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On Some Dimension Problems for 
Self-Affine Fractals 

M. P. Bernardi and C. Bondioli 

Abstract. We deal with self-affine fractals in 1R2 . We examine the notion of affine dimension 
of a fractal proposed in [26]. To this end, we introduce a generalized affine Hausdorif dimension 
related to a family of Borel sets. Among other results, we prove that for a suitable class of 
self-affine fractals (which includes all the so-called general Sierpiñski carpets), under the "open 
set condition", the affine dimension of the fractal coincides - up to a constant - not only 
with its Hausdorif dimension arising from a non-isotropic distance D9 in lR2 , but also with 
the generalized affine Hausdorif dimension related to the family of all balls in (1R 2 , Do). We 
conclude the paper with a comparison between this assertion and results already known in the 
literature. 
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Introduction 

This paper deals with self-affine fractals in 1R2 , that is, fractals arising from systems 
of contractive affinities. Even though not so intensively studied as the case of systems 
consisting of similitudes, the construction of fractals by affine maps has been widely 
investigated in recent years. A list of references on the subject can be found, for instance, 
in [17: Chapter 4, Remarks 4.15]. 

Our work is suggested by the recent book [26) by H. Triebel, where fractal geometry 
is studied in connection with Fourier analysis, function spaces on self-afflne fractals and 
fractal differential operators. 

Here we are interested in the geometrical background of the contents of this book. 
In the first chapter of [26] the author gives the definition of affine dimension of a self-
affine fractal. This notion is the "affine counterpart" of the definition of the similarity 
dimension introduced by Mandeibrot for a system of similitudes: in the exponential 
equation defining the similarity dimension, one has to replace every similarity ratio 
with the square root of the corresponding affinity ratio. Here square roots appear, since 
the underlying space is 1R2 . So the affine dimension of a fractal r reduces to its similarity 
dimension if every affinity of the system defining r is a similitude. 

It is clear that a priori the similarity dimension refers to a system E of similitudes, 
but - as is well known - under a suitable hypothesis of "minimal overlapping" it also 
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coincides with the Hausdorff dimension of the fractal r arising from E. Consequently, 
it turns out to be an intrinsic property of r. 

This paper is motivated by the analogous question on the affine dimension, that is, 
by the desire to understand to what extent the afflne dimension is not only a property 
of a system 'P of affinities, but a property of the fractal associated with T. We shall 
prove that for a suitable class of self-affine fractals, still under conditions of "minimal 
overlapping", the afline dimension coincides - up to a constant - with the Hausdorif 
dimension arising from a distance in 1R 2 , which differs from the Euclidean one, but 
accords with the non-isotropicity of the situation. Also, if we agree to work with quasi-
distances, we can choose a quasi-distance in 1R 2 so that these two dimensions are equal. 

Now we give a brief description of the content of the paper. Let us underline that 
for simplicity we work in 1R2 ; still, all the ideas of Sections 2 - 4, at least, apply equally 
in IR". 

In Section 1 we present the basic material that will be needed later on. 
In Section 2 we report a simple example, which in part motivated these investi-

gations: we define an infinite family of systems of contractive affinities satisfying even 
stronger conditions than the usual one of "minimal overlapping". All these systems lead 
to the same fractal, but nevertheless any two of them have different affine dimensions. 

In Sections 3 and 4 we provide an extension of the results proved by Hutchinson in 
[11] in the case of similitudes for the affine context. To this end, we need a new notion 
of dimension with which to compare the affine dimension. We therefore introduce in 
Section 3 the definitions of generalized affine Hausdorff measures and generalized affine 
Hausdorif dimension. These definitions depend on the choice of a family F of Borel 
sets: different families can lead to different dimensions for the same set. We obtain 
conditions which ensure that the afline dimension is an intrinsic property of the fractal, 
or at least of the fractal and the family F (see Proposition 4.1(u) and (iii)). 

In Section 5 we consider a subclass of the family of self-afflne fractals that neverthe-
less is wide enough to contain all the so-called general Sierpiñski carpets. For this class 
we can reinterpret the affinities of the system as similitudes with respect to a new non-
isotropic distance. Therefore we are able to prove Theorem 5. 1, which can be considered 
the main result of the paper: if a condition of "minimal overlapping" is satisfied, then 
the affine dimension of the fractal coincides - up to a constant - with the Hausdorif 
dimension arising from the new distance. Also, the afflne dimension coincides with the 
generalized affine Hausdorif dimension arising from the family of all balls defined by the 
same non-isotropic distance. 

Finally, in Section 6 we briefly compare the propositions of Section 5 with results 
already known about the calculation of the Hausdorif dimension - with respect to the 
usual distance - of self-affine fractals in W. 

We would like to thank: H. Triebel, who allowed us to read the manuscript of his 
latest book in advance and explained to us some of the leading ideas; U. Mosco, whose 
suggestions simplified some of our previous proofs; W. Farkas, M.V. Marchi and L. 
Skrzypczak for helpful discussions.
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1. Notation and preliminaries 

1.1 Carathéodory's construction of measures. We follow the exposition of [17: 
Chapters 4 and 51. Another classical reference is the book [21]. 

Let (X, D) be a metric space. For E ç X we denote by diam E the diameter of E. 
Let F be a family of subsets of X and ( a non-negative function on F, satisfying the 
following assumptions: 

(Fl) For every 5> 0 there are F1 , F2 ,. E F such that X = U1 F1 and diam F1 5 6. 

