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A New Minimal Point Theorem in Product Spaces 

A. Göpfert, Chr. Tammer and C. Zàlinescu 

Abstract. We derive a minimal point theorem for a subset A in a cone in product spaces 
under a weak assumption concerning the boundedness of the considered set A. Using this 
result we improve two vectorial variants of Ekeland's variational principle. Finally, a new 
characterization of well-based cones is given.	- 
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Assume that (X, d) is a complete metric space, Y is a separated locally convex space, 
Y is its topological dual, K C Y is a convex cone, i.e. K + K C K and [0, oo) . K C K, 

K+={y*EY*:(y,y*)^!0 for all yEK} 

is the dual cone of K and 

K# = { y' E Y' : (y, y * ) >0 for all y  K\{0}}. 

In this note we suppose that K is pointed, i.e. Kfl(—K) = {0}. The cone K determines 
an order relation on Y, denoted in the sequel by so, for yI, y2 E Y, yi 5 K y2 if 
1/2 - 1/i E K. It is well known that "<K" is reflexive, transitive and antisymmetric. Let 
k° E K \ {0}; using the element k° we introduce an order relation on X x Y, denoted 
by	ko, in the following manner: 

	

(x1,y1)ko(x2,y2)	if	yl+k°d(rl,x2):^Ky2. 

Note that "ko" is reflexive, transitive and antisymmetric. That is, our notations are 
those of [3]. 

The essential idea for the derivation of a minimal point theorem (cf. 12, 8]) in 
general product spaces X x Y, as well as of the vectorial Ekeland principle, consists in 
including the ordering cone K C Y in a "larger" cone B C Y: K \ {0} C mt B. We will 
use B to define a suitable functional zB : Y - R. Moreover, we will replace the usual 
boundedness condition of the projection Py A of A onto Y by a weaker one. 
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Theorem 1. Assume that there exists a proper convex cone B C Y such that 
K \ {O} C mt B. Suppose that the set A C X x Y satisfies the condition 
(Hi) for every ko-decreasing sequence ((Xn,yn)) C A with x, - x E X there exists 

Y  Y such that (X , Y) E A and (x, y) ko (xn,yn) for every n E N 
and that Py(A) fl (W - intB) = 0 for some j E V. Then for every (x 0 , y0 ) E A there 
exists	E A, minimal with respect to ko, such that	(x0,yO). 

Proof. Let

zB : Y - R,	zB(y) = inf{t ER: Y  tk° - clB}. 

By [3: Lemma 71, zB is a continuous sublinear function such that ZB(y +tk°) = zB(y)+t 
for all t E R and y E Y, and for every A E R 

{y E Y: z(y) A} = Ak° - clB 

{y E V : ZB(y) < A) = Ak° - intB. 

Moreover, if y2 - Yi E K \ {O}, then zB( yl) < zB(y2) . Observe that for (x, y) E A we 
have that zB( y - 7) > 0. Otherwise for some (x,y) E A we have zB(y - y7) < 0. It 
follows that there exists A > 0 such that y - j E —Ak° - cl B. Hence 

y E j - (Ak° + ci B) C j - (mt B + clB) C y - mt B 

which is a contradiction. Since 0 < z B(y -	zfi(y) + zB( — Y), it follows that z 
is bounded from below on Py(A). Let us construct a sequence ((x, yn))n>o C A as 
follows: having (xn,yn) E A we take ( X n+1, yn+I) E A, (x n+I, yn+I) ko (xn,yn), such 
that

ZB(yn+I) <inf { ZB(Y) : (x,y) E A and (x,y) k 0 (Xn,yn)} + 

Of course, the sequence ((xn,yn)) is < k o-decreasing. It follows that 

Yn+p + k°d(x+,x) !^K Yn	V n,p E N* 

so that
d(xn+p,xn) Z B( yn) - ZB(Yn+p) 15	V fl,p E N*. 

