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Abstract. In the article, many inequalities of the integrals 

f

00 z e'dt, e"dt, j 

for p > 0, which are related to the incomplete gamma function, are established. The approach 
used in the paper could yield more particular inequalities of the above functions. Some known 
results are generalized, extended or refined. 
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1. Introduction 
It is well-known that the incomplete gamma function is defined for Re z > 0 by 

r(z, x) = I t	e_tdt,	(z, x) =I 
jZI e_ t dt ,	 (1) 

and r(z,o) = r(z) is called the gamma function, r(o,x) = Ei (x) the exponential 
integral. Notice that the integral f00 e' dt can be expressed in terms of the incomplete 
gamma function as

	

f
e t 'dt = r(,xP )	(p> 0).	 (2) 

Thus it is important and interesting to study the function f°° e_ t 'dt and the related 
functions f0

I e _jP dt and flol e jP dt for p> 0. 
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In [2], A. Laforgia and S. Sismondi proved some monotonicity properties for the 
complementary error function 

erfc (x) =	Jetdt	(x > 0) 
OF 

and as a consequence of these they established many inequalities for this function. 
Using the monotonicity and inequalities of the generalized weighted mean values with 
two parameters and the extended mean values defined and studied in [4, 8, 10], the 
first author [5] found some monotonicity results and inequalities for the gamma and 
incomplete gamma functions. Among other things, it is proved that the functions 

(r(s)'s
	GM

____
F(r)) ' 	'	7(r, x)) 

are increasing respect to r > 0, s > 0 and x > 0. Notice that the monotonicity of the 
function [!!)] 1/(3-r) respect to r > 0 and s > 0 is an old and well-known consequence 
of the logarithmical convexity of the gamma function F. By the Tchebycheff integral 
inequality, the first author, L.-H. Cui and S.-L. Xu in [7], inter alia, constructed many 
inequalities of the error function

I 

2' erf(x) =
	

e2dt 
0 

and got the lower bound of the function f 

	

e	
e di and the upper bound of the function 

fI °dt for x > 0 and > 1. From the Hermite-Hadamard inequality, considering the 
convexity of the function e jP and e"' , the first author and S.-L. Guo in [9] obtained 
some inequalities of the functions fox e'dt and f etPdt for x > 0 and p > 0. More 
other inequalities for the gamma and incomplete gamma functions could be found in [1, 
31.

In this article, motivated by [2] and (9], we further researched the integrals 

1.00 

e — " dt ( >0),	jedt (3 >0),	fe_tdi (0>0) 

for x > 0, present some monotonicity properties that generalize one of the main results 
in [2] by A. Laforgia and S. Sismondi, and form some particular inequalities of the above 
integrals.
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2. Main theorems 
The following three theorems are elementary and important and they could yield more 
special results. 

Theorem 1. For any given a > 0, let h(x) be defined for x > 0 by 

	

h0(x) = e' * Je 0 dt +p(x)	 (3) 

where lime	ep(x) = 0 and p satisfies 

	

p'(x) - ax'- P" (X) - 1 > 0.	 (4) 

Then h,(x) < 0. If (4) is reversed, then ha(x) > 0. 
Proof. By direct calculation, we have 

	

h'0 (x) =	al ha(x) - ax°'p,,(x) -	p'(x) - 1 

and	
e[e'h,(z)]' = h(x) - x'ha(X) 

= p'(x) - ax'- P-(X) - 1 
>0. 

From this it follows that eh(x) increases. Since lim....,0e°p0(x) = 0, we have 
lim_ e" h0(x) = 0, hence h0 (x) <0. The proof of Theorem 1 is completed I 

Theorerm 2. Let g fi (x) be defined for x > 0 by 

z 

	

g(x) = e' 
I 

e 
tfl 

dt + q(x)	 (5) 
0 

where lim....o q(x) = 0 and 6 > 0 is any given number. If q satisfies 

	

q(x) + f3x'q(x) + 1 > 0,	 (6) 

then g(x) > 0. 11(6) is reversed, then g,6(x) < 0. 
Proof. Easy calculation yields 

g(x) = —f3x 1 gfi (x) + /3x'qp(x) + q(x) + 1 

and
{egfl(x)]' = e [g(x) + /3x'g(x)] 

= e [q(x) + f3x'qfl(x) + 

Therefore, if inequality (6) is valid, the function e' g, 6 (x) is increasing. This implies 
Theorem 2 1
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Similar arguments lead to the following 
Theorem 3. Define fo(x) as 

	

fe(x) = eZ9 f e-" dt + ro(x)	(9 > 0)	 (7) 

where lim_.o re(x) 0 and

	

r(x) - 9x°re(x) + 1 > 0	 (8)


for x > 0. Then fe(x) > 0. 11(8) is reversed, then fo(x) <0. 

3. Particular inequalities 

3.1 Set p(x) = Ax' - ' (A <0). Then 

P0 (x) :=p(x) - az'p(x) - 1 
=(1 - a)Ax —(1 + cxA). 

