Suppose g € LN/4(RN). Then the operator M -is selfadjoint and
compact. )

By means of classical spectral methods we have proved the existence, positivity and
principality of the first eigenvalue. These results are given by the following

Theorem 2.4. Equation (2.1)) admits a positive first eigenvalue A, given by
AL = inf(Mu,u)=l”u”2’D’-"

The associated eigenfunction ¢ belongs to D2(RN).

For the weak formulation of the problem the following result is necessary.
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Theorem 2.5. Suppose that g satisfies hypothesis (G) and u € D*2. Then there
ezists a sequence {R.} C R with R, — 00 as n — 400 such that
lim Vuaavu dS=0= lim w28 45 — o

n—oo 383;. n n-—o00 aBR., an

Having in mind the application of bifurcation theory to the study of problem (2.1),,
information concerning the dimension of the eigenspace associated to the principal eigen-
values of the linearized biharmonic problem (2.1), are of basic importance. The main
results in this direction, needed in the rest of the paper, can be stated as follows.

Theorem 2.6. Let g satisfy hypothesis (G). Then we have:

(i) The eigenspace corresponding to the principal eigenvalue )\, is of dimension 1.

(ii) A; 1s the only eigenvalue of (2.1)x to which a positive eigenfunction corresponds.

The proof of this theorem is long and technical. We again refer to [21] for the
detailed proof.

Remark 2.7. The algebraic and the geometric multiplicities of the eigenvalues of
the problem under discussion are equal since the operator M is compact and selfadjoint
(see Lemma 2.3.) (see E. Zeidler (34]).

3. Local bifurcation results

In this section we shall obtain results on the existence of solutions for the nonlinear
problem (1.1)x-(1.2), close to (A1,0), by considering local bifurcation of solutions from
the zero solution. First, we state a general asymptotic and regularity result for the
solutions of this problem. Using Agmon’s theorem (see [1: Theorem 6.1]) and Serrin’s
estimates from [27] (see also [15: Theorems 8.17 and 9.19}) we can prove the L?-character
and the Cfo’f-regularity as well as the asymptotic properties of the solutions of (1.1)y.
For these technics we refer also to S. Luckhaus [19]. The main results of this and the
next section were announced in the paper [29].
Lemma 3.1. Suppose that u € D¥? is a solution of equation (1.1)x. Then:

(i) u is a classical solution, i.e. u € Cfo’g(lRN). Moreover, for any zo € RN and
p > 1 we have

B < C , 3.1
llullweraizon < Cllull g o (3.1)
where C = C(z0, A, N,m, ||gllco, |lu]l|2)-

(ii) DPu(z) decay uniformly to zero as |z| — 400, for all |B] < 3.

Proof. For the detailed proof we refer to [2: Lemma 5] i

To apply local bifurcation theory we introduce the nonlinear operator P : R x V; —
V, through the relation

(P(A\u),¢) = /RN Aul¢dz — '\/w 9f(u)pdz (3.2),

for all ¢ € V,, where (-,-) denotes the inner product in D?2.
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Lemma 3.2. The opefator P is well defined by (3.2).
Proof. For fixed u € D?? we define the functional

F(¢) = /RN AulA¢dz — /\/RN gf(u)¢dz,

for ¢ € D*?. Since f satisfies hypothesis (F), then f € L’;’—V_‘(RN) and so for some
constant K, '

IF(&)l < |Aullz [1Ag]lz + 1Al Igllnya 1f ()] go, [161] ga,
< Ky ([1aullz + (M lglinga 1)l ga )1,

So F is a bounded linear functional. Hence by the Riesz Representation Theorem we
may define P as in (3.2)

Lemma 3.3. The operator P defined by (3.2) is continuvous and for N = 5,6,...,12
Fréchet differentiable with continuous Fréchet derivatives given by

(Pu(A u)g,¢) = /L;N ApAYdz — /\/RN gf'(u)dy dz,
(A, 8) = - [ af(wods,
(Puhui) == [ af (v,

for all ¢,%4 € D2,

Proof.. For completeness we juct sketch the proof.

(i) To prove the continuity of P, we have

(P(/\, u) — Py, w), v)

= (P(A\,u) — P(\,w),v) + (P(A\,w) — P(u,w),v)

= }/ (Au — Aw)Avdz
RN

3| [ o) - s

-l ‘/R of(wyv dz

<{1+% sup lollgallf' o+ 7)ol = wlipasllolipn:
re(0,1

+ clA = plliglinsallwllpz.2|lvlipz.2.

