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Abstract. We present a compactness criterion in ideal spaces of vector-valued functions. In the 
case of real functions, the criterion gives a precise formula for the measure of non-compactness. 
In the Lebesgue-Bochner spaces L(R", U) the result can be interpreted as a Riesz compactness 
criterion and generalizes a theorem of Orlicz and Szufla. 
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L The main result 

Let S be a measure space and (U, ) be a Banach space. We call a function x : S - U 
(strongly Bochner) measurable if, on each set of finite measure, x may be approximated 
a.e. (in the sense of the Lebesgue extension of the measure space) by a sequence of 
simple functions. This is the definition used, e.g., in [9]. For a measurable set E c S 
we define the projection PE by PE X ( S ) = xE(s)x(s). 

A normed linear space (X, ) of (classes of) measurable functions x : S -+ U 
is called a preideal space, if the relations x E X and y(s)I !^ Ix(s)I for a measurable 
function y imply that y E X and I lyll !^ 1 1x11. If X is complete, it is called an ideal space. 
In some literature, preideal spaces are called (normed) K5the spaces, and ideal spaces 
are called Banach function spaces; but sometimes additional requirements are imposed 
on these spaces. The proofs of properties for such spaces which are not given in this 
paper can be found in [27, 30, 31]. 

To each preideal space X. one associates a preideal space Xn t of real functions x 
S -+ R in the obvious way by the relation 

x E X	Ix1EXR. 
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X is an ideal space if and only if XR is an ideal space. We will often not distinguish 
between X and XR and thus write, e.g., XE E X. We say that a family M c X has 
equzconiinuou3 norm in X, if 

inf	sup II PE x II = 0	and	urn sup sup J J PD X JJ 0. 
mesE<oo xEM	 60 mesD<6 rEM 

The space X is called regular, if all singletons M = {x} with x E X have equicontinuous 
norm. For example, the Lebesgue-Bochner spaces X = L(S, U) (1 p oo) are 
regular if p < 00. It will be convenient to introduce the shortcut 

M(s)={x(s):xM} 

for a set M c X. 
We are interested in estimating the Hausdorif measure of non-compactness of the 

set M in relation to the Hausdorif measure of non-compactness of the sets M(s). Such 
estimates play an important role in the study of integral and functional equations of 
vector-valued functions (see, e.g., [20, 21, 23, 26]). Recall that the Hausdorif measure 
of non-compactness of a set A in a metric space Y is defined as the infimum of all e > 0 
such that A admits a finite e-net in Y. 

We denote the Hausdorif measure of non-compactness by x(A) (or by X y (A), to 
emphasize the dependence on Y). Observe that y (A) increases, in general, if we 
replace Y by a subspace Yo ç Y with A c Y0 . Thus, it is not surprising that in order 
to get "good" estimates one has to impose geometric conditions on the space (in our 
case, on U). Indeed, for an analogous result in the space of continuous functions [4, 19] 
one looses the factor 2 if the space U does not have certain geometric properties (the 
factor 2 can not be decreased by the examples in [12]). The geometric property which 
turned out useful for that case, is the following 

Definition 1. We say that a Banach space U has the L-retraction property, if for 
each separable subspace U0 g U there exists a function R: U - U with the following 
properties: 

1. The range of R is separable, and R(u) = u on U0. 
2. R satisfies a Lipschitz condition with constant L. 

If L = 1, we say that U has the retraction property. 

We shall also need another geometric property: 

Definition 2. We say that a Banach space U has the (p,q)-exhaustion property, if 
each separable subspace U0 c U is contained in a separable subspace V C U with the 
following properties: There are bounded linear projections Pk : V —* V and numbers q 
such that: 

1. The range Uk = Pk(V) is a finite-dimensional subspace, where U1 c U2 ... and 
V = UUk. 

2. We have lim sup II PkII p, lim sup q	q, and 

lu — PkuI	qk dist(u,Uk )	(u EU0 ).	 (1)
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If p = q = 1, we say that U has the exhaustion property. 

For applications, it is usually sufficient to put q, =	- PkII: For this choice,

estimate (1) is always satisfied, even for all u E V. Indeed, for any Uk E Uk we have 
lu - PkuI = 1(1 - Pk)( u - uk)I	11 1 - PkJI JU - Uk. 

Let us give some examples. Recall that a Banach space U is called weakly compactly 
generated, if there is some weakly compact set K C U whose linear span is dense in U. 
All separable spaces and all reflexive spaces are weakly compactly generated. 

Example 1. Each separable Banach space U has the retraction property. More 
general, if one assumes the axiom of choice, each weakly compactly generated Banach 
space has the retraction property. Indeed, if U is weakly compactly generated, the 
existence of a (linear!) projection R onto a separable subspace containing Uo is proved 
in [3] with the axiom of choice (see also [8: Chapter 5, §2/Theorem 31; for related results 
see [7]). 

Example 2. Each Hilbert space has the retraction and the exhaustion property: 
One may choose R as the projection onto the element of best approximation in U0 which 
is the orthonormal projection onto U0 . Observe that in this way a countable form of the 
axiom of choice is sufficient (we shall assume the so-called axiom of dependent choices 
throughout).' 

Example 3. Each separable Banach space U with a (Schauder) base has the re-
traction and the (p,q)-exhaustion property. Indeed, it is well-known that the canonical 
projections Pk are bounded (uniformly, by the uniform boundedness principle); see, 
e.g., [24: Chapter I, §3] or [14: Chapter 11. Hence, we may put p = lim sup IJPk JJ and 
q	urn sup III - PkII . In particular, each Banach space with a monotone base (i.e. 