For a> 1, if A < -., we get P,,, (x)> 0, thus h. (x) < 0. Hence, for x > 0 and a > 1, 
the inequality

CO 

Ie_t°dt 	 (9) 
J	ax°1 
z 

holds. 
For 0 < a < 1, if A> -, we have P., (x) <0 and h. (x)> 0. Therefore, for x > 0 

and 0 < a < 1, inequality (9) is reversed. 
For a>1, if 0> A> -, when x < ( ( jA), we obtain 

	

f e_todt < A—j ;.	 (10) 

when x > ( ( 1_c)A\i 
I-faA /	inequality (10) reverses. 

For 0 < a < 1, if A < -, when x < ( I+aA
(1—a)A 

) inequality (10) is reversed; when 
(I—a)A x > ( 1-faA	inequality (10) holds. 

C 3.2 Set pa(x) =	 (B > 0,C <0). Then 

P(x) :=p'a (x) - ax0pa(x) - 1 
(1 - a)C - aCx"'(x + B) - (x + B)" 

-	 (x+B)°
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Let a=3andB=1. Then
—2C - 3Cx 2 (x + 1) - (x + 1 P3 (x) =

(x + 1)3 

When - < C < 0, then P0 (x) < 0, thus ha(x) > 0, that is 
CO 3 

	

Ie- 
3 
dt > 

3(x+1)2	
(x >0).	 (11) 

Proposition 1. Denote S(x) = (x E R), with n > 0 odd. If n,6> 1, 
then for x > 0 we have 

(n -	 le
zo 	- 	e x 0 	- i] 
flx	

< 
Jet 

< 
0 

If 0 < nfl < 1, then inequality (12) is reversed. 
Proof. Choose

E[e_2 - S_1(—xfl)] q,6 (x) = 

where E > 0 is an undetermined constant. Direct computation produces 

E{/9xfl [Sn_ 2 (_x) - e'] - (nfl - 1)[e -"' - S_1(_x)J } 
q# (x) = 

and
Q(x) :=q(x) +flx1qfl(x) + 1 

(_')h'fl  =1 +	E - (n,3- l)E(e	- Sn_i(_x) 

	

- l)!	
) 

It is easy to prove that [6] the function "—S" (') r+	is increasing for x E (0, +oo) and 

	

urn e'Sn(x) -	1 

	

z—.0	X+i	- (n + 1)! 
Therefore Q,6 (x) is monotone and 

urn Q(x) = 1 +	E	and urn 
Q,3(X)

= 1 + - 1)! z—. 0	 n!	 z —. -foo 

Now we have
nfl> 1 and E <


	

>0 if	or 

Q$	
0 < n,6< 1 and E <n! 

(x)
nfl> 1 and E > n! 

	

<0 if	or 

0 < nfl < 1 and E> (n—l)!

(12)
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Note that, if n is an odd number, we have e x - S(x) 2 0 (x E R); if n is an even 
number, this inequality holds for x > 0 and reverses for x 0 (this conclusion can be 
found in [1: P. 357] and [6]). Hence, for n/i > 1, we have 

(n - 1)![S_1(-x) - e]	Jet$dt n![Sn_i(—x) - e0] 
Xfl—IC—zp	.	( 13) x_1e

0 

For 0 < n/i < 1, the reversed inequality of (13) holds. The proof of Proposition 1 is 
completed I 

Proposition 2. 
(i) For 8 > 1, we have

	

I
e "' 	

1 
xe—I 

z	
__9


	

-	_____	(x>0).	 (14) 
0 

For 0 < 8 < 1, inequality (14) reverses. 

(ii) Let n > 2 be an integer. If <8 <	i)!, the inequality 

I 

Jet
(n - 1)!	1	'Si(x°)	

(x>0)	(15) 
- 8+(n-1)!(1—n8)  

0 

hold.,; if 0 < nO < 1, the reversed inequality of (15) is sound. 

Proof. Let re(x) = D-E 1' ( x > 0) and D < 0 an undetermined constant. Then 

r (x) D [Oxeeze +(8— 1)(1 —e")] 
=

Xe 

and
Re(x) :=r'9 (x) - 8x°r(x) + 1 

1 - 
=1+8D+(8-1)D( 

X e ). 

When 0 > 1, we get Re( x ) > 1 + D; when 0 < 8 < 1, we have Re(x) < 1 + D. Thus, 
inequality (14) is valid. 

Let

re(x) = FC —Si(x 	
(x > 0;F < 0,n 22). 

Straightforwardly calculating leads to 

8x 0 1e 1 ' - S_2 (x°)] - (nO - 1) [e" - ' r IIeX)=F
Xe
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and
R9(x) :=r'9 (x) - 9x°'r(x) + 1 

= 1 +	F + (1— nO)F(	
- S_1(x9)

). (n—i)! 
When nO - 1 > 0, we have 

Ro(x) > 1 + 
[9+(n-1)!(1—nO)]

F; 
(n—i)! 

when nO - 1 <0, the above inequality is reversed. If

— no— 1>0,	9+(n— 1)!(1 —nO) >0,	F>	
(n 1)! 

(n 1)!(nO— 1) —0' 

we obtain Rg(x) > 0. From this, it is deduced that inequality (15) holds. The proof of 
Proposition 2 is completed I 

Remark. The results in this paper generalize, extend or refine those in [2, 71. 
However, the results in this paper and those in [5, 9] are not included each other. 
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