(972) For every 8> 0 there is F E F such that ((F) S and diam F 5. 

For E c X and 8> 0, we define 

th(E)=inf{((Fi)EcUF1diamFi<8Fie)c*}, 

and letting S - 0+ we define

/3(E) = lirnf3s(E). 

So 3 is a Borel (outer) measure in X and, if the members of F are Borel sets, 8 
is Borel regular. If F consists of all subsets of X, s is a non-negative real number, 
and ((E) = (diain E) 3 , then the resulting (outer) measure is called the s-dimensional 
Hausdorff measure 7-('. If F consists of all balls in X and (is defined as before, then the 
resulting (outer) measure is called the s-dimensional spherical Hausdorff measure P. 
The two measures fl 9 and 5' are related by the inequalities fl'(E) S-(E) 5 2'fl'(E). 
The properties of the measures 1-1' allow us to define the Hausdorif dimension of a set 
EcXas

dimHE = sup {s I 'H" (E) = oo} 

and to prove that dimE = inf{tI V(E) = 01. 

1.2 Similitudes and affinities. Let (X, D) be a metric space. For a map f: X -p X 
the terms Lipschitz-continuous function, contraction and similitude have the usual mean-
ing (see, e.g., [11: p. 716 - 717]). We write Lip  for the Lipschitz constant off. If a is 
a similitude, we denote Lip a by Pa and call p, the (similarity) ratio of a. 

Throughout the paper X is the real space JR 2 . In JR2 we consider also distances 
D different from the Euclidean one, which we denote by D. Nevertheless, all the 
distances we use give rise to a complete metric space, induce the Euclidean topology 
and therefore define the same family of Borel sets. We denote by £ the usual Lebesgue 
(outer) measure. It is well known that, if D = De, then the Hausdorif measure 
coincides - up to a constant - with C. 

If 0 : JR2 - JR2 is of the form '(x) = Ax + h, where A E GL(2,JR) and h E 1R2, 
then is called an affinity. We briefly write 0 = (A, h). We denote I detAl by a 
(or simply a) and call ap the (affinity) ratio of 0. Recall that every affinity 0 has the
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following properties: for any subset E C 1R2 , £ ( ik(E)) = a	is a Lipschitz 
continuous function with a, 5 (Lip 0)2. 

Finally, a one-parametric group Jbt I t > 0} of non-isotropic dilations of 1R2 is 
defined as follows: we fix two strictly positive real numbers 01,02 and we consider the 
family of maps

5t(X) = 6j(x i ,x 2 ) = (t°Ixi)t°2x2) 

(see, e.g., [24: Chapter I, Example 2.3]). 

1.3 Systems of contractions and fractals. We follow [11: §3, §4, and §5] for the 
following subsections (i) - (ii) and [26: Chapter I, Section 41 for subsection (iii). 

(i) Let 4' = {cpj,... , pJ.J } be a family of contractions of 1R 2 (endowed with a distance 
D).

There exists a unique (non-empty) compact set F in JR2 invariant with respect to 4', 
that is, such that F = p 1 (F) U... U goN(F). 

We call F the fractal associated with the system 4'. In addition, let r = {r i ,. . . ,r } 
be a family of N real numbers in 10, 1[ with EN r 1 = 1. Then: 

There exists a unique Borel regular (outer) measure p in 1R2 compactly supported 
and of total mass 1, such that p is invariant with respect to (4', r), that is, 

N 
p(E) = 

	
p('(E))	(E c JR2). 

Moreover, the support of p is the fractal F. 

We say that the system 4' satisfies the open set condition (OSC) if there exists a 
bounded open set 0 in JR2 such that 

(0)c0 

ça(0)fla(0) = 0 fori j (i = 1,2,...,N) J 
Stronger statements than OSC have been considered. The system 4' is said to satisfy 
the strong open set condition (SOSC) if there exists a bounded open set 0 such that 
OSC is verified by 0 and in addition 0 fl F 54 0, where F is the fractal associated with 
4' (see, e.g., [22]). The system 4' is said to satisfy the separated open set condition if 
there exists a bounded open set 0 such that OSC is verified by 0 and in addition the 
closures of the sets cp,(0) are disjoint (see, e.g., [25]). 

(ii) Now we suppose furthermore that the contractions of 4' are similitudes. Then 
we write 4' = E = {ai,... ,aw}. The number d >0 uniquely defined by the relation 

p' = 1 is called the similarity dimension of E. Let F again be the fractalai
 associated with the system E. By abuse of language dE is called the similarity dimension 

of F. Therefore we will write d = dEl' and, when no confusion arises, we simply write 
dE l' = d.
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Let k be the Hausdorff dimension of 1'. The fractal 1' is called self-similar (with 
respect to E) if flk(r) > 0 and i-((r) n (r)) = 0 for i 96 j. 

The following results are proved in [11: §51 for D = De: 
(I) (i) Rd(r) < +00 and so k <d. 

(ii) Let F be self-similar with flk(F) < +oo. Then d = k. 
(iii) If flhi(r) > 0, then d = k and 1' is self-similar. 

(II) If the system E satisfies OSC, then N'([') > 0. Moreover, suppose r 1 = p. for 
= 1,. .. , N. Then the restriction of -d to F is - up to a multiplicative constant - the 

invariant measure with respect to (E, r). 