So P is continuous at any (A, u) € R x D*2.
(i1) Let u,h € D*? and

P(Au,h) = PO\ u+ h) — P(A\u) — Py(A, u)h.
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Then we have
IPOyu + B) = PO ) = Pu(A, 2)h .
< | [, 9070+ B) = Sa) = F@8) PO u, Ry

<Al S(up.)llf"(u+th)lloollyllqIlhllf,IIP(/\,u,h)IIp,
t€(0,1

where p = ,3—1_\/4 and;ll--i-%: l,1e. ¢= lg_l_VN. Hence for N = 5,6,...,12 we get that

q> % and so g € LY(R"). Hence we have

[P(Aw + k) = PO, u) = Pu(A, 0}k 520
<Al sup 15" (u + th)lloo llglly IRl 2.2
te(0,1)
= o(||hllp22).

So P is Fréchet differentiable in R x D?:2.
(ii1) Let u,v, ¢ € D*2. Then we have

'(Pu(’\,u)h - Pﬂ(/‘av)h’a ¢>|
< |<P,,(,\, w)h = Pu(A, 0)h, 8) + (Pu(, 0)h — Py(pt, v)h, ¢>|
[ 9@ = £@)hods| + 12— ‘ [ 98 @pds
RN RN
<Al teS(l;pl) 1" (tu + (1 = ))lloo lgllq It = gllp2.2 ||R]|D2.2 || ]| D22

+ 1A = wlllgllvza 1 @)oo 1A 11411,

<Al

where p = 13—11'4 and ¢ = % for N = 5,6,...,12. Hence we have that P, is continuous
inR x D2 1

Next we have the following local result.

Theorem 3.4 (Local Bifurcation). There ezists g9 > 0 and continuous functions
n: (—€o,0) = R and ¥ : (—co,€0) — [$]* such that n(0) = XAy, ¥(0) = 0 and every
non-trivial solution of P(A,u) = 0 in a small neighbourhood of (A\;,0) is of the form
(Aeyue) = (n(e), € + ex(e)).

Proof. We shall prove that the operator P satisfies all the hypotheses of the local
bifurcation theorem in M. Crandall and P. Rabinowitz (7).

(i) The operator Py(A1,0) is linear, compact, selfadjoint and P,(\;,0)¢ = 0 if and
only if ¢ € V2 is a solution of equation (2.1),. Therefore N(P,();,0)) = [¢] where ¢
is the principal eigenfunction of (2.1)x,. So ¥ € R(P,()1,0)) if and only if there exists
w € D*?(RY) and (¢, ¢) = (Pu()1,0)w,¢). But selfadjointness of Py(A1,0) implies
that

(Pu(/\l,())w, ¢) = (vau(’\l’O)d’) = (w,O) =0.
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Hence R(Py,(A,,0)) = [¢]*.

(ii) Let w € N(Py(A1,0)) N R(Py(A1,0)). Then P,(A;,0)w = 0 and there exists
¥ € D**(R") such that (P,(A;,0)%,w) = (w,w). Again selfadjointness implies that
0 = (¥, Pu(A1,0)w) = {w,w). So

1/2
(w,w) = {jw]|p22 = (/ |Aw|? d:r:) =0.
RN

Then using Lemma 3.1/(3i) we obtain that w =0 in RV, i.e.
N(Pu(A1,0)) N R(Py(M\,0)) = {0}.
Also, it is easy to see that
N(Py(A1,0)) ® R(Pu(A1,0)) = D*(RY).

(iii) Finally, we have that Pyy(A1,0)¢ € R(Py(A1,0)) (transversality condition) since

(Pru(A1,0)8, 8) = — / g8%dz < 0
RN

and the proof is completed i

The last statement of this section describes the sign of solutions of equation (1.1)x
close to the bifurcation point.

Theorem 3.5. Let ()., u.) be solutions of equation (1.1)) given by Theorem 3.4,
€ > 0. Then there exists €g > 0 such that u. > 0 in RN whenever 0 < ¢ < €g.

Proof. From the above theorem we have that u, = e¢+ey(e) satisfies (1.1)) where
= n(e). We have

fled +ep(e))
£

(—A)*(e) = n(e)g A9,

which implies that
' 1
(=A)"%(e) = p(2)i(e) = (n(e) = M)gd + 5n(e)gdf" (€(e,2))ue,
where p(z) = n(e)g[1 + 3 f"(£(e, z))uc] and €(e, z) lies between 0 and u.(z). Whenever
0 < € < o, it is easy to prove that, for some positive constant C, |u.(z)| < C for all

z € RY, and so p is uniformly bounded (i.e. ||p|loo < +00). Moreover,

9811 g, < llglloo 1611 32, < ligllon 1911y,

and
“gd’ue”ﬁ’_"—‘ < “g”oo“‘ﬁ”oo”ue”ﬁf_‘ < lglloo [1#]loo ”ue“Vz-
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IfN=5,67and § = ,31:'4, then s > N. Hence by Lemma 3.1 with p = § = 2N
there exists a constant K > 0 (independent of ¢) such that

