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nonlinear impulsive differential equations are obtained. 
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1. Introduction 
Impulsive differential equations represent a natural apparatus for mathematical simula-
tion of real processes and phenomena studied in physics, biology, population dynamics, 
biotechnologies, control theory, economics, etc. For instance, if the population of a 
given species is regulated by some impulsive factors acting at certain moments, then 
we have no reason to expect that the process will be simulated by regular control. On 
the contrary, the solutions must have jumps at these moments and the jumps are given 
beforehand. Moreover, the mathematical theory of impulsive differential equations is 
much richer than the corresponding theory of equations without impulses. That is why 
in the recent years this theory has become an important area of numerous investigations 
[1 - 6]. 

In the present paper problems of the existence of affinity integral manifolds of linear 
and nonlinear systems of impulsive differential equations and some of their properties 
are considered. 

2. Preliminary notes and definitions 

Let R'2 be the n-dimensional Euclidean space with norm . 	and let R+ _ [O,00). 
Consider the system of impulsive differential equations 

i = A(t)z + F(t, z)	(trk) 

Az(rk) = z(rk + 0) - z ( Tk) = Bk z( rk) + k(z(rk)) (k E N) 

where 
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(i) t €	z E Rm+n, A: R+ Rm+fl x Rm+n 
Bk E R"" x R-+ , F: R+ x Rm+ n .. R"", 'P k : R 3 - - 1	lRT+n 

(ii)O <Ti <T2 <... and limk_.Tk = 00. 

Let to E R+ and z0 E Rm+. Denote by z(t) = z(t; to, zo) the solution of system (1) 
satisfying the initial condition z(to + 0) = zo. These solutions are piecewise continuous 
functions, with points of discontinuity of the first kind at which they are continuous 
from the left, i.e. at the moment Tk the relations 

z( -rk	0)	z(-k) 
z(rk + 0) = z( rk) + Bkz(rk) + 'h(z(Tk)) 

are satisfied. 

Definition 1 (see [2: Definition 13.2)). An arbitrary set G in the extended phase 
space of system (1) is said to be an integral manifold, if for to E R+ and for arbitrary 
solution z = z(t) of system (1) from (to, z(to)) E G it follows that (t, z(t)) E C for all 
t > to. 

Definition 2. The integral manifold C is said to be an affinity integral manifold 
of system (1) if C is the graph of a function 

x Rm - R'2 ,	(t, x) = Q(t)x + 17( t , X) 

where the following conditions are satisfied: 
a) Q is an n x m matrix-valued function with points of discontinuities of the first kind 

at the moments t = T (k € N) at which Q is continuous from the left. 
b) ri :	x R" - R" is a bounded function which is continuous with respect to x and 

with points of discontinuity of the first kind at the moments t Tk (k E N). 
If this is satisfied, then W = (t, x) is said to be a parameter function. 

We write system (1) in the form 

= A"(t)x + A' 2 (t)y + f(t,x,y)	 (t	i-k) 
Lx(Tk) = B'x(rk)+ B 2 y(rk) + Ik(X ( Tk), y(Tk))	(kEN)	

(2 
=A21 (t)x+A22 (t)y+g(t,x,y)	 (tTk)	 ) 

' y( rk) = B'x(rk)+ B 2 y(7-k) + Jk(x( rk),y(rk))	(kEN) 

where

(i) x  Rm ,y E Ri', (f, g) = F, ( Ik,Jk) = 'k (keN) 

(ii) A" :	Rm+m, Al2 :	m+n, A2 ' :	—4 R fl+m A22 :	. 
(iii) B' e Rm+m, BL 2 E m+n, B' E	B2 E 

Introduce the following conditions: 

(Hi) The matrix-valued function A is continuous. 
(H2) det(Em + Bk') 54 0 (k E N) where Em E lR m-- m is the identity matrix.
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Recall (see [1: p. 46]) that if Uk(t, s) is the Cauchy matrix for the equation 

±	A 11 (t)x	(i-k_i <i <i-k) 

and conditions (Hi) and (H2) hold, then the Cauchy matrix for the equation 

x=A"(t)x	(trk) 
,x(rk) = x(Tk+O) — x(Tk)=Bx(rk)	(k E N)	