The first statement in (II) can be made more precise as follows (cf. [22, 23]): 


SOSC	OSC	Rd (r) >0. 

Let us note that Hutchinson's results are extended in [16) to quasi-metric spaces of 
homogeneous type in the sense used by Coifman and Weiss in [3] . For a description of 
the frame within which the results of [16] are included we refer to [19, 20]. 

(iii) Now let us suppose that the contractions of <I' are affinities. Then we write 

Let F be the fractal associated with 'P. The real number 41' > 0 uniquely defined 
by the relation ')'2 = 1 is called the affine dimension of 1' (see [26: Definition 
4.12]). We will often write 41' as 4. It should be observed that in the case of diagonal 
affinities di,F was already considered in [15: Part I, Section 4] under the name of gap 
dimension. The number 41' plays a key role in describing the asymptotic behaviour of 
the eigenvalues of some fractal differential operator in [26: Theorem 30.7] and [9]. 

A particular case deserves attention. Let n 1 , n2 be integers with n 1 ^: 2 and n 2 ^: 2, 
and let T be the subset of JR2 given by 

T = j( t i/n i, t2/n2) t 1 ,t 2 integers, 0	t 1 <n 1 , 0	t2 <n2 I 
Suppose that every element t/,, of the system 'P is of the form (A, h,), where the trans-
lation vectors h, are in T and

A = (1/ni 
11'n2) 

Thus each O i maps the unit square Q onto a rectangle contained in Q . The fractal 
associated with 'P is called general Sierpiiiski carpet in [18]. 

The definition of regular anisotropic fractal in [26: Chapter I, Subsection 4.18] is 
slightly more general. In fact, every i,1, is of the form (A 1 , k), where 

A - (±1/n i	0 

	

- '.' 0	±1/n2
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(the signs depend on i and indicate a possible reflection); the vectors k i still have as 
components integer multiples of 1/n i and 1/n 2 , and are chosen so that each '(Q) is 
still contained in Q and (Q) is different from O(Q) if i J. In [26] the matrices A, 
are written in the form

A - 
(±(2_)a 1	0	

) -	0 

with

a 1 = 2 logn i (log(n i n2 ))' , a2 = 2 logn 2 (log(n 1 n2 ))'	(1.2) 

= 	
1092(n 1 n ) .	 ( 1.3) 

Observe that K and a 1 , a2 are chosen so that a 1 + a2 = 2. 

2. An example as motivation 

In this section we refer to the pathological phenomenon sketched in [26: Chapter I, 
Remark 5.12/p. 31], which is also connected with [6: Example 9.10/ p. 127 - 128]. 

Let 77 be a real number in 10,1[. We consider the system W = { i1,2} of aIfine 
contractions

1(xi,x2) =	x2) 

2 (x 1 ,x 2 ) = ( x 1 +, 71X2). 

The associated fractal set I' is [0, 1] x {0}; if is an integer number, r is a regular 
anisotropic fractal. An easy calculation shows that 41' = 2 (1 - 1092 ii)'. So we 
reach the apparently surprising result that the fractal set r is independent of ,j, whereas 
d 1,I' does depend on it and can even assume any value in J0,2[. 

We will often return to this example and use it to illustrate certain situations. In 
Remark 5.9 we will try to reinterpret it in an appropriate context. 

Remark 2.1. The system 'I' satisfies OSC (e.g., with 0 =]0,1[x]0,1[) and also 
SOSC (e.g., with 0 =]0, 1(x) - 1, 1[). 

Remark 2.2. We can slightly modify the above construction and.obtain as result-
ing fractal the set rq = [0, 1] x {q}, for any q E [0,1]. In fact, if we start with the two 
affinities

tI(xl,x2) =x i, 7x 2 + q(1 - 

2 ( x 1 , x 2 ) =	 1x2+q(1_7))) 

we reach the conclusion that Tq = 0I (rq ) u V12(rq). 

Remark 2.3. The previous example can be easily generalized. If 77 E]0, 1[ and n, N 
are integers such that 1< N n, let us consider the system 'F = {i,... ,pj}, where 

(1.1)
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is of the form (A, h i ) with A = ( I/n ), and h i are N translation vectors chosen 
in {(0,0),(1/n,O),(2/n,0),... ,((n - 1)/n,0)}. The associated fractal I' is of "Cantor 
set" type with dimI' = log N and d,f = 2 (1 - log n)-' log,, N. So the aifine 
dimension can vary only in ]0, 2 . dimH l'[. Note that the system 'I' satisfies SOSC and, 
under . a suitable choice of N and h, also the separated open set condition. 

3. Generalized affine Hausdorif measures 

In this section we define a family of generalized Hausdorif measures which behaves in a 
natural way with respect to the affine maps of 1R2. 

Let F denote a family of Borel sets in JR 2 satisfying conditions (Fl) and (F2). We 
will fix F from time to time, since F has to be adapted to the specific situation. 

Definition 3.1. Let s > 0. We denote by A (and call it the s-dimensional 
generalized affine Hausdorff measure) the outer measure ensued from Carathéodory's 
construction, by setting ((F) = (CF) /2 for every F E F. 

Remark 3.1. For s = 0 we interpret as usual 0 0 = 1; therefore A°, coincides with 
the counting measure. 

