A New Minimal Point Theorem in Product Spaces

A. Göpfert, Chr. Tammer and C. Zàlinescu

Abstract. We derive a minimal point theorem for a subset *A* in a cone in product spaces under a weak assumption concerning the boundedness of the considered set *A.* Using this result we improve two vectorial variants of Ekeland's variational principle. Finally, a new A. Göpfert, Chr. Tammer and C. Zălinescu

Abstract. We derive a minimal point theorem for a subset *A* in a cone in product

under a weak assumption concerning the boundedness of the considered set *A*. Usi

result we impr

AMS **subject classification:** 49J40, 90C29, 46A40, 90C26

Assume that (X, d) is a complete metric space, Y is a separated locally convex space, *Y*^{\star} is its topological dual, $K \subset Y$ is a convex cone, i.e. $K + K \subset K$ and $[0, \infty) \cdot K \subset K$,

$$
K^+ = \{ y^* \in Y^* : \langle y, y^* \rangle \ge 0 \text{ for all } y \in K \}
$$

is the dual cone of *K* and

$$
K^{\#} = \{y^* \in Y^* : \langle y, y^* \rangle > 0 \text{ for all } y \in K \setminus \{0\} \}.
$$

In this note we suppose that *K* is pointed, i.e. $K \cap (-K) = \{0\}$. The cone *K* determines an order relation on *Y*, denoted in the sequel by \leq_K ; so, for $y_1, y_2 \in Y$, $y_1 \leq_K y_2$ if $y_2 - y_1 \in K$. It is well known that " \leq_K " is reflexive, transitive and antisymmetric. Let $k^0 \in K \setminus \{0\}$; using the element k^0 we introduce an order relation on $X \times Y$, denoted by " \preceq_{k^0} ", in the following manner: In this note we suppose that *K* is pointed, i.e. $K \cap (-K) = \{0\}$. The cor

an order relation on *Y*, denoted in the sequel by \leq_K ; so, for $y_1, y_2 \in$
 $y_2 - y_1 \in K$. It is well known that " \leq_K " is reflexive, transit

$$
(x_1,y_1) \preceq_{k^0} (x_2,y_2)
$$
 iff $y_1 + k^0 d(x_1,x_2) \leq_K y_2$.

Note that \mathcal{L}_{k^0} is reflexive, transitive and antisymmetric. That is, our notations are those of [3].

The essential idea for the derivation of a minimal point theorem (cf. 12, 8]) in general product spaces $X \times Y$, as well as of the vectorial Ekeland principle, consists in including the ordering cone $K \subset Y$ in a "larger" cone $B \subset Y$: $K \setminus \{0\} \subset \text{int } B$. We will use *B* to define a suitable functional $z_B : Y \to \mathbb{R}$. Moreover, we will replace the usual boundedness condition of the projection $P_Y A$ of A onto Y by a weaker one. $\mathbf{A}^k \in K \setminus \{0\}$; using the element k^0 we introduce an order relation on $X \times Y$, den
by " \preceq_{k^0} ", in the following manner:
 $(x_1, y_1) \preceq_{k^0} (x_2, y_2)$ iff $y_1 + k^0 d(x_1, x_2) \preceq_{K} y_2$.
Note that " \preceq_{k^0}

ISSN 0232-2064 / \$ 2.50 © Heldermann Verlag Berlin

Chr. Tammer: Dept. Math. & Inform. Univ., D-06099 Halle

C. Zălinescu: Fac. Math. Univ. "Al. I. Cuza", 6600 Iași, Romania

Theorem 1. Assume that there exists a proper convex cone $B \subset Y$ such that $K \setminus \{0\} \subset \text{int } B$. Suppose that the set $A \subset X \times Y$ satisfies the condition