o [¥(e)(@)l < Kllglloo{(n(e) = AIIBlIv, + lI8]leo lluellv, }-

Since ¢(z) > 0 for all z in the compact set Bg, = {z € RV : |z| < Ry}, it follows
that there exists £, > 0 such that ¢(z) + ¥(e)(z) > 0 for all z < Ry provided that
0 < e < eée;. Suppose 0 < ¢ < €; and that u.(z¢) < 0 for some zy € RY. We put
equation (1.1), in form of the system '

Ot = ve, } (3.3)
— Av, = Ag(z)(ue)

where we know by Lemma 3.1 that lim|z| 4o ue(z) = lim|zj4o0ve(z) = 0. Since
g(z)f(u) > 0 in RN x R¥, for any zo € RN we may apply the maximum principle on
the ball B;(zp), for r large enough to obtain v.(zo) > inf|;|=, ve(z). Letting r — +oco
we get that —Au > 0 so u, > 0. Therefore applying the maximum principle again (see
(15: Theorem 8.18]) on the non-trivial solution u, we get that u, > 0.

Since lim|z|—oo ue(z) = 0, it follows that there must exist z,, |z;| > R, such that
u. attains a negative minimum at z,. But then

—Aug(z) = Ag(z1) fue(21)) > 0,

which is impossible. Hence u.(z) > 0 for all z € R whenever 0 < e <¢;, B

4. Global continuation of the branch

To discuss the global nature of the continuum of solutions bifurcating from (A;,0), we
write the operator P in the form P(A,u) = u — AR(u), where

(R4 = [ o@fuE)4@E (8 D)
Also, we assume that R satisfies the relation
R(u) = Mu + H(u),

where M denotes the same linear operator as in Section 2, i.e.
(Mu,v) = / guvdz (u,v € D*?)
RN

and H(u) = O(|||u|||5) as ||[u]|]2 — 0, for some 8 > 1.

It is shown in Section 2 that A; is an eigenvalue of L and by Theorem 2.6 the
eigenspace associated with A, has algebraic and geometric (see Remark 2.7) multiplicity
1. Also, as f is a Lipschitz function, it can be proved by modifying slightly the proof of
Lemma 2.3 that R is a compact operator (see in {22]). Thus we can apply the classical
global bifurcation theorem (see P. Rabinowitz [26]) to obtain the following -
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Theoprem 4.1. There ezists a continuum C of non-zero solutions of problem
(1.1)x = (1.2) bifurcating from (A;,0), which is either

(i) unbounded
or

(ii) contains a point (X,0), where A # A, is an eigenvalue of (2.1)x.

, Moreover, C has a connected subset C* C C — {(n(e),u.) : —¢o < € < 0} for some
€0 > 0 such that C* also satisfies one of the above alternatives. Close to the bifurcation
point (A1,0), C* consists of the curve & — (n(€),uc) (0 < € < &o).

The following lemmas describe the nature of solutions lying on C*.
Lemma 4.2. There ezists \s > 0 such that A > A, whenever (A\,u) € C*.

Proof. Suppose u € V; is a solution of problem (1.1), —(1.2). Multiplying equation
(1.1)x by u, integrating over Bp, letting R — oo and using Theorem 2.5 we obtain

Ml = / Vul?dz
[RN

= ,\/ g9f(u)udz
RN
< A9l ||u,||;3,_~4_4 (where |f(u)| < k*u for all u)

< AKlgllvya i3,

where K, is a constant and the result follows. Therefore we may get that A\, =
1/Ki|lgllna >00 :

In order to proceed further we must investigate the L™-closeness of solutions which
are close in R x D?2; since D*? does not embed into L®(RM), this is not immediately
obvious. Actually, we can prove

Lemma 4.3. Let N < 8. Then there ezist constants K; > 0 and K, > 0 such that
lua(z) — uu(z)] < Ki|A = p| + Ka|lux — uy|lpz2,  for all z € RV,

whenever p 1s close to A and ux,u, € D?? are solutions of equations (1.1)x and (1.1),,,
respectively.

Proof. Indeed, it is easy to see that
(=AY (ux —uu) = g{Af(ua) — pf(uu)}.
Hence by Lemma 3.1 there exists C > 0 such that
lua(z) — uu(z)]

< sup J|ua(y) — uu(y)l
yEB,(z)

< C{llus = wille, (Bagen + llg [Af(a) = ()]l }
(where p = ;—i and by Lemma 3.1 2p = N‘_fct > N, so N< 8)

< Cilllus = walllz + Callglloo {1 = W)l + il f3) — ezl )

< Cilllua = wallla + C2A = plllglloo Tualllz + Cslul llglloo Illur — wplllz,
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where C;, C2 and Cj3 are constants and the result follows il
Theorem 4.4. Ct contains no points of the form (),0), where A # A;.