Remark 3.2. Let us observe that if F is the family of all balls in (1R2 , De), then 
— up to a constant — = S 3 . Hence A and W are, both zero, positive and finite, 
or infinite. The same result holds if F is the family of all squares in 1R 2 , or of all 
squares with sides parallel to the axes. Note that Definition 3.1 and this remark already 
appeared in [13: Section 9.3: "Volume interpretation of the Hausdorif dimension"]. 

We list now some properties of A. Since the proofs are standard, we will omit 
them. 

Proposition 3.1. 

(1) A is a Borel regular measure. 
(ii) Let E be a subset of JR2 . 110 < .s <t, then A(E) < +oo implies A(E) = 0. 

As usual, this result leads to the following definition. 

Definition 3.2. Let E be a subset of JR2 . We define 

dimE = sup {s 
I 
A . (E) = oo} 

We call dimFE the generalized affine Hausdorff dimension of the set E. 

It follows that dimFE = inf it I A(E) = 01 and that dimFE is invariant under 
the action of bi-Lipschitz transformations 1, such that f and f map F in F. 

Remark 3.3. Suppose F = 13, where 13 is the family of all Borel sets in 1R2 , and 
D = D. Let B E 13 with LB = 0. For every fixed 6 > 0 we can cover B with a 
countable family {F} of Borel sets 'with diam F1 6 and CF1 = 0 (take, for instance, 
F1 = B fl R, where {R1 } is a suitable family of rectangles). Therefore, if s > 0, 
then A(B) = 0. Now let B € 8 with LB > 0. Since LB = .4(B), it follows that
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A(B) = oo for s €]0,2[. Thus for every Borel set B in 1R2 we have dim5B 0 if 
LB = 0 and dimB B = 2 if LB > 0. This is the reason why F will usually be a proper 
subset of S. 

Remark 3.4. The generalized affine Hausdorff dimension dim FE of a subset E in 
2 depends on the family F. In Remark 3.3 we considered the case F = B. Now let us 

suppose that F consists of all balls with respect to D. By Remark 3.2, A- coincides 
- up to a constant - with SS for every s. So, for E ç IR2 dim,E = dimHE. 

The following property of A, with respect to the affinities leaving the family F 
invariant, is the exact counterpart of the behaviour of if with respect to the similitudes. 

Proposition 3.2. Let t be an affinity of 1R2 with ratio a. Suppose that 1' and 
map the family Fin F. Then Ab(E)) = a12A(E). 

Remark 3.5. From Proposition 3.2 it is clear that we are interested only in the 
subgroup of all the affinities & such that 1' and b' leave F invariant. We will denote it 
by GF. It is natural to suppose, in addition to conditions (Fl) and (F2) of Subsection 
1.1, that F verifies the following condition: 

(F3) There are some contractive affinities in 

Note that (F3) is not implied by (Fl) and (F2). 

4. Strongly self-affine fractals and invariant measures 

Now we extend some of the results proved in [11: §51 for similitudes and Hausdorff 
measures if to affinities and affine measures A. 

Let F be a family of Borel sets satisfying conditions ( Fl), (F2), (F3), and GF be 
the corresponding group. Suppose that 'I' = {,. . . , ON } is a system of contractive 
affinities of GF and let F be the associated fractal. We shorten dimF1' to h. 

Definition 4.1. We say that I' is strongly self-affine (with respect to 'I' and F) if 
(1) F = U N I 01(r). 
(ii) A(F) > 0 and A(p(r) n (r)) = 0 for t j. 

Remark 4.1. Definition 4.1 follows the pattern of the definition of self-similar 
fractal in [11: §5]. The term "self-affine" is used in the literature in a wider sense, 
namely to mean a fractal arising from a system of contractive affinities in 1R2 with 
respect to the distance De. Therefore we must point out the difference. 

Remark 4.2. Our definition of strong self-affinity is strictly related to the family 
F. For instance, consider (IR2 ,D). Let F be the family of all balls. Then Gy is the 
group of all similitudes. By Remarks 3.2 and 3.4, "strongly self-affine with respect to 
F" has the same meaning as "self-similar". 

On the contrary, let F = B be the family of all Borel sets; therefore G 8 is the 
whole affine group. Suppose that the fractal I' generated by 'P verifies LI' 0. Since 
dim8 l' = 0 and 4 is the counting measure (recall Remarks 3.1 and 3.3), 1' is strongly. 
self-afflne with respect to 8 if and only if ?i 1 (r) n &(r) = 0 for i 54 j.
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So it is. even possible that the same system W gives rise to a fractal I', which is 
strongly self-affine with respect to a family 1 but not with respect to a different family 
12. For instance, recalling the first example given in Section 2, let us consider the 
system 'I' with t' = 1/2; consequently F = [0, 1) x {0}. If Fj is the family of all balls, 
then 1' is strongly self-aIIIne; on the contrary if 12 = 8, then F is not strongly self-afllne, 
since b 1 (r) fl 02 (r) $ 0. The latter result is still true if JT = R is the family of all 
rectangles with sides parallel to the axes. Indeed, it is easy to prove that for every s > 0, 

= 0; so dimF = 0. 

Our first goal is to compare dim Ff with 41'. For the sake of simplicity we denote 
dimF = h and dF 4. From now on let us suppose that the family I satisfies the 
following additional condition: 

(14) Any compact set in 1R2 can be covered by a finite number of elements of F. 