(H1) for every \preceq_{k^0} -decreasing sequence $((x_n,y_n)) \subset A$ with $x_n \to x \in X$ there exists $y \in Y$ such that $(x, y) \in A$ and $(x, y) \preceq_{k^{0}} (x_n, y_n)$ for every $n \in \mathbb{N}$

and that $P_Y(A) \cap (\widetilde{y} - \text{int }B) = \emptyset$ *for some* $\widetilde{y} \in Y$. Then for every $(x_0, y_0) \in A$ there **Figure 768** A. Göpfert, Chr. Tammer and C. Zălinescu
 Exists a proper convez cone $B \subset Y$
 $K \setminus \{0\} \subset \text{int } B$. Suppose that the set $A \subset X \times Y$ satisfies the condition
 (H1) for every \preceq_{k^0} -decreasing sequence $(($ x^2h that $(x, y) \in A$
 $\exists (\widetilde{y} - \text{int } B) = \emptyset$
 \emptyset

Proof. Let

$$
z_B: Y \to \mathbb{R}, \qquad z_B(y) = \inf\{t \in \mathbb{R} : y \in tk^0 - \mathbf{cl}\,B\}.
$$

By [3: Lemma 7], z_B is a continuous sublinear function such that $z_B(y+tk^0) = z_B(y)+t$ for all $t \in \mathbb{R}$ and $y \in Y$, and for every $\lambda \in \mathbb{R}$

$$
\{y \in Y : z_B(y) \le \lambda\} = \lambda k^0 - \text{cl } B
$$

$$
\{y \in Y : z_B(y) < \lambda\} = \lambda k^0 - \text{int } B.
$$

Moreover, if $y_2 - y_1 \in K \setminus \{0\}$, then $z_B(y_1) < z_B(y_2)$. Observe that for $(x, y) \in A$ we have that $z_B(y - \tilde{y}) \ge 0$. Otherwise for some $(x, y) \in A$ we have $z_B(y - \tilde{y}) < 0$. It follows that there exists $\lambda > 0$ such that $y - \tilde{y} \in -\lambda k^0 - c l B$. Hence $\{y \in Y : z_B(y) < \lambda\} = \lambda k$

Moreover, if $y_2 - y_1 \in K \setminus \{0\}$, then $z_B(y_1) < z_B(y_2)$

have that $z_B(y - \tilde{y}) \geq 0$. Otherwise for some (x, y_1)

follows that there exists $\lambda > 0$ such that $y - \tilde{y} \in -x$,
 $y \in \tilde{y} - (\lambda k^0 +$

$$
y \in \widetilde{y} - (\lambda k^0 + \operatorname{cl} B) \subset \widetilde{y} - (\operatorname{int} B + \operatorname{cl} B) \subset \widetilde{y} - \operatorname{int} B
$$

which is a contradiction. Since $0 \le z_B(y - \tilde{y}) \le z_B(y) + z_B(-\tilde{y})$, it follows that z_B is bounded from below on $P_Y(A)$. Let us construct a sequence $((x_n, y_n))_{n\geq 0} \subset A$ as follows: having $(x_n, y_n) \in A$ we take $(x_{n+1}, y_{n+1}) \in A$, $(x_{n+1}, y_{n+1}) \preceq_{k^0} (x_n, y_n)$, such that

$$
z_B(y_{n+1}) \le \inf \left\{ z_B(y) : (x, y) \in A \text{ and } (x, y) \preceq_{k^0} (x_n, y_n) \right\} + \frac{1}{n+1},
$$

, the sequence $((x_n, y_n))$ is \preceq_{k^0} -decreasing. It follows that

$$
y_{n+p} + k^0 d(x_{n+p}, x_n) \le K y_n \quad \forall n, p \in \mathbb{N}^*
$$

Of course, the sequence $((x_n,y_n))$ is $\preceq_k \circ$ -decreasing. It follows that

$$
y_{n+p} + k^0 d(x_{n+p}, x_n) \leq_K y_n \qquad \forall n, p \in \mathbb{N}^*
$$

so that

\n
$$
\text{quence } ((x_n, y_n)) \text{ is } \preceq_{k^0} \text{-decreasing. It follows that}
$$
\n