I PkII	1) has the (1,2)-exhaustion property. 
Example 4. Each space U = L(S, R) (1 < p < co) with the counting measure 

on S (e.g. U = l, or U = l(S)) has the retraction and the exhaustion property. Indeed, 
if U0 ç U is separable, it has countable support E. Put R = PE, and observe that the 
canonical projections Pk for the canonical base of V = PEU satisfy II PkII = III-Pk 11 = 1. 

Example 5. Each finite-dimensional space has the retraction and the exhaustion 
property. 

To formulate our results as general as possible, we recall two other measures of 
non-compactness: 

The Kuraiowski measure of non-compactness a of a set A in a metric space is 
defined as the infimurn of all c > 0 such that A admits a covering of finitely many sets 
of diameter less than e. 

The inner Hausdorff measure of non-compactness Xi of a set A in a metric space 
is defined as the infimum of all e > 0 such that A has a finite e-net in A, i.e. x(A) = 
XA(A). 

The Kuratowski and the inner Hausdorff measures of non-compactness have the 
advantage that they do not depend on the underlying space (only on the metric). The 
following estimates hold:

x(A) X(A) <a(A) 2(A).
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One should be aware that Xi is (in contrast to x and ) not monotone, in general. 

Our main results are the following sufficient compactness criteria (which, as we shall 
see, are even necessary if U has finite dimension). For a subset M C X of a preideal 
space, we define the expression

n 
w(M)= inf supinf	X_UkXEkM	 (2) (EA.) ZEM Uj .... . tiEU	k=1 

where the infimum is taken over all systems of finitely many pairwise disjoint sets 
E 1 ,. . , E, with XEk E X. 

Theorem 1. Let X be a regular preideal space of functions x : S —p U with a 
Banach space U, and M c X be bounded and have equicontinuous norm in X. Assume 
that there is a function y E X with 

SUP X i(Mo(s)nKn) y(s) a. e.	(Mo g M countable)	 (3) 

for some bounded Borel sets K,, D {u E U: J ul < n}. JIM is countable, it suffices that 
(3) holds for M0 = M. If U has the L-retraction property, we may replace (3) by 

sup L(Mo(s) fl K,,) y(s) a. e.	(Mo c M countable).	(4) 

Then we have the estimate

Xi(M) 5 2(w(M) + 2 11 y 11) .	 ( 5) 

Moreover, if M is separable (in X), we even have 

(M)	2(w(M) + 2 11 y 11) .	 ( 6) 

If U has the (p, q)-exhaustion property, we have 

Xi(M )	2(pw(M) + q II y lI),	 (7) 

and if additionally M is separable, even 

xx(I f)	pi(M) + q II y Ii	 (8) 
For the scalar case U = R, Theorem 1 implies that a bounded set M c X is precom-

pact if it has absolutely continuous norm and satisfies w(M) = 0. This is a special case 
of Krasnoselskii's compactness criterion in the spaces L(S, R) (see, e.g., [13: Lemma 
1.1]): A set M C L(S,R) is precompact if and only if it is precompact in measure and 
has absolutely continuous norm. In this sense, the condition w(M) = 0 means that M 
is precompact in measure. We will make this more precise in Corollary 1. On the other 
hand, the condition (M) = 0 may be interpreted as some "equicontinuity" condition 
(in the norm) for the set M: This condition means that it is possible to approximate the 
functions in M uniformly by "step functions" withfixed steps: Thus, one might suspect
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some connections between the condition (M) = 0 and the compactness criterion of 
Riesz: A set M C L(R, IR) is precompact if and only if it is equicontinuous in the norm 
in the sense that

urn sup II x ( + h) -	0.	 (9) 
h-0 rEM 

This result was generalized for ideal spaces in [11]. The connection of (9) with w(M) = 0 
will become clear in Theorem 3. 

Let us remark that the assumption that X be only a preideal space is slightly "too 
general" in Theorem 1, since each regular preideal space is a dense subspace of a regular 
ideal space (at least, if the underlying measure space is r-finite). To see this, observe 
that it suffices to prove that X is a dense subspace of an ideal space X, because the 
regular part of X is closed by [27: Theorem 3.3.2]. To verify that X is a subspace of an 
ideal space, it suffices to consider U = IR in view of [27: Theorem 3.2.1]. But for this 
case the claim has been proved in [17] (see also [15, 16]) (X has the property (A,0) by 
the regularity). 

In the space X = L 1 (5, U) we may even drop the conditions on the geometry of U 
and weaken the separability assumption on M for (8), if we modify (2): 

Theorem 2. Let X = L 1 (S,U) with a Banach space U, and M c X be bounded 
and have equicontinuous norm in X. Assume that there is a function y E X such 
that (3) holds. If M is countable, it suffices that (3) holds for M0 = M; if U has the 
L-retraction property, we may replace (3) by (4). Put 

w i (M)= inf sup 
11
x-V

( Mes
1 [ x(s)dS)XE	 ( 10) 

k=I
(E') rEM	

L_s	
Ek JEk 

where the infimum is taken over all systems of finitely many pairwise disjoint sets 
E1 ,... , E,, of positive finite measure. Then we have the estimate 

	

x(M) < 1 (M) + 2 11 y 11 .	 ( 11) 

If either M is separable (in X) or U is separable, we even have the estimate 

WI(M) + Il y Il .	 ( 12) 
For Theorem 1 it is worth noting that, for a separable Banach space U, the set 

M ç X is usually separable in X, because X itself is separable: We call a measure 
space S separable, if the system of measurable sets of finite measure with the metric 
d(A, B) = mes(AiB) is separable. In particular, S = R" is separable by this definition. 
This is the definition used in [30]. It can be proved that each regular preideal space 
X of functions x : S - U is separable if S and U both are separable. This fact is not 
evident, but we skip the proof. 