Observe that (14) is not implied by (11), (12) and (13). Then we can prove 

Proposition 4.1. 
(i) A(F) < +oo and so h < 4. 

(ii) Let F be strongly self-affine with A(F) < +oo. Then 4 = h. 

(iii) If A(F) > 0, then 4 = h and F is strongly self-affine. 

Proof. (i): By (14), we can suppose F c U.. 1 F1 with F1 E F. Then, for every 
pEIN,

F = u,	.. .0 oj,(F) c u,, u,	o . .. 

and diam tt', o ... o Oi,(F1 ) - 0 as p —* no. It follows that, for any b > 0, F can 
be covered by a finite number of elements of the family F with diameter less than b. 
Therefore

A6

	

	 o...o(F))2

it .... . j, 1=1 

=	(aj, ...	)d./2 (F'12 
it ,...,J	1 

<no 

and A(F) < +oo follows immediately. 
(ii) and (iii): By Proposition 3.2 the proof is the same as in [11: Proposition 5.1(4)11 

Remark 4.3. The inequality h ( 4 (which appears in (i) of Proposition 4.1) 
shows that the affine dimension 4 is a natural upper bound for the generalized afline 
Hausdorff dimension h = dimyF for every family F such that 'F c G.F.



742	M. P. Bernardi and C. Bondioli 

Remark 4.4. Let us investigate the role played by the "open set condition". We 
recall that for a system E of similitudes in (1R 2 , D) with similarity dimension dE the 
following implications are true:

usc 

	

OSC	dE=dimHr 

(see, e.g., [11: Theorem 5.3(1)] and, for a more detailed discussion, [22]). The analogous 
assertions are not in general true in the affinity context, at least if the family .1 is not 
properly chosen. So it may happen that 

OSC is verified and A(f) = 0 
OSC is verified and dwl' 54 dim,J'. 

To show this, we return again to the first example of Section 2 and choose F 1?., that 
is the family of all rectangles with sides parallel to the axes. For every 77 E]O, 1[, the 
system '4' satisfies OSC. Nevertheless, A(F) = 0 and 0 = dim 7 r j4 41'. 

We conclude this section with some remarks on invariant measures. We refer again 
to [11] and we extend some of the results given there to contractive affinities. If X is 
any subset of 1R2 , we denote by AIX the restriction of A to X, that is (AIX)(E) = 
A(X fl E), for E c JR2 

The following propositions are the "affine counterpart" of two theorems proved in 
Ill] for similitudes. 

Proposition 4.2. Let be an affinity of CF with ratio a and let X be a subset of 
JR2 Them, for every .s > 0 and for every E in 1R2, 

(A . I '(x)) (E) = aJ/2 (A-IX) (V, —'(E)) 
Proof. See [11: Subsection 2.6(2)] U 
Proposition 4.3. Let 'I' = fOl,. . . , ON) be a family cf N contractive affinities of 

CF . Let a, be the ratio of i/.', and 1' the fractal associated to T. We denote dqr = 4 
and consider the n-pier =	.. , a7'2}. If A(1') > 0, then the unique ('I',r). 
invariant measure of total mass 1 is (A(f))' . AIr. 

Proof. See [11: Theorem 5.3(1)] I 
Remark 4.5. Let 'I' and 1' be as in Proposition 4.3. If A(1') > 0, then the 

normalized invariant measure;i = (A(r))' . AIr obeys the scaling law p(k(F)) = 
al2 for every k = 1, . . . , N. This is the natural extension of the scaling property for 
the invariant measure in the case of self-similar fractals. Let us also note that jU coincides 
with the Radon measure considered in [26: Theorem 4.15]. 

Remark 4.6. Proposition 4.1(iii), Proposition 4.3, and Remark 4.5 show that the 
condition A(1') > 0 seems to be significant. However, it also seems rather hard to 
test. So it is natural to look for conditions which are simpler to check and are sufficient 
to imply it. In the next section we will come back to this problem and show that for 
a suitable, sufficiently large class of systems of contractive affinities, OSC still implies 
that the resulting fractal r satisfies A(1') > 0.
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5. Regular anisotropic fractals and homogeneous spaces 

In this section we limit ourselves to some specific systems of contractive affinities in W. Firstly, we use only diagonal affinities that is those affinities (A, h) such that 
A is diagonal (with respect to the usual orthonormal base of 1R 2 ). Next, our main 
assumption on the system 'I' = , 14'N} is the following: there exist two positive 
numbers 9 1 and 92 such that every matrix A, (corresponding to the affinity Oi of 'I') 
can be written in the form 

A, =	±092)	with r E]0,1[ .	 (5.1)
Ti 

As we will show, these two conditions together with OSC guarantee that the affine 
dimension 41' can be interpreted as an "intrinsic" number related to the fractal F 
associated with 'I', in the sense that 41' depends only on I', 01, and 02 . More precisely, 
this assertion has to be understood as follows: if the fractal F arises from two different 
systems 'I' and 'I' of affinities, satisfying the previous two conditions and having the 
same exponents 91 and 02 , then 41' = d,F. 