\n\n $y_{n+p} + k^0 d(x_{n+p}, x_n) \leq_K y_n \quad \forall n, p \in \mathbb{N}^*$ \n

\n\n $d(x_{n+p}, x_n) \leq z_B(y_n) - z_B(y_{n+p}) \leq \frac{1}{n} \quad \forall n, p \in \mathbb{N}^*$ \n

\n\n \Rightarrow is a Cauchy sequence in the complete metric space.\n

It follows that (x_n) is a Cauchy sequence in the complete metric space (X, d) , and so $y_{n+p} + k^0 d(x_{n+p}, x_n) \leq_K y_n \quad \forall n, p \in \mathbb{N}^*$

so that
 $d(x_{n+p}, x_n) \leq z_B(y_n) - z_B(y_{n+p}) \leq \frac{1}{n} \quad \forall n, p \in \mathbb{N}^*.$

It follows that (x_n) is a Cauchy sequence in the complete metric space (X, d) , and so
 (x_n) is convergent to $(\bar{x},\bar{y}) \in A$ and $(\bar{x},\bar{y}) \preceq_{k^0} (x_n,y_n)$ for every $n \in \mathbb{N}$. metric space $(X$

here exists $\overline{y} \in Y$
 $(\overline{x}, \overline{y}) \leq_{k^0} (x_0, y_0)$

for every $n \in \mathbb{Z}$
 $\frac{1}{n} \quad \forall n \geq 1$.
 $=\overline{x}$. As $y' \leq_K \overline{y}$

Let us show that (\bar{x}, \bar{y}) is the desired element. Indeed, $(\bar{x}, \bar{y}) \preceq_{k^{0}} (x_0, y_0)$. Suppose that $(x', y') \in A$ is such that $(x', y') \preceq_{k^0} (\bar{x}, \bar{y})$ $(\preceq_{k^0} (x_n, y_n)$ for every $n \in \mathbb{N}$). Thus $z_B(y') + d(x', \overline{x}) \leq z_B(\overline{y})$, whence

$$
d(x',\bar{x})\leq z_B(\bar{y})-z_B(y')\leq z_B(y_n)-z_B(y')\leq \frac{1}{n} \qquad \forall n\geq 1.
$$

It follows that $d(x', \bar{x}) = z_B(\bar{y}) - z_B(y') = 0$. Hence $x' = \bar{x}$. As $y' \leq_K \bar{y}$, if $y' \neq \bar{y}$, then $\bar{y} - y' \in K \setminus \{0\}$, whence $z_B(y') < z_B(\bar{y})$, which is a contradiction. Therefore $(x',y') = (\bar{x},\bar{y})$ \blacksquare

Comparing with 13: Theorem 4], note that the present condition on *K* is stronger (because in this case $K^{\#} \neq \emptyset$), while the condition on *A* is weaker (*A* may be not contained in a half-space). Note that when K and k^0 are as in Theorem 1, Corollaries 2 and 3 from [3] may be improved. In the next result $Y^* = Y \cup \{\infty\}$ with $\infty \notin Y$; we consider that $y \leq_K \infty$ for every $y \in Y$. We consider also a function $f : X \to Y^*$ and dom $f = \{x \in X : f(x) \neq \infty\}.$

In the following corollary we derive a variational principle of Ekeland's type for objective functions which take values in a general space Y (cf. $[2, 3, 5 - 7]$) under a weaker assumption with respect to the usual lower semicontinuity. For the case $Y = \mathbb{R}$, assumption (H4) in Corollary 2 is fulfilled for decreasingly semicontinuous real-valued functions as in the paper [4].