(3) 

is

W(t,$) = 

Uk( t , $ )	- 

Uk+i( t , Tk +0)(Em +B)Uk(Tk,$) 

Uk(t,Tk)(Em +BjY'Uk+I(Tk+0,$) 

Uk+j( t , rk + 0)fl :' ( Em + k—j) 
Uk_,( Tk_,, TkjI + 0)(Em + B ')UI(TI, s) 

Ui(t, Ti) Ilk j
	 Y ' (Em +B''Uk+I(Tk +0,$) 

It is easy to verify that the relations

(4) 

if i-k <S <t 

if i-k1 <S <_ Tk <t 

if i k_1 <t<Tk<S<Tk+1 

if i-_1 <S < i- <T$ <t < 

ifr_ j <s <r <i-k <t Tk+i. 

W(t,t)=Em 

W(Tk0,Tk)=W(i-k,Tk_0)=Em	 I 
W(rk +0,$) = (Em +B')W(Tk,$) 

t 

	

W(s,Tk +0) = W(Tk, S )( Em +B	
(5)

 I 

ÔW(t, s) = A"(t)W(t, s) (t j4 Tk) I 
ÔW(t, s)

= —W(t,$)A"(s)	J as 
are valid. Introduce the condition 

(113) det(E + B2) 54 0 (k E N) where E E	is the identity matrix. 
We denote by Y = Y(t), where Y(to) = E (to E (0,ri )) the fundamental matrix of 
the system

± = A22 (t)x	(t 0 i-k) 
x ( rk) = x(rk +0)—x(i-k)= B 2 x(rk)	(k EN).	 (6) 

Definition 3. Let P be a projector (i.e. P2 = F) in R'. The function 

G(t 
s) = [ Y(t)PY(t)	for t > s

1. Y(t)(P - E)Y'(s) for .s > t
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is said to be the Green function of system (6).

It is easy to verify that the relations 

OG(t,$)
= A22 (t)G(t,$) (t 54 s) at 

OW(t,$)
= —G(t,$)A22(s) (t	.$) 

as 

G(Tk + 0, t) = (E + B 2 )G(rk, t) (t	Tk) 

G(t, Tk + 0) = G(t, Tk)(E	+ B 2 ) (t 54 Tic) 

G(t+0,t)—G(t,t—O)=E (tTk) 

G(t,t+0)—G(t,i-0)= —En (tTk)

	

G(Tk+0,rk+0)= ( En +B 2 )G(rk,Tk+0)	(kEN) 

are valid. Introduce the following conditions. 

(H4) 0 < to <ri , and there exist constants p> 0 and e > 0 such that 

i(s,t)	p(t—s)+c 

where i(s, t) is the number of the points Tic lying in the interval (s, t). 

(H5) The inequalities

W(t, )II	Ke'°' 

II G( t , s )II <Ne°1 }	
(t, s E R) 

hold where K, N, z > 0 and 0 < a < 6. 

Lemma 1 (see [2: Lemma 3.4]). Let the inequality 

u(t) 
< J u(s)v(s) ds + F(t) +	fikU(Tk) + E a(t) 

to	 to <r <t	 iO<Tk <t

(7) 

hold, where u is a piecewise continuous function with points of discontinuity of the first 
kind Tk (k E N), v a locally integrable function, F(t) and aic(t) non-decreasing for 
t > to and a ic( t ),13ic ^! 0 (k E N). Then 

U(t) < (F(t) + E aict) II (1 +f3ic)exp (ftv(s)ds). 
tO<Tk<t	iO<?k<j	 to 
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3. Main results 

We consider the linear part of the system 

= A''(t)x + A' 2 (t)	(t 0 Tk) 

ix(rk ) = B'x(Tk) + BL2y(rk)	(k E N)  

= A2 '(t)x + A22 (t)	(t	Tk)	
(8) 

Ly(rt) = Bx(rk ) + B 2 y(Tk)	(k e N). 

Let G be the affinity integral manifold of system (8) in the form 

G = {(t,x,y): y = Q(t)x for tE R and x E Rm}.	 (9)

Along with C we consider the system 

Q + Q(t)A 1 '(t) + Q(t)Al2(t)Q(t) 
=A 21  (t) + A22(t)Q(t)	(t	Tk)	 (10)

Q(rk) + Q( Tk) + Q(Tk + 0)B + Q(rk + O)B2Q(Tk) 

= B' + B 2 Q(Tk)	(k e N). 