Remark 5.1. Systems of diagonal affinities give rise to fractals which in [26: Chap-
ter I, Subsection 4.171 are called PXT-fractals. Our second assumption leads to a 
smaller, class of fractals. Nevertheless, this class strictly contains the class of the reg-
ular anisotropic fractals. To see this it is sufficient to recall formulae (1.1) - (1.3) in 
Subsection 1.3./(iii). 

Remark 5.2. In (5.1) we can suppose 0 < 0 1 :5 02; otherwise it is sufficient to 
change the order of the orthonormal base in JR2 (this is always possible, since we are 
not interested in graphs of functions). 

Remark 5.3. Let us observe that a matrix (' ±e2) with r E]0,1[ can be 
written as (' ±A2) with a E]0, 1[, if and only if the pair (A,, A 2 ) is a multiple of 
( 9 1, 92), that is, if and only if there exists c >0 such that A = c9 (i = 1, 2). 

So, for any matrix of the form (5.1) one can assume that 91 and 02 satisfy the 
property 9 1 + 02 = 2. This choice of 9 1 and 02 is usual in the theory of anisotropic func-
tion spaces (see [26: Chapter I, Subsection 4.171, [8: Subsection 2.21 and the references 
therein) and in the case of regular anisotropic fractals leads to formulae (1.1) and (1.2). 

Our perspective draws us to conclude that, since the underlying space is 1R 2 , it is 
more convenient to assume 01 = 1 and 02 = 0 2 1. This choice leads to simpler notation 
and, as will be seen, to the advantage that we can define in JR 2 a new distance related 
to 0, and not only a quasi-distance related to 91 and 02 . For these reasons we work with 
systems 'I' = 101,. . . , ON } of affinities such that the matrix A, of i,&, has the form 

i±ti	0	
(5.2) 

\ 
I . o	'  

where t, E]0, 1[ and 0 2 1 is a fixed real number. Nevertheless, we often return to the 
case 0 + 02 = 2.
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Corresponding to any system of affinities, whose matrices are as in (5.2), let us 
consider the group G 9 of all the affinities (A, h) such that h E JR2 and A varies between 
the matrices of the form ( ,) (now clearly with t E]0, +[). Any affinity in Go 
can be regarded as the composition of the non-isotropic dilation 

= S(x 1 , x 2 ) = ( tx i , t°x 2 )	( t EJO, +oo[) ,	 (5.3)


the translation given by the vector h, and in some cases a reflection. 
Definition 5.1. For 9 > 1, let No : JR2 - JR be defined by 

No(x) = No(x i ,x 2 ) = max { I x i,Ir2I"°}	 (5.4) 

and let D9 be defined by
Do(x,y)=No(x—y) .	 (5.5) 

Proposition 5.1. No satisfies the following conditions: 

No (x) 0 
No(x) = 0 i and only if x = 0 
No (—x)= No (x) 
No (x + y) No (x) + No (y) 
No(S (x)) = t No(x). 

Therefore, Do is a distance in 1R2 , and bi is a similitude in (1R2 , D 9 ) with ratio t, that 
is Do (Sj(x), 5 (y )) = t Do(x, y). Moreover, (R2 , Do) is a complete metric space. 

Proof. The triangle inequality follows from the formula (a + b)P	&' + b" for

a, b > 0 and p e]0, 1J. All the rest is straightforward I 

Remark 5.4. An element of G 9 is a contraction in JR2 with respect to D if and 
only if it is a contraction with respect to D9 , that is, if and only if t E]0, i[. 

Remark 5.5. No satisfies all the conditions of homogeneous norm except for the 
smoothness condition in 1R2 \{0} (see [10: Chapter 1, Section A] and [12]). 

Remark 5.6. If we substitute the pair (1,9) with one of its multiple (81,92) = 
(c,cO) (where c > 0), then we can define N91 o,(x) = max {Ix i I h / o t, Ix 2 I h / 02 }. N9102 
gives rise to the quasi-distance Do, 9,(x, y) = No, o2(x - y). This quasi-distance becomes 
a distance if and only if 9 ? 1 and 92 > i. 

We recall now that a system 'I' = {i,. . . , i,b,v} C Go can be seen as a system 
of affinities in 1R2 with &,, = t 0 , and as a system of similitudes in (1R 2 , Do) with 
Poi = t. This remark suggests a comparison between the affine dimension and the 
similarity dimension in (1R2 , Do). To this aim, let us first introduce further notation. 

In (JR2 , Do) we denote 

by diam9 E the diameter of a subset E ç R2 
by 'H1 the 1-dimensional Hausdorif measure 
by S the 1-dimensional spherical Hausdorif measure
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by. dimH,o the Hausdorif dimension. 
We also denote 

by l?.o the family of all balls in (1R 2 , Do). 

Let us remark that if F E 1Z8 is a ball in (1R2 , Do) with radius r, then from the Euclidean 
point of view F is a rectangle with sides parallel to the axes and of length 2i' and 2r0. 
It follows that the group G 9 introduced in this section coincides with the group Gi9 
(see Remark 3.5). Finally, if 'I' = {t1 1 ,. .. , ON } is a system of similitudes with respect 
to Do, we denote by d9 the similarity dimension of 'I'. 

Using the notation just introduced, let us compare the affine dimension dwr with 
the similarity dimension d0. 

Proposition 5.2. Let 'I' = {,... , 7Iv} be a family of contractive affinities in Go 

and let r be the associated fractal. Then d,r = 2 (1 + 9)_1 d0. 