It follows that (xn) is a Cauchy sequence in the complete metric space (X, d), and so 
(x) is convergent to some ± E X. By condition (Hi) there exists	V such that 

E A and (±,) k 0 (xn,yn) for every ri E N. 
Let us show that is the desired element. Indeed, (±,) ko (x 0 , y0 ). Suppose 

that (x', y') E A is such that W, Y"):SO (±,) ( ko (xn,yn) for every n E N). Thus 
zB(y') + d(x',) Z9 (V), whence 

d(x',±) < Z) - Z B(y' ) Z B(yn) - zB(y') :5

	

	V n i.
n 

It follows that d(x',±) = z B(y) - z B( y') = 0. Hence x' = T. As y' <K Y , if y' 
then - y' E K \ {0}, whence ZB(y') < z8(), which is a contradiction. Therefore 
(x',y') = (±,y)I
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Comparing with 13: Theorem 4], note that the present condition on K is stronger 
(because in this case K# 54 0), while the condition on A is weaker (A may be not 
contained in a half-space). Note that when K and k° are as in Theorem 1, Corollaries 
2 and 3 from [3] may be improved. In the next result Y = Y U {oo} with = we 
consider that y K oo for every y E Y. We consider also a function f : X -* Y and 
domf = {x E X: 1(x) 54 oo}. 

In the following corollary we derive a variational principle of Ekeland's type for 
objective functions which take values in a general space Y (cf. [2, 3, 5 - 7]) under a 
weaker assumption with respect to the usual lower semicontinuity. For the case Y = 
assumption (H4) in Corollary 2 is fulfilled for decreasingly semicontinuous real-valued 
functions as in the paper [4]. 

Corollary 2. Let f : X - Y. Assume that there exists a proper convex cone 
B C Y such that K\ {0} C mt B and f(X)fl(— B) = 0 for some j E Y. Also, suppose 
that 

(H3) {x' E X : f(x') + k°d(x', x) :5i<: f(x)} is closed for every x E X 
or 
(114) for every sequence (x) C domf with x,, - x and (f(x)) '5K -decreasing, 

1(x) K f(x) for every n E N, and K is closed in the direction k°. 

Then for every xo E dom I there exists Y E X such that 

f() + k°d(,xo) K f(xo) 

and

	

V XE X: f(x) + k°d(,x) K f() =	x = 

We say that K is closed in the direction k° if K fl (y - R+k°) is closed for every 
y E K. The proof of Corollary 2 is similar to those of Corollaries 2 and 3 in [3]. 

As mentioned in [3], condition (Hi) is verified if K is a well based convex cone, Y 
is a Banach space and A is closed. As usually (cf. [1]), a convex set S is said to be a 
base for a convex cone K C Y if 

K=R+S={)y:)*>0 and yES}	and	0clS. 

The cone K is called well based if K has a bounded base S. Concerning well based 
convex cones in normed spaces we have the following characterization. 

Proposition 3. Let Y be a normed vector space and K C Y a proper convex cone. 
Then K is well based if and only if there exist k° E K and z E K such that (k°, z) > 0 
and

K fl Si C k° + {y € Y: (y, z * ) >0) 

where S 1 = { y E Y : IIH = i} is the unit sphere in Y. 

Proof. Suppose first that K is well based with bounded base 5; therefore 0 V cl S 
and K =[0,00) . S. Then there exists f € Y such that 1 (y, z*) for all y E S. 
Consider S := {k € K : (k, z*) = i}. It follows that S is a base of K; moreover, since
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C [0, 11 5, is also bounded. Taking k' e K \ {0} we have K fl Si C Ak' + B for 
some A >0, where B+ = {y E Y : (y, z * ) > 0}. Otherwise 

VnEN*knEKflS,:	k-k'+B. 

Therefore (k, z) < , (k I , z*) for every n > 1. But, because S is a base, k = A n bn 

with A > 0 and bn E S; it follows that 1 = II k II = A II b II < A,,M with M > 0 
(because S is bounded). Therefore 

M	An = (Ab , z e ) = (kz*) 
^ 

n_I(ki,z*)	V n E N 
whence M' 0, which is a contradiction. Thus there exists A > 0 such that K fl 5, C 
Ak' + B. Taking k° := AV the conclusion follows. 

Suppose now that K fl S1 C k° + B+ for some k° E K and f E K+ with (k°, z*) = 
c > 0, where B+ is defined as above. Consider S = {k E K : (k, z*) = 1). Let 
k E K\{0}. Then II kt' k = k°+y for some y € B. It follows that (k, z*) > c]k]] >0; 
therefore z E K# and so k E (0,00) . S. Since clS C {y e Y : (k, z*) = 1}, we have 
that S is a base of K. Let now y E S (c K). Then 11 y 11' y E K fl 51 . There exists 
z E B such that II y IL' = k° + z. We get 

1 = (y, zt ) = II y II( k° + z, z*) ^! cIIyI 
whence IIII < c. Therefore S is bounded, and so K is well-based I 
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