From this point of view, it is not so surprising that we already get a better estimate 
in Theorem 2 if U is separable. However, the question remains open whether one also 
gets a sharper estimate in Theorem 1, if U is separable but M (and thus S) is not. 

Observe that we always have w(M) :5 w,(M). Hence, Theorem 1 might still provide 
a slightly better estimate for x(M) than Theorem 2 (if U has a nice geometry and M is 
separable). However, if one is only interested in the question whether M is precompact, 
the theorems are equivalent:
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Lemma 1. Let X = L 1 (S,U) with a Banach space U, and M ç X. Then we have 

w(M) <w i (M) <2(M).	 (13) 
Proof. For any finite system of pairwise disjoint sets El ,..., E, of positive finite 

measure and any x, y E X we have 

	

(meEk JE,x(s)ds'\.XEk_>('	I y(s)ds
JEk ) I 

=f x(s)ds_J 
k=1 Ek 

ix(s)—y(s)Ids 
k=1 E* 

ilx — yll. 

Hence, two applications of the triangle inequality imply 

n	1 H — 1: EkJE, 
x(s)ds)xEk 

	

 (me	
JE y(s) ds) X	+ 2 11 x - yll	

(14) 

For any C > w(M) we find pairwise disjoint sets E1 , . , E, of positive finite measure 
such that

sup	inf -	UkXE <C. 

In particular, for any x E M we find a function y = >2 U kXEk with li x - yll 5 C. Now 
(14) implies

- 	
( 

mesEkf x(s) ds) XEk <2 11 x - V <2C 

and sowi(M)<2C1 

From the proof we can also see the following stability property of w and w1: 
Lemma 2. Let X be a preideal space of functions x: S - U, and M, M 0 ç X. If 

there is some 6 > 0 such that for each function x E M there exists a function y E M0 
with JJx - < 6, then i(M) w(MO ) + 8. In the case X - L 1 (S, U), we also have 
w i (M) <wi(Mo)+28. 

Proof. The statement for w(M) is a straightforward application of the triangle 
inequality. Thus, let X = L 1 (S,U). For any C > wi (Mo), we find finitely maiiy 
pairwise disjoint sets E1 ,... , E, of positive finite measure such that 

T, /	1 
(/Y(s)ds)XEk <C	(yMo). 

1 1
Y

	k=1	 JEk
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For any x € M we find some y € M with li x - y fl 5 8. By (14) and the triangle 
inequality, we get

-
( mesE J 

1	f x(s)ds)xEk	C+2S. 
Ek k=1 

Since z E M was arbitrary, this shows wi (M) C + 281 

Except for possibly the precompactness of M(s), the conditions of Theorems 1 and 
2 are even necessary for the precompactness of M: 

Proposition 1. Let X be a regular preideal space of functions x : S - U with a 
Banach space U. Then we have

x(M) 2 (M),	 (15) 

and, in the case X = L 1 (S,U), also

x(M) 2 w i (M).	 (16) 

Moreover,
>	inf	sup llPExll	 (17) 

mesE<, xEM 

and
x(M) 2 lim sup sup sup IIPDXII.	 (18) 

6-0 mesD<6 zEM 

In particular, if M is precompact, then M has equicontinuous norm and satisfies w(M) 
= 0 (and i i (M) = 0 in the case X = L1(S,U)). 

Proof. Observe that (16) is a consequence of (15) and (13). Let us now prove the 
statement for the case that M C X is a finite set. 

That the right-hand side of (17) and (18) vanishes in this case follows immediately 
from the definition of regular spaces and the triangle inequality. To see that (M) 0, 
let e > 0 be given and choose a set E of finite measure such that II PECX II < e for 
each x € M. Since the support of PEX has finite measure, there is a sequence y, of 
simple functions with yn(S) - PE X( S ) and l y (s)l 5 IPEx(s)l for almost all s (see, e.g., 
[14: Lemma 4.1.1]). Since X is regular, Lebesgue's dominated convergence theorem 
for regular preideal spaces [27: Theorem 3.3.61 implies fl y,, - PEr il - 0 (n - oo). 
Thus, for any C > 0 and any x € M, we find a simple function y = > U kXEk with 
XEk € X and il - PEril 5 C. By considering a common refinement, we may assume 
that the sets Ek are pairwise disjoint and independent of x (M is finite!). Since 
li x - li = ll( PE X - y) + PEcXII 2e, we have w(M) 2e. 

Now we attack the general case. Given C > (M), we find a finite C-net N C X 
for M. By what we had proved, we find for each e > 0 some set E of finite measure, 
some 8 > 0, and finitely many pairwise disjoint sets E1 ,... , E,, with XE,. E X such that 
for each y € N we have the estimates Il PE y ll	llPr!iIi <e (mesD < 8), and 

inf	y—ukxE,.C.
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For each x E M, we find some y € N with li x - yfl <C. But now the triangle inequality 
implies lI PE xIl C + e, iI PD x ll < C + e (mesD < t5), and 

B 

inf	X -	 C + e. 
U1 .... . uEU 

^	k=i 

We may conclude that (17), (18) and (15) are satisfied I 

Even for U = 1R 1' our compactness criteria are apparently new, and give even a pre-
cise formula for the Hausdorif measure of non-compactness for sets with equicontinuous 
norm (be aware that the apparently simpler formula in L given in [1] is false; see also 
[22]): 

Corollary 1. Let X be a regular preideal space of functions x : S - U with a 
finite - dimensional space U. Then a set M c X is precompact if and only if the following 
holds:

1. M is bounded and has equicontinuous norm. 
2. w(M) = 0 or, if X = L 1 (S, U), equivalently w 1 (M) = 0. 

Moroever, if M is bounded and has equicontinuous norm and the measure space S is 
separable, we have the identity

x(M) = w(M). 