Lemma 2. The manifold (9) is an affinity integral manifold of system (8) if and 
only if Q = Q(t) is a bounded solution of system (10). 

Proof. Lemma 2 can be proved by straightforward calculations and we thus sup-
press the proof U 

Lemma 3. Let conditions (Hi) - (115) be fulfilled. Further, assume that the follow-
ing is true: 

1. A' 2 (t) = 0 and BL2 = 0 for all t E R and k E N. 

2. sup (E + IIA 21 (t) 11 <6 and supkENIlBk(t)II <6 for some 6>0. 

Then for system (8) there exists an affinity integral manifold in the form (9). 

Proof. Let x(t) = x(t; to, xo) be the solution of the Cauchy problem for system (3) 
where x(to) = x 0 . Then from [1: p. 461 it follows that x(to) = W(t, to) xo, and for the 
system	 - 

= A22 (t)y + A21 (t)I'V(t, to)x	(t 0 i-k) 

y ( rk) = B 2 y(rk) + B'W(rk,tO)x(rk)	(k E N) 

there exists only a bounded solution in the form 

y(t) = JG(t, s)A2 ' (s)W(s, to) xo ds 
to 

+ > G(t,Tk + 0)BW(rk,to)xo.
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If the graph of the solution (x(i), y(t)) (t > to) is from the affinity integral manifold, 
then

CO 

Q(t)W(t, s) xo = fG(t s)A 2 ' (s)W(s, to) xo ds 
to 

+ > G( t , rk +0)B'W(rk,tO)zO. 

Lemma 3 will be proved if the function 

Q(t) = JG(t, s)A2 ' (s)W(s, t) ds + 
CO

 G(i, Tk + O)B' W(Tk, t)	(11) 

is the bounded solution of system (8) for which A' 2 0 and B 2 0 (k E N). From 
(5) and (7) for i 54 Tk we obtain 

= d(	
G(t, s)A 21 ( t ) W(S' t) ds dt lo 

+ 
to 

G(t, s)A21 (t)W(s, ) ds 

+	G(t, Tk + O)B 1 W(Tk, t)) 

= G(t, t - 0)A2 ' (i)I'V(t - 0, t) - G(t, t + 0)A 2 ' (t)I'V(t + 0, t) 
CO 

+ 
to 

A22 (t)G(t, s)A2 ' (s) W(s, t) ds 

- lo G(t, s)A 2 ' (s)W(s, t)A"(t)ds 

CO

 

+	A22 (t)G(t, Tk + 0)B' W(Tk, t) 

_G(t,rk+0)BW(rk,t)Ah1(t) 

= A2 ' (t) + A22 (t)Q(t) - Q(i)A' '(t). 

For t = r (i E N) it follows 

LQ(r1 ) + Q(Tk + 0)B1" 

= jG(Ti + 0,$)A21 (s)W(s,r1 + 0)(Em + B')ds 

+ E G(r, + 0, Tk + 0)BW(Tk, 7 + 0)(Em + B) 

- I. G(r,$)A2'(s)W(s,r)ds
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-	Tk + 0)B' W(r1 , Tk) 

= j(En + B2)G(r1,$)A21(s)W(s,r1)ds 

+	+ B 2 )G(T1 ,Tk + 0)B'W(rk,Tk) + B2 

- f

00
G(r, s)A2 ' (s)W(s, r) ds 

co 

- > G(r, Tk + 0)B' W(r 1 , Tk) 

= B 2 + B2Q(T). 

Hence (ii) is solution of system (10). On the other hand, fdr t > t0 

	

IIQ(t)II <JKNe_ _t_3I8ds + EKNe_(A_a)tt_1 8.	(12) 
to	 k=1 

From assumption (H4) e_(_c)It_niI < C < oo follows where C depend only on 
(i - a) and the sequence Irk 1. Then from (12) it follows that Q = Q(t) is a bounded 
solution of system (10) U 

Theorem 1. Let conditions (Hi) - (H5) be fulfilled. Further, let there exists 8 > 0 
such that 

sup II A ' 2 ( t )II	8,	sup II BL 2 II < 8,	sup 11 A21 ( t )II	8,	sup II B2 II	8. 
tER+	 kEN	 tER+	 kEN 

Then there exists 6 > 0 such that, for any 8 E (0,5o1 and t > to, for system (8) there 
exists an affinity integral manifold in the form (9). 

