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Concerning the Convergence of a 
Modified Newton-Like Method 

loannis K. Argyros 

Abstract. We provide sufficient convergence conditions for a certain Newton-like method 
to a locally unique solution of a nonlinear equation in a Banach space. We assume that 
the Fréchet-derivative of the operator involved satisfies in some sense uniformly continuous 
conditions, which are weaker than earlier ones. We show that our results apply where earlier 
ones fail. Finally, we solve a nonlinear integral equation of Uryson-type that cannot be solved 
using Proposition 2 in [10]. 
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formly continuity 
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1. Introduction 
In this study we are concerned with the problem of approximating a locally unique 
solution x of the equation

	

F(x)=0,	 (1) 

where F is a Fréchet-differentiable operator defined on a convex subset D of a Banach 
space E1 with values in a Banach space E2 . We propose the modified Newton-like 
method

.4IE'f	\	I	A 

	

X=X,—i r t x n)	tfl_u,XoE 
to generate a sequence fxnln>O converging to x. Here A E L(E1 ,E2 ), the space 
of bounded linear operators from E1 into E2 . For A = F'(xo) we obtain the modified 
Newton method, whereas for A = [x_ 1 , xo; F] (divided difference of order one) we obtain 
the modified Secant method. Several other choices are also possible [5, 6, 8, 9]. 

Let x0 E D, U(xo,R) = {x E EiIII x - xoII < R} c D, and assume that 

	

11 A '(F'( x ) - F'(xo))II :5 w(x - xoII)	(x E U(xo,r); 0 < r < R)	(3) 

for some monotonically increasing function wsatisfying

(4) 
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In the elegant paper [2] stronger conditions of the form 

II F '(x x) - F'(x2)11	v(x - X 211)	(XI, X 2 E U(xo, R))	 (5) 

or, more generally, 

II F '(x i) - F'(x2)11	v1(r, li x ' - X 211)	(XI, X2 E U(xo,r);0	r < R)	(6) 

have been used for some monotonically increasing positive functions v and v 1 with 

	

limv(t) = 0 = limv,(r,t)	(0 r < R),	 (7) t—.o 

in connection with Newton's method 

= Zn - F'(x) 1 F(x) (ri >_ 0,x0 e D). (8) 

Conditions of type (5) and (6) have also been studied in the special cases when v(t) = kt" 
or v 1 (r, t) = k(r)t A for .A E [0, 11 in connection with (8) or more generally with Newton-
like methods of the form

	

= Xn - A(x)'F(x)	(n > 0,x0 E D	 (9) 

[3 - 6]. Here for each fixed x e D, A(x) e L(E1 , E2). 
A semilocal convergence theorem is provided here for method (2) under the weak 

condition (3). In order to demonstrate the importance of condition (3), we apply our 
results to solve a nonlinear integral equation of Uryson type using method (2) for A = 
F'(xo). At the same time we show that corresponding results in the above-mentioned 
papers do not guarantee the convergence of method (2) to a solution of equation (1). 
Finally, we note that the results obtained here are in an affine invariant form, whereas 
the ones in [2, 8, 10] are not. The advantages of results given in affine invariant form 
over corresponding ones not in this form have been explained in [5, 71. 

For example, theNewton- Kantorovich theorem guarantees the existence of a solu-
tion of equation (1) if 

2 1 z , - zOIl II F' (xo) - ' ll' < 1	or	2 1 z , - x ohi e < 1, 

where

ll F ' (x) - F'(y ) hl 5 ti li x -	or	F'(xo)' (F'(x) - F'(y))h]	£ Il x - li 

for all x,yE D. However, for linear operators L,, L2 E L(E,,E2 ) we have 11 L,L2 11 S 
IL 1 11 . il L2 ii . Hence if the first inequality holds above so does the second. However, the 
converse is not necessarily true (see [7: p. 2/Example 1]). Moreover, in some iterative 
methods, the generated sequence is known in some subset S of all affine transforma-
tions with domain E2 . In these cases, it is reasonable to require only S-invariance for 
the associated convergence theorems. This means that both the assumptions and the 
statements of the theorems should remain unaltered, when F is replaced by LF for any 
L e S.
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2. Convergence analysis 
It is convenient to define the number 

a = 11 A ' F( xo)II,	 (10) 

the function
f(r)=a_r+jw(t)dt	 (11) 

the equation
f(r)=0
	

(12) 

and the iteration
to	0

(13) (13) 
t+1=t±f(t) (n>0).J 

We need the following lemma concerning the convergence of iteration (13). A similar 
result is shown in [10: p. 675]. However, our proof is slightly difference, since we make 
the assumption about the existence and the uniqueness of solution r t of equation (12). 