Under the assumption that M be precompact in measure, another formula for 
x(M) was given in [29] (related results in L can also be found in [281). 

Let us remark that the precompactness of M(s) is far from being necessary for the 
precompactness of M. Let us give a typical class of counterexamples in L([0, 1], U): 

Example 6. Let X = L([O, 11, U) with 1 p < 00. Given an arbitrary countable 
set U0 9 U, we may define a precompact countable set M X such that M(s) U0 
for all s. 

Indeed, without loss of generality let 0 E U0 (otherwise we consider a translation 
of U0 and add a constant function afterwards). Choose a sequence Uk E (Jo such that 
Uo = {u i ,u2 .... } and luki 2 for all sufficiently large k (repeat some elements, if 
necessary). Now define a sequence x in the following way: For n = 2' + j (j = 0,... ,2 - 1) put x, = U kx[j2_ k ,(j+I)2_ k j . For all sufficiently large n we then have 
II x II 2	-+ 0, hence the set M = {XI, X2 .... } is precompact. Moreover, M(s) = U0

for each s. 

However, in the theory of vector-valued integral and functional equations, one usu-
ally has an estimate for (M(s)), and our results are applicable. However, w(M) = 0 
may be interpreted as some "equicontinuity" condition on the family M of functions. 
Thus, it is not surprising that this condition may also be formulated similarly to the 
compactness criterion of Riesz, at least for locally compact groups:
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Theorem 3. Let S be a locally compact Hausdorff group with a left Haar measure 
and unit element 0. Let X be a regular ideal space of locally integrable functions x 
S - U which contains all functions XK with compact K c S. Let M ç X satisfy 

urn sup sup jjX hot—	= urn sup lIx -	= 0	 (19) 
h0 -EM iES	 h-.O zEM 

where we have put x h (s) = x(h o s) and x"(s) = x(s o h). Assume that either supp M 
exists and is contained in a compact set, or that M has equicontinuous norm and even 

urn sup sup sup II PD xt II = 0.	 (20) 
mesD<6 tES zEM 

Then w(M) = 0. 

Proof. Let us first assume that suppM c K for some compact set K. Let c > 0 
be given. Choose some compact neighborhood H of 0 such that 

IIx_ h _xII< E	(XEM,hEH). 

Observe that 0 <mesH < oo. Since all functions x E X are locally integrable, we may 
define the "inverse" convolutions ("Steklov functions") 

J
HFx(t) 

= 
1 

mesH 	
x(t o s)ds = isx(s)y(s)ds 

where we have put y(s) = (mesH)' XH• Observe that the function w(t, .$) = r(tos)y(s) 
vanishes for s V H or fort V H 1 oK =: K0 . Since K0 and H are compact and thus have 
finite measure, we may apply Fubini-Tonelli's theorem on the measure space K0 x H: 
The Borel function v(t, s) = t o s has a (compact) range of finite measure and the 
property that preimages of null sets are null sets. Indeed, if N ç S is a null set, it is 
contained in a Borel null set N0 . Then v'(No) is a Borel set, in particular measurable, 
and by Fubini-Tonelli we have 

mes(v(N))  11 0 J XO-1(N0)(t,8)dsdt 
= JKo JH

XN0 (t o s)dsdt = 0. 
 H  

We may conclude that w is measurable on K0 x H. Indeed, if x,, are simple Borel 
functions on the range of v which converge a.e. to x, then x, o v is measurable and 
converges a.e. to x o v. Hence, also the function z(t,$) = (x(t o .$) - x(t))y(s) is 
measurable on K0 x H. Since. X is regular, this implies by [27: Theorem 4.4.21 that the 
abstract function Z : H —* X, Z(s) = (x 3 - x) y(s) is measurable. By [27: Theorem 
4.4.3] the integral over this abstract function (the following formula shows that it exists) 
may be evaluated as the pointwise integral (a.e.), and thus we have the estimate 

Fx — x li = llt	J (x t (s) - x(t))y(s) dsll 

=	... Jxt — x(t))y(s)ds 

= 11 1
 

Z(s) ds ^ L ii Z ( s )li ds 
= j ii x - x II y (s ) ds	e.
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It follows with Lemma 2 for the set FM = {Fx : x E M} that w(M) <w(FM) + e. 
To estimate w(FM), we argue as follows: Since all functions in PHX are integrable, 

the function y must even belong to the associate space (PHX)' (see, e.g., [27: Theorem 
3.4.2]), i.e. we may apply Holder's inequality for ideal spaces: For all t, h E S, and all 
x E X, we get the estimate 