Proof. We shall obtain the parameter function (t, x) by the method of consistent 
approach. Set

= 0 

W. = Q(t)x (n E N) 

where

Q(t) = J G(t,$)A21 (s)W_ i (s,t)ds + 
co

 G(t,rk + 0)B'W_j(rk,t) 
to	 k=i 

and W_ 1 (t,$) be the Cauchy matrix of the system 

x = (A''(t) + A'2(t)Q_1(t))x	(t 0 Tk) }

	
(13) 

Lx(rk) = (Bk' + B2 ( rk)Qfl_l( rk))x(rk)	(k e N).
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Consider the system

= (A''(t) + A'2(t)Q(i))x	(t 04 7k) 

x ( Tk) = (B 1 + B2 Q(rk))x( 7 k)	(k e N)	
14) 

= A22 (t)y + A21 (i)x	 (t	Tk) 

Ly(Tk) = B 2 y(rk) + B'x(Tk)	(k e N). 

We shall proof that {Q(i)l 1 is a uniformly bounded sequence for any t > 0. For 
n = 1 and A ' 2 0,BL2 0 system (13) coincide with system (8), and the matrix 
Wo(t,$) coincide with matrix the W(i,$). From Lemma 3 it follows that there exists 
q > 0 such that 1Q1(t)II	q. Let IIQ()II	q for arbitrary n. Then 

IIQ+,()II 	s)II IIA" (s)II ll Wn( s , ) II ds

(15) 

+IIG( t, k + 0 )11 II B ' 	W( Tk, t)II. 

From (13) for i > s we obtain 

W(t, s) = W(t, s) 

+ 
j 

W(t, r)A'2(r)Q(r)W(r, s) dT 

+

	

	W(t, Tk)B 2 Q(7-k)W(7-k, s).
3< 1k <t 

II W( i , $ )II Ke	+ JKqe(t_dr +

3 < 1 k <t 3 

u(t) = e t llWn (t,$)II, F(i) = Ke 3 , v(i) = KqS, 3k = Kq6,	k(i) = 0. 

From Lemma 1

W(t, s )II 5 Ket3) JJ (1 + 
3 < r <t 

Ke t3)(1 + 

= K(1 + 

Then 

Put
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follows. For s > t we have 

II Wn(t , $ )II < Ke° 
S 

+ f Kq6e°_IW(r, s )II dr 

+
< 1 k <3 

Put

u(i) = at Il W ( t s) 11, F(t) = Keas , v(t) = Kq6, 13k = KqS, clk( t ) = 0. 

Hence we obtain

u(i) < F(t) + J u(r)v(r) +	 - k). 

Note that for t < s we obtain an inequality of the same form as in the case t > s. Then 
for t E	and s 	we get 

Il W (t , s)lI < K(1 +	 (16) 

From (15) and (16)

IQ+i(t)II J NK6(1 + Kqetslds 

to	 (17) 

+	NK6(1 + Kq5)cet 

follows where -y = A - (a + Kq6 + pin(1 + Kq6)). Thus if we choose 6 small enough, 
then a <7 <is, and NK6(1 + Kq5)e( + C.1 ) < q, where C.1 depends only on rk and 
y. Based on estimate (17), we obtain 

IIQ+ ' ()II :^ NK6(1 + Kq6)	+ c.1) .	 (18) 

In view of (18) it follows that Q(t) is uniformly bounded. 
On the other hand 

Q+ 1 (t) - Q(t) = JG(t,$)A21(S)(W(S,t) - W_ 1 (s,i)) ds 
to	

(19) 

+>G(t,rk+0)B1(Wn(rk,i)_Wn_l(rk,i)).
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It is immediately that the function V(t) = W(t,$)—W,,_i(t,$) is solution of the system 

= (A" (t) + A l2 (t)Q(t))V + Al2(t)(Q,(t) - Q(i))W,(i, s) (t 54 Tk) 
LV(rk) = (B"+ B2 Q(i-k))V(rk) + BL 2 (Q_,(i) - Q(t))W_1(t,$)	(k e N). 