Lemma. Assume that equation (12) has a unique solution r' E [0, R], and that 
1(R) 0. Then iteration {t}> 0 generated by (13) is monotonically increasing and 
converges to r. 

Proof. The function g(t) = t + 1(t) is clearly increasing on [0,r] and f(t) ^! 0 for 
t e [0,r]. So, if tk E [0,r] for some k, we get 

tk < tj + f(t k ) = t k+I	and	tk+1 = tk + f(t k ) < r + f(r*) = r'. 

This proves the lemma by induction I 
We can now show the main semilocal convergence theorem for method (2). 
Theorem. Assume that F is Frdchet-differentiable with (3) and (4), and let f 

be defined by (11). Suppose that equation (12) has a unique solution r E [0,R] and 
1(R) 0. Then equation (1) has a solution x E U(xo, r*); this solution is unique in 
U(xo, R). Moreover, method (2) generates a sequence jX n j n >0 which converges to x. 
Furthermore, the error bounds

- x nhI	tn+i - tn	 (14) 

-	r - t,	 (15) 
hold for all ii	0. 

Proof. We first show estimate (14) using induction on the integer n. For n = 0, 
(2) and (10) give 11x i - a = t i - to, which shows (14) in this case. Suppose (14) 
holds for n = 0, 1,. . . , k - 1; this implies, in particular, that 

Ikk - xoII 5 lkk - Xk_i II + ... + li x i - xoll 
< (tk — tk_I)+ ... +(t 1 —t0) 

= tk - 

tk 

<r'.
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Using the approximation 

F(xk) = F(xk) - F ( xk_I) - A(xk - Xk_1) 

=
 j

1	 (16) 
['(x_ 1 + t(xk - 1k_I)) - A] (xk - Xk_l)dt, 

hypothesis (3), (13), and the induction hypothesis, we obtain in turn 

II X k+I - X kII = IIA'F(xk)II 

=
 

11 10 
A [F'(xk_ l + t(x k - X k_1)) -A] (x k - Xk_l)diII 

^ I A' {F'(x k _ I + i(xk - X k_1)) - A] . Irk - Xk_l II di 
JO 

< I w(jx_ i + t(xk - X k_I) —xoII)II xk - X k_I 11 di 
JO 

	

< I w((i - t)MxkI - r011 + turk - X OII)ll Xk - Xk1 di	(17) 
Jo 

I w((i - t)tk_ I + t k)( ik - tk_I)dt 
JO 

=I
 it, 

w(t)dt 

1(1k) 

= tk+I - tk 

Hence, estimate (14) is true for all n 0. Moreover, estimate (15) follows from (14) by 
using standard majorization techniques [5, 8, 10]. 

To show uniqueness, let us assume that Y  U(xo,R) with F(y) = 0. Using (2), (3) 
and the approximation 

*	*	-lrr,f X k+1 y	Xky	1t rx 
= A' [A(xk - y*) - (F(x k ) - F(y))]	 (18) 

= —A' 
	
(F'(y + t(xk - Y)) - A)] (x k - y)dt, }cr 

we get as in (17)

1 
IlXk+1 - V	L 

	

II < 	w((i - t )ll xo - y lI + tflx - X011) 11-k - ll di.	(19) 

If y E U(xo,r), then Jjxo - y* 11	r and (19) gives 

ll xk+I - II < w(r*)llx k - Y *lI	w(r*)kr*.	 (20)
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If Y  U(xo,R) and r* 0 R, then II y — xoII =pR (0< u <1), and (19) can give 
k+i 

II'k+l - II	(R r Jr.
w(t)di) 
	

(21) 

It follows from the Lemma and (11) that 0 w(t) < 1 for t E [0,R]. Hence it follows 
from (20) and (21) that limt... xk = y. That completes the proof of the theorem U 

Remark 1. It was explained in (2), why sometimes it is useful to pass from the 
function w to the function 

	

th(r) = sup {w(u) + w(v) : u + v = r}.	 (22) 
Consider the function

f(r)=a_r+jt(t)dt	(rE[0,R]) 

where a = '+'( a) and z)(r) = l+w(a)W() (r E [0,R)), the equation 

J(r)=0 
and the iteration

to = 0
tn 

n+1 = j	
(t)dt —w(a) n +a (n >0). 

Replace f by J in the above theorem. Then it can easily be seen by following the proof 
of the theorem that the conclusions obtained there hold in this setting also. 