Fx ( h 0 t) - Fx(t)J = f (x°(s) - x(s))y(s)ds	11_ h (s) - xtII IIYII(PHX)'• 

By assumption, we find an open neighborhood 0 of 0 such that for all h E 0 the right-
hand side is less than FIX e for each x E M and each t E S. From what we have shown 
above, the support of FM is contained in K0 . By the compactness there exist finitely 
many t, E S such that K0 is covered by the sets 0 o i. By considering a common 
refinement, we may divide K0 into finitely many pairwise disjoint sets E 1 ,. . . , Em such 
that each Ek is contained in some set 0 0 tj(k). Given x E M, we put Uk = Fx(t)(k)). 
Then for each .s E Ek, s = h o t 3 (k) with some h E 0, the estimate 

Fx(s) - ukI = I Fx (h 0 t3 (k)) - Fx(tj(k))I 
<	E 

II XK, 
holds. Summing up these inequalities, we find 

n 

	

Fx(s) -	ukxEk(s) < XK0(S) 
I -	IIXK0II 

Taking the norm in X for the functions on both sides of this inequality, and observing 
that E1 ,... ,Em was independent from x E M, we may conclude that w(FM) 
Hence, w(M) 2e. 

Let us now assume that M has equicontinuous norm and (20) holds. Given e > 0, 
we find a set E of finite measure and 5 > 0 such that II PECX II < e and II PD x II :5 
e (mesD <5). Since E is of finite measure and inner-regular, it contains a compact set 
K c E with mes(E \ K) 8. We may conclude that II PK x II = IP PE x + PE\K x ii 2e for all x E M. Hence, Lemma 2 implies wx(M) WX(PK M) + 2e. Thus, if we can 
apply the statement for PKM in place of M, we are done. 

To show that PK M satisfies (19), we first prove that the measure of the sets 

Kt,h = ( t o K)/.(F' o h oK)	and	Kh = Kt(K 0 h') 

tends to 0 as h - 0, uniformly for t E S. Indeed, given e > 0, there is a continuous 
function z with compact support such that l z— XKIIL, <e. Then we have ii z"_XIlL, < 

and	- XKh ilL < (h)e, where L denotes the modular function of the Haar 

measure. We thus find 

mes(K hot 
h) = iix - XK ilL,


	

= 1IXK	XlIL, 

11XK - n IL, + li z - z h II L, + lizh - xIl	
(21)


< 2e + li z - zhiiL,
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and
mes(Kh) = IIXK - XK'llLI 

I1XK — Z IILI + li z - z h II	+ li z " - X-lIL,	 (22) 

(1 + i(h))e + liz — z_hllLl. 

In view of the equicontinuity of z and L(h) —* 1 as h -, 0, we thus have sup t mes(Kj,) 
—' 0 and mes(Kh ) —* 0, as claimed. 

Hence, by (20), we find for each c > 0 some neighborhood H of 0 such that for all 
h E H, t E S, x € X the inequalities llPKt, x t Il < e and IIPKhXII <e hold. In view of 

( l( PK X Y'° t ( s ) — (PKx)t(s)I = lx t (s)(x h0t (s) — x'(s)) — XKhot' s) — 

- x"°'(s) — XI(S)I-+ IPK,.hxt(s)l 

and

(PK X
)

—" ( s ) — ( PK X )( s )I = x(s)(x(s) — X(S)) + (x(s ) — XK(s))X(3) 

ix"s — x(s)i + IPKhx(s)l 

we thus find that
limsup sup sup II(PK x) 0t — (PKx)hl 

h—.O rEM 9 ES 

and
lim sup sup (PKx)" — PKXII C. 

h—O rEM 

Hence, the set PKM satisfies (19), as claimed I 

If the ideal space X is even invariant under left-translations of S in the sense that 
x € X implies x t E X and li x il = (like, e.g., X = L(S,U)), then condition (19) 
may of course equivalently be replaced by 

lim sup li x " — x li	lim sup ii x " - x li = 0. 
h•O rEM	 h—.O rEM 

Moreover, in this case condition (20) may be dropped, since it already is a consequence 
of the fact that M has equicontinuous norm. 

Corollary 2. Let X = L(R Th , U) (1 p < no) with a Banach space U. If U has 
the retraction property, we put L = 1, otherwise L = 2. Let M c X have equicontinuous 
norm and satisfy

lim sup f lx(s + h) — x(s)"ds = 0. 
h0 rEM  

Then for each y E X which satisfies y(s) ^! X(Mo(s)) a. e. for each countable M0 ç M, 
we have

-	 xx(M) 2Ly. 

Moreover, the factor 2 may be dropped if either M is separable and U has the exhaustion 
property, or if p 1 and either M or U are separable. If U has the retraction property,
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the family M {(Mo( . )) : M0 ç M countable) consists of measurable functions, and 
thus we may choose y = sup M. 

The measurability of the function x(Mo()) has been proved in [4] (see also [12, 
19]). Here, sup M denotes the smallest upper bound with respect to the order "almost 
everywhere"; this supremum exists (and is measurable) by a theorem of Kantorovich, if 
the underlying measure space is a-finite (see, e.g., [30]). 

A,special version of Corollary 2 for L i ([a,b], U) with a separable Banach space u 
and countable M has been proved in [20) (observe that Corollary 2 shows that it is not 
necessary for that result that M be countable; moreover, our boundedness assumptions 
are much weaker). An analogous version of the mentioned result from [20] for the 
Kuratowski measure of non-compactness can be found in [25]. Applications of these 
special versions to Volterra equations in Banach spaces can be found in the earlier 
mentioned papers [20, 21, 23, 26). 

2. Proofs of Theorems 1 and 2 

The heart of the proofs is the following result which has implicitly been shown in [18: 
Propostion 1.41 (see also [19: Proposition 2]). 