Then for t > S 

V(t) = f W(t,r)A'2(r)(Qa,(r) - Qn(r))W(r,$)dr 

+	W(i, Tk)B)2 (Qn_I (ri) - Qn(Tk)) Wfl _I(rk, s) 
3 <Tj <i 

follows. From (16) we obtain 

V(t)II	
{ I 

(K(1 + 
J3 

+ E (K(1 + Kq2oe(K6+P(16))(9_3)} 

3< 7k <t 

X sup IQ.-,(t) - Qn(t)IP 
t eL+ 

^ (K(1 + Kqo)e)25((1 + p)(t - s) + e) 
x e (Q+Kq6+p1n(1+Kq6))(t_3) sup Q_,(t) - 

i ER4 

In the case t < s we get 

IV(t)II	(J(i + Kqt) 2 6((1 + p)(s - t) + e) 
x e (Q+Kq6+pIn(I+Kq6))(3—t) sup 

11 Q--i (t) - Q(t)M. 
te+ 

Then for I E IR and s E R 

II V (OII	(K(1 + Kq5)e)26((1 + P) 
It - s I + e) 

X	 sup IIQ- ' () - Q()II	
(20) 

is valid. Based on condition (H4) we obtain

< c	

I k 
CO

i - rk e 71 t rkl

k 
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where D, depends only on y and { rk}. From (19) and (20) the estimate 

lQ+i(t) - Q()II 

<{jcds+N((i+Kq6)e)2s2((1+p)It_TkI+E)e_Ii_rkI} 

X sup IQ(t) - Qn_i(t)li EiR+ 

< {N((1 + KqS)e)262(1 +	+	 7172e_t_to)) 

+ e(c + 2 - 17(ti) sup 
IIQn() Qni(t)II 7	JiER+ 

follows. Then there exists 6 > 0 such that for 6 e (0,6] the sequence {Q(t)} 1 is 
uniformly convergent to Q(t). The proof of Theorem 1 is complete U 

Introduce the following conditions: 
(H6) There exists a constant A > 0 such that 

sup	IIf(t,x,y)II	A, 
(i,x,y)EB+ xiR" xfl 

sup	iIg(t,x,y)I	A, 
(t,x, y ) Eff+ xR" xn

sup	111k(X,Y)II	A 
kEN,(zy)ER"' x" 

sup	PIJk(x,y)II <A. 
kEN,(r;y)E m xi" 

(H7) There exists a constant 1> 0 such that 

jIf(t,,) - f(t,x,y)JI 	(JI— X 1 + II— yII) 
11 g ( t , 7, ) - g(t, x, Y) 11	l (ll - x li + II - yIP) 

114(y , V) - Ik(X, y)	l ( ll -	+Ily- yIP) 
II Jk(,) - Jk(x, y ) II 5 l ( II - x li + 11Y - yll) 

where t'e IR+ , x, Y e Rm , Y, Y C R" and k E N. 
Lemma 4. Let conditions (Hi) - (H7) be fulfilled, and let the functions 

g(t, x, Qx + 'i) — Qf(t,x, Qx + i) 
Jk( X ,QX +i) — Q(rk +0)Ik(x,Qx +) 

where Q = Q(t) is a solution of system (10) be independent of the variable x. Then for 
system (2) there exists an affinity integral manifold if and only if i = ij(t) is a bounded 
solution of the system 

= (A 22(t)- Q(t)A'2(t))i7(t) + .H(t, ij)	(t	Tk) 1 
77(,k) = (B 2 - Q(Tk + 0)BL 21 )1)(rk ) + H(i(Tk))	(k C N) f	

(21) 

where
H(t, i) = g(t, x, Qx + i) - Qf(t, x, Qx + ) 
Hk( 11)_r Jic(X,Qx+71)— Q(Tk +O)fk(X,QX +i). 