The following result is a consequence of the contraction mapping principle [4, 71. 
Proposition. Let

9 = sup III - A'F'(x)II < 1 
zED0 

where D0 = U(xo,r i ) c D and r1 = j--. Then equation (1) has a unique solution x 
in U(xo,r i ). Moreover, iteration f X n l n >O generated by (2) is well defined, remains in 
U(xo,r i ) for all n > 0 and converges to x. Furthermore, the error bounds 

	

IIXn	
9 

- x* 	I1Xn - xi II :5
971 

j— II x i - X 0 11 
= 

971a 

1-8
hold for all n > 1. 

To compare our results with the ones obtained in [10: Proposition 21 or in [2: 
Theorem 11, we set A = F'(xo), and assume that (6) holds for v i (r,t) = k(r)t for some 
non-decreasing function k on [0, R). As in [2, 10] define the function 

(r) = a + bf(r - t)k(t)dt - r	 (23) 

where
b= II F'(xo) — ' II	 (24) 

	

and the equation	 - 
(r) = 0.	 (25) 

We now provide a favorable example for our theorem.
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Example. Let E, = E2 = D = C = C[O, 1], the space of continuous functions on 
(0, 11 equipped with the sup-norm. Consider the nonlinear integral equation of Uryson 
type given by

F(x)(t) = x(t) - j p(i, s, x(s)) ds.	 (26) 

Let xo = 0 and A = F(0). Suppose p(t,s,u) = p 1 (i)p2 (s)p3 (u) with two continuous 
functions P1, P2 and p, E C 2 . Setting 

	

1
	I'PI(S)P2(s)ds, -y=	p2 (s)ds	and	8= 	 (2

1
7) 

using formulas (23), (25) - (29) in [1: p. 2781, (10), and (24), we get the function 

k(r) = li p' lic y sup iip ( u )II	 (28)

IIutI:5r 

and the constants

a	-1P3(0) 

	

1 _ 8,(Q) li p ' 11 C	 (29) 

7P3 (0) 
liPIiiC	 (30)
b= 1+ 1 _8p(0)  

provided that
< 1.	 (31)


Choose

	

1	 3 
= (s + 1)' P2(S) =	

= 20(2 V2- — 1)'	
p3 (s) = e'. 

Then by (27) we get =1,3(2-,F2— 1) and 8 = /31n2. Condition (31) becomes 

6p'3 (0) = 31n2 = .5686421 < 1, 

which is true. Moreover, by (28) - (30) and the above values we get 

2/3(2/ - 1) .0027389
	and	b = 1 + 2$(2V' - 1) =  

3(1 -,3 In 2) 	 3(1 -,3 In 2) = 1.0027389 

and k(r) = 1 e'. By (23) and the above values we get 

X(r) = .1 106029e' - 1.1106029- - .0045736. 

It is simple calculus to show that mm	X(r) = . 1060293 > 0, x is increasing on 
rE[O,-4-oo) 

(2.306712, +) and decreasing on [0, 2.3067121. Proposition 2 in [10: p. 674] fails to
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apply since (r) has no zero in the interval [0, R] and x(R) > 0 for all R E [0, +oo). 
However, our theorem applies. 

Indeed, by setting
w(r) 

= 10
r ,	 (32) 

using (11) and the above values we get f(r) = r2 - r + a. The hypothesis of our 
theorem is now satisfied if we set 

=.0027395	and	R = 19.942632. 

Hence, according to our theorem iteration (2) converges to a solution x E U(0, r') of 
equation F(x)(t) = 0 where F is given by (26). Moreover, x is the unique solution of 
the same equation in U(0, R). Furthermore, estimates (14) and (15) hold in this case 
for all n	0. 

Remark 2. Using the choices of the w-functions given in the example we see that 
(r) =	< k(r) for r E [0,R] and by (11) and (23) we get 

f(r)	(r)	for all r E [0,R]. 

If (R) < 0, then 1(R) <0 also. That means that whenever Proposition 2 in [10: p. 
6741 applies so does our theorem. The converse is not true as we showed in the above 
example. 

Remark 3. Assume that the k-functions in Remark 2 are constants (Lipschitz) 
denoted by k and k, respectively. The Newton-Kantorovich conditions in this case 
become

and 

Since in general k k if the second inequality is satisfied so does the first one. However, 
the converse is not true in general. That means that our conditions are weaker than 
the corresponding ones in Theorems 1 - 3 and 4 (1.XVIII) of [8]. 
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