Lemma 3. Let U be a normed space, and U 1 ç U2 ç ... be finite-dimensional 
subspaces. Then for any countable bounded M c U, M = { u i ,u2 ,...), we have the 
estimate

XU(M)	lim lim sup dist(uñ,Uk ).	 (23) 
n—.cc 

Moreover, if U is separable, then there exists a sequence of finite-dimensional subspaces 
U1 C U2 C ... with U = GU; and for any such sequence we have the equality 

XU(M) = urn limsup dist(u,Uk ).	 (24) k—oo 

Proof. Let C be larger than the right-hand side of (23). Then we find some k 
and no with the following property: For any n > no there is some v,, E Uk with 
II - v < C. Since the set of all v,, is a bounded subset of the finite-dimensional 
space Uk, we find for any c > 0 a finite --net N c Uk for this set. In particular, for any 

no we find some u EN with II u - n il 5 C+c. Hence, NU{u i ,. . . ,u,,} is a finite 
(C +,-)-net for M, and so Xu(M) :5 C + E. This proves (23). 

If U is separable, there exists a countable dense subset {w i , W2  }, and one may 
choose Uk = span{w i ,.. . ,w}. To see (24), let C > u(M) and N be a finite C-net 
for M. Given c > 0, we find some k with dist(u, Uk) S c for each u E N. This implies 
dist(u, Uk) 5 C+c for each n, and it follows that the right-hand side of (24) is bounded 
by C + c, hence bounded by u(M)I 

The crucial point in Lemma 3 is that it allows to calculate x from the "outside", 
i.e. without explicit knowledge of a finite c-net. To get an estimate if U does not have 
a nice geometry, we need the following fact.
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Lemma 4. Each separable Banach space U0 is isometrically and linear embedded 
into a separable Banach space V with the (1,2)-exhaustion property. 

Proof. By [5: Chapter XI, Theorem 9 (8)], U0 can be mapped isometrically and 
linear onto a closed linear subspace of the space V = C([0, 1]). Since V has a monotone 
base (namely the classical Schauder system; see, e.g., [24: Chapter I, §3] or (14: Chapter 
1]), Example 3 implies that V has the (1,2)-exhaustion property I 

We emphasize that the proof of Lemma 4 does not require the (uncountable) axiom 
of choice: The Hahn-Banach extension theorem (which is invoked in the cited result) 
can be proved "constructively" in separable spaces (see (10)). 

We do not know whether any separable Banach space may be embedded (isometri-
cally) into a separable Banach space with the (p0, qo)-property with qo < 2. If this is the 
case, one may strengthen Theorem 1. More precisely, if C((0, 1)) may be embedded into 
a separable Banach space with the (p0, qo)-exhaustion property, then our proof shows 
that we may replace (5) and (6) by the estimates 

Xi(M) 2(po(M) + qoII y II)	and	a(M) 2(pow(M) + qollyll), 

respectively. However, it is not very reasonable that better constants than in Lemma 
4 are possible: As a matter of fact, the "universal" space U = C([0, 1)) has the (p, q)-
exhaustion property only for p 2 1 and q 2 2. The latter follows from the result in 
[6] which states that any compact operator K in U satisfies 11 1 + K = 1 + II K 1I : Let 
Uo = U, and Pk : V = U - Uk be as in Definition 2. Since Pk is compact, we have 
III - P = 1 + II PkII 2 2. Thus, for any e > 0 we find some u E Uo = V, u 54 0, such 
that Iu - PkuI 2 (2 - e)I u I 2 (2 - e)dist(u, Uk). With the notation of Definition 2, this 
means q 2 2 for each k, and so q 2 2, as claimed. 

Proof of Theorem 1. Let us first reduce the statement to the case that the 
functions in M are uniformly dominated by a function PXE € X, where E has finite 
measure: 

Suppose that M ç X has equicontinuous norm. Given e > 0, let E0 be a set of 
finite measure with

sup II PE x II < C, 
zEM 

and S > 0 be such that
SUP sup II Pi x II <e. 

mesD<6 rEM 

Since E0 has finite measure, So = suppP 0 X exists [27: Theorem 2.2.4], and by (27: 
Theorem 2.2.5] there is a set E ç So with mes(So \ E) < 5 such that XE E X. For all 
x € X we have PE x = PE X + PSO \EX, and so 

II PE Cx II <2e. 

Note that PEM is bounded in X. By [27: Corollary 3.1.31, the set PEM thus is bounded 
in measure. In particular, we find some natural number no such that the measure of 
the set {s : IPEx(s)I > no} is less than 5 for each x E M. Then also the measure of the
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set D(x) = Is E E : x(s) 0 K 0 } is less than S for each x E M. Now we consider the 
set

Me = {PE\D() x : x EM). 
For each x E M the corresponding function z = PE\D(X) X E M satisfies 

li x - z il = lI PE x + PD(z)x Il <3e. 

Since each measure y E {x, c, Xi} is continuous with respect to the Hausdorif distance 
(see, e.g., [11), we find for each e0 > 0 some e > 0 such that the sizes 7(M) and -y(M) 
differ by at most co. By Lemma 2, the sizes (M) and w(M) differ by at most e. 
Moreover, the corresponding estimate (3) respectively (4) holds for M in place of M 
by our construction. Thus, it suffices to prove the statement for M in place of M (for 
all sufficiently small c > 0). But the set M has by construction the additional required 
property (observe that K 0 is bounded by some number p> 0). 