Proof. Suppose that there exists (A, u) € C* such that u(zo) < 0 for some zo € RV.
By Theorem 3.5, u(z) > 0 for all z € RN whenever (A\,u) € C* is close to (A;,0).
Moreover, by Lemma 4.3, points in C* which are close in R X V must also be close in
R x L(R"). Hence there must exist (Ag,uo) € C* such that uo(z) > 0forall z € RN
but ug(zo) = 0 for some zo € RV, and in any neighbourhood of (Ao, %) we can find
a point (:\,ﬁ) € Ct with 4(z) < 0 for some z € RY. Let B denote any open ball
containing z¢. Then

ug(z)

—Aug(z) — /\g(z)Muo(z) =0 on B }
7 o ug(z) > 0 on 0B.

It follows from the Serrin Maximiim principle (see [14]) that up = 0 on B. Hence uo =0
on RV,

Thus we can construct a sequence {(An,un)} € C* such that un(z) > 0 for all
n€ Nand z € RV, u, — 0in Ve and A\, — Ao. Let v, = m;":m; Since u, =
AnM(un) + AnH(uy,) we have

H(un)

Un = AnM(vp) + An o1
(on) + ATl

Since M is compact, there exists a subsequence of {vn} (which we again denote by
{vn}) such that {M(v,)} is convergent. Since lim, oo Tﬁ%:ILII): = 0, {vn} is convergent to
vg, say, and vp = AoM(vp). Since v, > 0 for all n € N, vy > 0. Since by Theorem 2.6 A,
is the only positive eigenvalue corresponding to a positive eigenfunction, it follows that
A1 = Ao. Thus (Ao, %0) = (A1,0) and this contradicts the fact that every neighbourhood

of (Ao, uo) must contain a solution (A, @) € C* with i(z) < 0, for some z € RN. Hence
u(z) > 0 for all z € RN whenever (A,u) €eCt B

Corollary 4.5. C* must connect (A\1,0) to oo in R x D2,

The next theorem shows that C* cannot become unbounded at a finite value of A;
in order to obtain this result we must impose some further restrictions on f and g.

Theorem 4.6. Suppose that, for some v € (0,1), f(s) ~ |s|” at infinity and g €
LP(RN), where p < W%I)(NTG Then there ezists a continuous function K : Rt —
R+ such that |||ull|z € K()) whenever (A, u) € C*.

Proof. Asin Lemma 4.2 we obtain that if u satisfies problem (1.1)x — (1.2), then
2= A/ dz < u’/ 47dg < AK||g|b/PIlull]
Il - gf(v)udz < AK - lglu’*7dz < AK|lgllp"?lull(13 )

where ¢ is'such that %+% =1. We set (1+7)g = 2. Then we get % = Qilzl(‘,\fv——‘l =

B < 2. We obtain ||u||3 < /\Kllgll;/”nullf. So |jullz < /\K||g||;+" = IC(x\) and the proof
is complete B
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As an immediate consequence of the previous results we can give the following
complete description of the continuum C*.

Theorem 4.7 (Global Bifurcation). Suppose that N = 5,6,7, for some v €
(0,1), Sf(s) ~ |s|” at infinity and ¢ > 0, g € LP(RY) N L®(RYN), where 1 < p <
5N—(+)(N_4)' Then there ezists a continuum Ct C R x D22 of solutions of problem
(1.1)a — (1.2) bifurcating from the zero solution at (A1,0) such that:

(i) If (A, u) €CH, then A> A, >0, u€ L™ and u(z) >0 for all z € RV,
(ii) {A: (A u) €C* for some u € D22} D (A1, 00).

In particular, problem (1.1)x ~(1.2) has a non-trivial solution u € D*? such that u(z) >
0 for all z € RN whenever A > A,.

Remark 4.7. The restriction on the dimension seems to be relared, via the Sobolev
embeddings, to the certain technique used. For example, in the case of the Laplacian
problem the authors of the work [4] have proved that the restriction on the dimen-
sion appearing there, based on the bifurcation technique, may be removed by an other
method (super- and sub-solutions) as it is proved in the work [5]. However, in the work
(5] we got a general existence result, instead of the more geometric inside in the problem
we gained by applying bifurcation methods. We guess that the dimension restriction is
the price we have to pay for the geometric clarity of the solution branches.
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