Proof. The affinc dimension 4 = 41' and the similarity dimension d9 are uniquely 
determined by

1 = j 
(t+o)d*/2 

= j t0"12 

l=t. 

By the uniqueness of -y such that E N t = 1 we have do = (1 + 9)2'd41 

Corollary 5.1. Let r be a regular anisotropic fractal in the sense of Subsection 
1.3.(iii). Let aI,a2 be as in (1.2) with a 1	a2 . Then 41' = a i d9. 

Remark 5.7. The constant 2 (1 +9)', which appears in Proposition 5.2, depends 
on the choice of the exponents (1,9) in (5.2). A different normalization of the exponents 
would lead to a different constant. In fact, let us substitute (1,9) with (9 1 ,92) = ( C , CO) 
(where c > 0) and let us define consequently the quasi-distance Do, o, in 1R2 (see Remark 
5.6). Then we obtain d9192 = cdo, where do192 is the new similarity dimension of the 
system 'P, and therefore d,1' = 2 (1 + 9)_i c d9192. 

The choice of 0 1 and 92 in the framework of anisotropic function spaces leads to the 
following result. 

Corollary 5.2. Let 'I' = 01,	iJ.'v } be a system of contractive affinities i,b 1 =

( A 1 , h.), where A, is of the form (5.1) and 9 + 92 = 2. Then 41' = d9192. 

Now we want to state the main assertions of this section. To this end, let us first 
prove a lemma, which compares A 0 with Sol . 

Lemma 5. Let s > 0. Then	= 2 1P" S+ .1  
Proof. Let F E R.o be -a ball centered at a point (x i ,x 2 ) of 1R2 with radius r 

and therefore diamo F = 2r. From the Euclidean point of view we have £F = 4r0 
and diam F 2(r2 + r29)V2, where diam F stands for the Euclidean diameter of F. 
Suppose 0 < S	1; if diam F	5, then diam9 F < 8, and if diam 9 F < 8, then 
diam F	By standard arguments the lemma follows I
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Now we can prove the following theorem. We use the notation introduced after 
Remark 5.3 and simply write dimHer as he.	 - 

Theorem 5.1. Let 'I' = , ON } be a system of contractive affinities in Go 
satisfying OSC. Then 41' = dim, 1' = 2(1 + 8)' he and r is strongly self-affine 
(with respect to 'I' and 7o). 

Moreover, let r= (a"2 ,. ..	where a =	is the affinity ratio of .

Then the ('IJ ,r)-invariant measure is 

(A(r)) -' .AIr = ( ,Hh. 	.7-.Ir. 

Proof. (1112 , Do) is a homogeneous space in the sense used by Coifman and Weiss 
in [3]. Therefore we can apply the results of [16] recalled in Subsection 1.31(u). Since 
'F is a system of similitudes in (1R2 , D9 ) with similarity dimension d9 and 'F satisfies 
OSC, it follows that d9 = h 9 . By Proposition 5.2 we have 4 = 2(1 + 8)'h9 . LFrom 
OSC, it follows that fl(F) > 0 and therefore S(r) = s'(r) > 0 (as usually 
4 stands for d1'). By Lemma 5.1 we have A(T) > 0. Proposition 4.1/(iii) implies 
that 4 = dim, 1' and 1' is strongly self-affine, so the first part of the proposition is 
proved. Proposition 4.3 shows that (A(r))' A I 1' is a ( %P, r)-invariant measure 
of total mass 1. By the uniqueness result (A(f))' . AF has to coincide with 
(7(r))' fl[r. Since d9 = ho, the proposition is proved I 

Corollary 5.3. Let 'F be as in Corollary 5.2. Suppose that 'F satisfies OSC. Then 
d,r = h 9192 , where h 9192 stands for the Hausdorff dimension of 1' in (1R2 , D9192). 

Remark 5.8. Also the other assertions of Theorem 5.1 can be easily extended to 
the quasi-metric space (1R2 , D0192 ). One has only to observe that the family of all balls 
in (1R2 , Do) coincides with the family of all balls in (1R 2 , D9 , 02) if (81 , 82 ) = (c,.cO). 

Remark 5.9. We return once more to the first example of Section 2 and try to 
explain it in this new context. Now we have to fix 8. Therefore, since t = 1/2, only 
one 17 is possible, namely ij = 2°. It follows that the affine dimension is d,1' = 
2 (1 - 1092 ij)' = 2 (1 + 0) - This result concurs with Proposition 5.2, since one can 
easily check that the similarity dimension d0 of r with respect to D9 is 1. 

6. Final remarks 

In this section we compare our previous considerations with results already known about 
the Hausdorif dimension of some self-affine fractals. 

Firstly, let us look at the relationship between the usual Hausdorif dimension dimH 
in (1R2 , D) and the Hausdorif dimension dim H,o in (JR2 Do). To this end it is convenient 
to consider in JR2 the norm N1 (x) = max{ lxi 1, JX2 11 and the induced distance D, (notice 
that .N1 and D, are a particular case of No and D9 ). The identity map from JR2 
with the Euclidean distance to JR2 with the distance D, is a bi-Lipschitz continuous 
transformation; so we have dim H E = dim H ,,E, for every E c W. 