Thus, we assume without loss of generality that all functions in M are uniformly 
dominated by PXE E X with mesE < oo (and hence take their values in some K0). 

First, assume additionally that M is countable. Since the support of each function 
in M has finite measure, the functions are essentially separably valued (see [9: Section 
111.6/Theorem 10]). This means that after modifying the (countably many!) functions 
on a null set, we may assume that they have separable range. For any C > w(M) we 
can find a finite partition E1 ,.. . , Em of E (with measurable sets E1 ) with the following 
property: For each x E M there is some function z = z1 of the form 

Z>UiXE.	 (25) 

with ui E U such that li x - z il < C. Let H denote the closed linear hull of all values of 
the functions in M and all values of the functions z. Then 'H is separable. 

If U has the L-retraction property, we choose R corresponding to Definition 1 (for 
the subspace H), and denote the closed linear hull of the range of R by Uo; otherwise, 
we put Uo = H and R = I. In both cases, we have 

u0 (M(s)) :5 y(s)	a.e. 

Indeed, if U has the L-retraction property, and N c U is a finite e-net for M(s), then 
R(N) c U0 is a finite Le-net for R(M(s)) = M(s); hence u,,(M(s)) < L(M(s)) < 
y(s). In the other case, our assumptions imply u0 (M(s)) x,(M(s)) <y(s). 

In order to prove (8), choose P,, V, Ui,, p, and q corresponding to Definition 2. If 
we want to prove (6) instead, we choose V as in Lemma 4, and then P and U as in 
Definition 2 (corresponding to U0 := V); in this case we put p 1, q = 2, and tacitly 
identify U0 with a subspace of V in the following. 

To clarify notation, we denote by Xv the preideal space of functions x : S -* V 
which has the same real form than X. Let X k denote the finite-dimensional subspace 
of all functions of the form (25) with ui E Uk. We claim that for each e > 0 there is 
some K such that 

distx(x,Xk) pC + q l dist v(x ( . ), Uk) +E	(x EM, k > K).	(26)
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Indeed, we have

PkZ1(S) - x(s)I = IPk(zz(s) - x(s)) + (Pk x(s) - 

^ II P&II Izx(s) - x(s)I + qk distv(x(s), Uk) 

which implies that

II Pk zz — x li 5 lI Pkll ll	— x ii + qk iIdistv(x(), Uk)ll. 

Since Pk z E Xk, this proves (26). 
For definiteness, let M = {x 1 ,x2 .... }. Putting x ,k( s ) = SUP m>ndistV(xm(s),Uk), 

we have by (26) that

sup distX v (Xm,Xk)	qllx,, , ll +pC +e.	 (27)

m>n 

Since lxn,k(s)l 5 pXE(s) and 

x,k(s) —	Yk(S) = urn sup distv(x(s), Uk), 

we may pass to the limit n — cx in (27) by Lebesgue's dominated convergence theorem 
for preideal spaces (see [27: Theorem 3.3.6]). Thus, we get 

	

urn sup distx(x,Xt) q II ykil +pC +e.	 (28) 

Observe that (24) implies 

Ilk(s) — urn lim sup distv(x(s), Ut) = V(M(S)) < Xuo(M(s)) < Y(S). k—.cx, n— co 

Hence, passing to the limit k —* oo in (28), we find 

urn urn distx(xn ,Xt ) :S llll +pC+e. 
k—.c,o n— oo 

Now (23) implies xx(M) 5 qfly + PC + E. Letting e —* 0, we thus find xx(M) < 
PC + q ll y il . Now the proof of (8) is completed, since V ç U implies Xv g X, and 
x(M) xx(M). For the proof of (6), we observe that a(M) 2xx(M) and that 

a(M) is the same in the space X as in the space Xv.	- 
Now we consider the case that M is not necessarily countable: If M is separable in 

X, there is a countable subset M0 c M with M0 = M (see, e.g., [2: Lemma 2.6]). Then 
we have 1(M) = 7(Mo) for E { a ,xx,x1} . Since evidently w(Mo) < w(M), we get 
estimate (6) respectively (8) by applying the corresponding estimate for the countable 
set M0. 

In general; there exists a countable M0 ç M such that x(M) (M0 )< 2x(Mo) 
(see, e.g., [41). Applying estimate (6) respectively (8) for M0 in place of M, we get the 
desired estimate (5) rspectively (7) 1
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The proof of Theorem 2 is based on the following result. 
Theorem 4. Let X = L 1 (S,U), and let M c X be uniformly dominated by an 

integrable function. Let y be integrable such that 

x(Mo(s)) < y(s) a.e.	(Mo c M countable).	 (29) 

If M is countable, (29) needs to hold only for M0 = M. If U has the L-retraction 
property, we may replace (29) by 

L(Mo(s)) y(s) a.e.	(Mo c M countable).	 (30)


Then the estimate

xi({fx(s)ds : X  M}) 15 2jY(s)ds 

holds. Moreover, if either M is countable or U is separable, we even have 

x(s)ds:XEM}) _<jy(s)ds.	 (31) x({f  
Theorem 4 is proved in [4]. Actually, the result in [4] is only formulated for the case 

that L = 1 and that estimate (29) respectively (30) holds everywhere, but an inspection 
of the proof shows that the result also holds for L > 1 and that the exceptional null set 
may depend on M0 . Also, the proof of Theorem 4 is based on Lemma 3. It is worth 
noting that the idea to use Lemma 3 to prove results like Theorem 4 is apparently due 
to Mönch [18, 19] (although the proof of [19: Proposition 3] contained a small mistake 
in the application of Fatou's lemma which however can be avoided by using Lebesgue's 
theorem instead). We remark that in [12] it is shown by means of an example that, if 
U does not have the retraction property, one may not replace (29) by (30) with L < 2 
(even for S = [0, 1], U = l and countable M ç C(S, U)). 