Proof. Lemma 4 can be proved by straightforward calculations and thus its proof 
is omitted I
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Theorem 2. Let conditions (Hi) - (117) be fulfilled. Further, assume that the 
following is true: 

1. There exists a constant S > 0 such that SUPtER+ DA'(t)lI	S and SUPkEN IlBII 
S where i =1,2 andj = 3—i. 

2. The functions

g(t, x, Qx + ij) - Qf(t, x, Qx + i) 

.Jk(x,Qx + 71) - Q(-k . + 0)Ik (x,Qx + i) 

where Q = Q(t) is a solution of system (10) are independend of the variable x. 
3. There exists constants IL > 0 and L > 0 such that 

sup II H(t , 0)11 1 tER+ 

sup IIHk(0)II f	
and 

kEN

H(t,Yj) - H(t,ii)I1 < Ljjj7 - '711
- Hk(?l) - 

where t € R+ , 77,77 ER tm and k € N. 
Then there exist positive constants io, Si with Si < 5o and L0 such that for p € 

(O, poI, L E (0,L0 1 and 5€ (0 1 b an affinity integral manifold for system (2) exists. 

Proof. The parameter function (t, x) = Q(t)x+'7(t) we shall obtain by the method 
of consistent approach. Set 770(t) = 0 and 

= f G(t,$)(H(s,71(s)) - Q(s)AI2(s)71(s))ds 

to	 (22) 
Ca 

+	G(t, 7-k + 0) (Hk(7? fl (rk)) - Q(Tk + 0)B2'7fl(Tk)) 

for n E N. From Theorem 1 it follows that there exists function Q = Q(t) which is 
solution of system (10). From (22) for n = 0 we obtain 

Co 

II711()II	J II G(t , s )II (II H( s ; o )II ds + E II G(t , Tk + 0 )11 IIHk(0)Il) 
to

+ cs). 
On the other hand, if II71( t )II a for some a > 0, then 

00 

I'M-F' II	f II G( t , s )Il (II I ( s	())II + IIQ( s )Il II A ' 2 ( s )II II(s )II) ds 
to 

+
 cc

  IG(t, rk + 0 )11 (Il Hk('7fl( rk))II + IIQ( rk + 0 )11 II BL2II Il'7(rk)II)	
(23) 

k=1 

<N(La+p+q5a)(+CA)
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and
00 

- i7(011 <J II G( t , $ ) II(Il H (s ,n(s)) - H(s,ni(s))I 
to 

+ IIQ(s )lI II A ' 2 ( s)II ijn (s) - 

+ 
cc

 II G( t , 7 k + 0 )II(11 Hk ( fl ( 7k )) - Hk(fll(Tk))I 

+ Q(rk + 0 )11 lI B2 1 . 1I n (rk ) - ?lfl_I(Tk)M) 

<N(L + qS)(- - + CA )	11i(t) - 
tER+ 

Based on estimates (23) and (24) we obtain that there exist positive constants z0, 
with Si < So and L0 such that for it E (0,poj, L E (O,LoJ and S E (0,S] the sequence 
{j(t)}. 0 converges to i(t). Then the proof of Theorem 2 follows from Lemma 41 

Example 1. Consider the system of impulsive differential equations 

x=x	 (t0rk) 
ix(Tk) = ak x ( rk) + bky(Tk)	(k E N)	

25 
=2y—sintx	 (tTk)	 ( 

Ly(rk) = (ak + (-1)'bk ) y(rk)	(k E N) 

where t E l, x,y E R, Tk kir (k E N, {ak} and {bk} are real bounded sequences. 
The function Q(t) = (sint + cost) is solution of a system of the form (10) and the 
conditions of Theorem 1 are fulfilled. Then for system (25) there exists an integral 
manifold with parameter function (t, x) = (sin t + cost). 

Example 2. Consider the system 

x=x+xy+2	 (t54rk) 

Lx(rt) = aky(Tk)	 ( k E N)	
(26) 

y = cos tx + y + xy sint	(tTk) 
Iy(rk ) = (_1) Ic a k y( 7-k )	(k € N) 

where t E lR+ , z,y E IR, {ak} kEN is a bounded real sequence and rk = -1 7r. The 
functions Q(t) = sin  and 77(t) = sin  + cost are solutions of system (10) and (21), 
respectively, and the conditions of Theorem 2 are fulfilled. Then for system (26) there 
exists an integral manifold with parameter function (t, x) = sintx + sin  + cost.
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