Corollary 2. Let $f : X \to Y^*$. Assume that there exists a proper convex cone $B \subset Y$ such that $K \setminus \{0\} \subset \text{int } B$ and $f(X) \cap (\widetilde{y} - B) = \emptyset$ for some $\widetilde{y} \in Y$. Also, suppose *that*

(H3) $\{x' \in X : f(x') + k^0 d(x', x) \leq_K f(x)\}$ *is closed for every* $x \in X$

or

(H4) *for every sequence* $(x_n) \subset$ dom *f* with $x_n \to x$ and $(f(x_n)) \leq_K$ -decreasing, $f(x) \leq_K f(x_n)$ for every $n \in \mathbb{N}$, and K is closed in the direction k^0 .

Then for every $x_0 \in \text{dom } f$ there exists $\overline{x} \in X$ such that

$$
f(\overline{x})+k^0 d(\overline{x},x_0)\leq_K f(x_0)
$$

and

$$
\forall x \in X: \quad f(x) + k^0 d(\overline{x}, x) \leq_K f(\overline{x}) \quad \Longrightarrow \quad x = \overline{x}.
$$

 $f(\overline{x}) + k^0 d(\overline{x}, x_0) \leq_K f(x_0)$
 $\forall x \in X: f(x) + k^0 d(\overline{x}, x) \leq_K f(\overline{x}) \implies x = \overline{x}.$

We say that *K* is *closed in the direction* k^0 if $K \cap (y - \mathbb{R}_+ k^0)$ is closed for every

y \in *K.* The proof of Corollary 2 is similar to those of Corollaries 2 and 3 in [3].
 As mentioned in [3], condition (H1) is verified if *K* is a well based convex is a Banach space and *A* is closed. As usually (c As mentioned in [3], condition (Hi) is verified if *K is* a well based convex cone, *Y* is a Banach space and A is closed. As usually (cf. $[1]$), a convex set S is said to be a *base* for a convex cone $K \subset Y$ if

$$
K = \mathbb{R} + S = \{ \lambda y : \lambda \ge 0 \text{ and } y \in S \} \quad \text{and} \quad 0 \notin \text{cl } S.
$$

The cone *K is* called *well based* if *K* has a bounded base S. Concerning well based convex cones in normed spaces we have the following characterization.

Proposition 3. Let Y be a normed vector space and $K \subset Y$ a proper convex cone. *Then K is well based if and only if there exist* $k^0 \in K$ and $z^* \in K^+$ such that $\langle k^0, z^* \rangle > 0$ *and*

$$
K \cap S_1 \subset k^0 + \{ y \in Y : \langle y, z^* \rangle > 0 \}
$$

where $S_1 = \{y \in Y : ||y|| = 1\}$ *is the unit sphere in Y.*

Proof. Suppose first that *K* is well based with bounded base *S*; therefore $0 \notin \text{cl } S$ and $K = [0, \infty) \cdot S$. Then there exists $z^* \in Y^*$ such that $1 \leq \langle y, z^* \rangle$ for all $y \in S$. Consider $\widetilde{S} := \{k \in K : (k, z^*) = 1\}$. It follows that \widetilde{S} is a base of *K*; moreover, since $\widetilde{S} \subset [0, 1] \cdot S$, \widetilde{S} is also bounded. Taking $k^1 \in K \setminus \{0\}$ we have $K \cap S_1 \subset \lambda k^1 + B_+$ for

some
$$
\lambda > 0
$$
, where $B_+ = \{y \in Y : \langle y, z^* \rangle > 0\}$. Otherwise
 $\forall n \in \mathbb{N}^* \exists k_n \in K \cap S_1 : k_n \notin \frac{1}{n}k^1 + B_+$.