Let us note that the condition that M C  = Lj(S,U) be uniformly dominated by 
an integrable function in Theorem 4 can actually be replaced by the weaker condition 
that all functions in M have a-finite support and 

lim sup i Ix(s)I ds = 0	 (32) 
'EM D,, 

for each sequence of measurable sets D 0. Indeed, under the additional assumption 
that M is a bounded subset of X = L 1 (S, U), this has been proved in [4]. The general 
case may be established by modifying the proof in [4] by isolating certain atoms of the 
measure space. However, we shall not apply this more general result (although this 
would allow to prove a slight generalization of Theorem 2). 

Proof of Theorem 2. With the same argument as in the proof of Theorem 1, we 
can reduce the statement to the-case that all functions in M are uniformly dominated 
by a function PXE E X. Thus, let us assume this.
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For any C > wj (M) we find finitely many pairwise disjoint sets E1 ,... ,E of 
positive finite measure such that 

supIIx — (	J_"	

) d.'\.jI <C.	 (33) 

	

rEM II	mesEk k 

By Theorem 4, the Hausdorif measure of non-compactness (in U) of the set 

Vk 
= {L. x(s)ds : xE M} C U 

is bounded by

JEk
 

(and we may even drop the factor 2, if U is separable or M is countable). This estimate 
means that, given E > 0, we find a finite (ck + e)-net Nk c U for V&. Now put 

N 
= { 1: mesEk 

UkXEk : Uk E Nk}. 

For each x E M, there exist Uk e Nk such that 

	

JE,	
(k= 1,...,n). 

The function z = DmesEk )'U k X Ek E N thus satisfies 

E(meEk JE, 

x(s)dsxEk)_z
k=1  

= 	JE,^ 
x(s)ds . — Uk	(ck + e) 2 is(s) ds + ne = 2 IlII + ne. 

k = I

By (33) and the triangle inequality, this implies li x — z il C+211 y 11+ne. Hence, N  X 
is .a. finite (C + 2 11 y 11 + ne)-net forM, i.e. Xx(M) !^ C + 2 IIII + ne. Now first letting 
e - 0 (n depends on C!) and then C - w i (M), we find (11). If U is separable or M 
is countable, we may drop the factor 2 in all above formulas. 

The case that M is uncountable but separable in X, is exceptional. To get the 
better estimate (12) in this case, we choose a countable dense M0 g M (recall [2: 
Lemma 2.6]). Then	(M) = (Mo), and by what we have proved so far, x(MO) 

. 1 (Mo) + 11Y11 5 wi(M)+ IIyIj 

Let us remark that Theorems 1 and 2 hold slightly more general: 

1. Instead of requiring that M have equicontinuous norm, it suffices to require that 
each countable subset of M have equicontinuous norm.
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2. Actually, it is not necessary to assume that the sets K are bounded. 

The generalization of Statement 1 is of interest, e.g., for X = L(S, U), if S is not 
cr-finite. For example, (32) is equivalent to the statement that M has equicontinuous 
norm in L 1 (S,U), provided that M has ti-finite support [27: Lemma 3.3.41. But the 
latter is true for countable sets M C L, (S, U) while not necessarily for the whole set 
M.

The generalization of Statement 2 is only interesting in view of the fact that xi is 
not monotone, in general. 

Let us briefly sketch, how the proof of Theorem 1 has to be modified to cover these 
cases. For Statement 1 it suffices to change the order of argumentation: One first has to 
reduce the statement to countable M (with the same arguments as in the proof). Then 
the reduction to the case that all functions in M be uniformly dominated by some PXE 
requires only the equicontinuity of the bounded set M. 

The changes for Statement 2 are more difficult to describe. Actually, our proof 
shows for the case that M is countable and all functions are uniformly dominated by 
some PXE slightly more than as is claimed in the statement. Namely, it is not required 
that x(M(s) fl K,) < y(s) but it suffices that XH(M(s)) < y(s) for some separable 
subspace H c U which contains (essentially) all values of the functions of M. Observing 
that Xii is monotone, the other parts of the proof actually reduce the theorem to this 
special case, if we replace D(x) by D(x) = {s : Ix(s)I > no} (put p = n0). 

It would lead too far to describe the necessary changes in the proof of Theorem 2 
here in detail. Theorem 4 has to be modified appropriately (in particular, one has to 
introduce the sets Kn already in the statement of Theorem 4). 

Let us finally note that Theorem 1 also holds (in principle) for the case that X is 
only quasinormed, i.e. instead of the triangle inequality of the norm, we only have 

li x + y	c(II x ll + Iill) 

with some constant c < oo; the most prominent example is X = L(S, U) (0 <p < 1). 
In this case, one has to replace inequalities (5) - (8) by the respective estimates 

Xi(M) 2c4 (cw(M) + 21Iy1I) 

	

a(M) <2c5 (cw(M) + 2 IIII)	 (34) 
Xi(M) <2c4(cpw(M) + llll) 

	

<c4(cpw(M) + q Il y ll).	 (35) 

Moreover, for countable M one may divide the right-hand sides of (34) and (35) by c. 
Of course, one may discuss whether it makes sense at all to consider the Hausdorff 

and Kuratowski measures of non-compactness in non-metric spaces.
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