Therefore $\langle k_n, z^* \rangle \leq \frac{1}{n} \langle k^1, z^* \rangle$ for every $n \geq 1$. But, because \widetilde{S} is a base, $k_n = \lambda_n b_n$ with $\lambda_n \ge 0$ and $b_n \in \tilde{S}$; it follows that $1 = ||k_n|| = \lambda_n ||b_n|| \le \lambda_n M$ with $M > 0$ (because \widetilde{S} is bounded). Therefore $\forall n \in \mathbb{N}^* \exists k_n \in K \cap S_1:$ $k_n \notin \frac{1}{n}k^1 + B_+$.
 $\forall n, z^* \in \frac{1}{n}(k^1, z^*)$ for every $n \ge 1$. But, because \widetilde{S} is a bas
 $\forall n \in \widetilde{S}$; it follows that $1 = ||k_n|| = \lambda_n ||b_n|| \le \lambda_n M$
 \exists bounded). Therefore
 $M^{-1} \le \lambda$

$$
M^{-1} \leq \lambda_n = \langle \lambda_n b_n, z^* \rangle = \langle k_n, z^* \rangle \leq n^{-1} \langle k^1, z^* \rangle \qquad \forall n \in \mathbb{N}^*
$$

whence $M^{-1} \leq 0$, which is a contradiction. Thus there exists $\lambda > 0$ such that $K \cap S_1 \subset$ $\lambda k^{1} + B_{+}$. Taking $k^{0} := \lambda k^{1}$ the conclusion follows.

Suppose now that $K \cap S_1 \subset k^0 + B_+$ for some $k^0 \in K$ and $z^* \in K^+$ with $\langle k^0, z^* \rangle =$ $c > 0$, where B_+ is defined as above. Consider $S = \{k \in K : \langle k, z^* \rangle = 1\}$. Let $k \in K \setminus \{0\}$. Then $||k||^{-1}k = k^0 + y$ for some $y \in B_+$. It follows that $\langle k, z^* \rangle > c||k|| > 0$; therefore $z^* \in K^{\#}$ and so $k \in (0,\infty) \cdot S$. Since $\text{cl } S \subset \{y \in Y : \langle k, z^*\rangle = 1\}$, we have that S is a base of K. Let now $y \in S \subset K$). Then $||y||^{-1}y \in K \cap S_1$. There exists $z \in B_+$ such that $||y||^{-1}y = k^0 + z$. We get

$$
1 = \langle y, z^* \rangle = ||y|| \langle k^0 + z, z^* \rangle \ge c ||y||
$$

whence $||y|| \leq c^{-1}$. Therefore *S* is bounded, and so *K* is well-based \blacksquare

References

- [1] Borwein, J. M.: *Continuity and differentiability properties of convex operators.* Proc. London Math. Soc. 44 (1982), 420 - 444.
- [21 Göpfert, A. and Chr. Tammer: *A new maximal* point *theorem.* Z. Anal. Anw. 14 (1995), 379-390.
- [3) Göpfert, A., Tammer, Chr. and C. Zälinescu: *On the vectorial Ekeland's variational principle and minimal points in product spaces.* Nonlin. Anal.: Theory, Methods and AppI. (to appear).
- [4) Gajek, L. and D. Zagrodny: *Geometric Variational Principle.* Diss. Math. 340 (1995), $55 - 71.$
- *[5] Isac, G.: The Ekeland's principle and the Pareto c-efficiency.* In: Multi-objective Programming and Goal Programming. Theory and Applications (ed.: M. Tamiz; Lect. Notes Econ. Math. Syst.: Vol. 432). Berlin: Springer. Verlag 1996, pp. 148 - 163.
- *[6] Khanh, P. 0.: On Caristi-Kirk's theorem and Ekeland's variational principle for Pareto* extrema. Preprint. Warsaw: Polish Acad. Sci., Inst. Math., Preprint 357 (1986), $1 - 7$.
- *[7) Nemeth, A. B.: A nonconvex vector minimization problem.* Nonlin. Anal.: Theory, Methods and AppI. 10 (1986), 669 - 678.
- *[8] Phelps, R. R.: Convex Functions, Monotone Operators and Differentiability,* 2nd Ed. Lect. Notes Math. 1364 (1993).

Received 21.10.1998