Now we can state the following proposition.
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Proposition 6.1. For any E c 1R2 the inequalities 

dim,q,oE	dimiE	dimH2OE	 (6.1) 

hold.

	

Proof. It is easy to prove that if NI (x)	1, then (No(x))°	Ni (x) 5 No(x), 
and that for E c 1R2 the assertion diam 1 E	1 is equivalent to diarn 9 E < 1. If 
diam 1 E 1, the above inequalities lead to (diamo E)°	diam i E	diam9 E. This 
result allows us to prove by standard methods that 'H°(E)	fl(E) 5 R(E), for

any s > 0. Now (6.1) is an easy consequence  

From Theorem 5.1 and Proposition 6.1 we immediately obtain a relation between 
the affine dimension of a fractal and its usual Hausdorif dimension. 

Corollary 6.1. Let 'P be a system of contractive affinities in G 9 satisfying OSC 
and let 1' be the associated fractal. Then 

	

d9 < dimH r	d9	 (6.2) 

and therefore

< dimii r c -j-- 41'.	 (6.3) 

In particular, let 1' be a regular anisotropic fractal in the sense of Subsection 1.3./(iii). 
Let a 1 ,a2 be as in (1.2), with a 1	a2 . Then 

41' < dimH[' < --- 41'.	 (6.4) 

It remains to be shown that the inequalities in (6.1) - (6.4) are sharp. It would be 
sufficient to consider line segments on the x 1 -axis and the x 2 -axis, respectively. However, 
we prefer to achieve the result as a by-product of the next comparisons between our 
propositions and the ones proved in the papers [14, 18]. 

In [181 the author studies general Sierpiñski carpets (see Subsection 1.3/(iii)) and 
proves the following formula for the Hausdorff. dimension of the fractal r: 

	

dimH 1' = log 
m(	

r,snm) .	 (6.5) 

Here 1 < m < n and r (with 1	j	m) are positive integers with the following 
meaning: in and n appear in the matrix A, that is, A = , and rj denotes the 
number of rectangles located at the j-th column. The names of the axes are interchanged 
from those in [181, in accordance with our previous notation. Let us remark that a result 
similar to the one of [18] is obtained in [2] by different methods. 

If we reinterpret the above system of affinities as in Section 5, that is as a system of 
similitudes in (1112 , D 9 ), we easily obtain dim jj , 1' = d9 = log N, where N =	Ti.
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Hence from Theorem 5.1 we have 41' = 2(9 + 1) — 'log N, where 9 = log n. So 
formula (6.1) immediately leads to the estimate 

log, N	dimH F	log N,	 (6.5)


which is equivalent to 

log	 log.. N	 (t) .	 (6.6) 
j=J	 imi 

By an elementary calculation we can conclude: 

(i) dimH 1' = log N if and only if r3 :5 1 for every j, that is at most one 
rectangle is chosen in every column. 

(ii) log N = 9 dimH r if and only if there exists jo such that r30 = N (hence 
ri = 0 for j 54 jo), that is all the chosen rectangles belong to the same column. 

In the proof of the "only if' part in (ii) we used the inequality (a + b)P > a' + b' for 
a,b > 0 and p > 1. So it is additionaly shown that the inequalities in (6.1) and (6.2) 
are sharp. 

These remarks can be extended to some of the fractals considered in the paper 
[14]. Let us underline the fact that not every fractal of [14] can beobtained via the 
construction explained in Section 5, and viceversa. Therefore we describe only those 
systems of affinities which both satisfy the hypotheses of [14] and are contained in G9 
for a suitable 9. They are precisely the systems with which [14: Remark 2/p.549] is 
concerned; as observed in [14], all Sierpiñski carpets are of this type. Again, with respect 
to [14] we interchange the names of the axes. 

Thus we consider systems 'I' = { Ojt where 1 <j m and for j fixed, 1 £ Ti. 
Here Oil = ( Ai, hit), with A3 = (	) and h, = (' ); in addition we suppose 
N = r3 > 1. If we denote by Q the unit square of 1R2 , the further hypotheses 
stated in [14: at p. 534] guarantee that the N open rectangles ?I'i(Int Q) are pairwise 
disjoint subsets of Q . Note that the rectangles are arranged in m columns; moreover, 
all the Ti rectangles of the j-th column are congruent: they have width t, and, since 
'I' c G 9 , height t,. 

In [14: Remark 2] the authors show that dim H 1' is the unique positive real number 
ö defined by

= 1. 

If we reinterpret the system 'I' as in Section 5, we obtain that d9 is the unique positive 
number such that

= 1.
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So, in order to compare dimH F and d9 , it is natural to consider the functions Ii and 
12 defined as

	

M	 In 

r

	

i/O	and	f2(t) =	r' fi()=	i , i•


	

j=i	 j=1 

Let us suppose 0> 1. It is easy to prove the following equivalences: 

(i)' The three conditions 
dimH F = d9 

11=12 
Ti = 1 for all j = 1,... ,m, that is, again, each column contains only one rectangle 

are equivalent.	 - 

(ii)' The three conditions 

do=OdimHF. 
f2 (0e) = (fi(	

8 )) for all 
M = 1, that is, again, all the rectangles are located on the same column 

are equivalent. 

Remark 6.1. To conclude this section, let us come back to the normalization used 
in the theory of anisotropic function spaces (see Remark 5.3). So 0 1 and 02 in (5.1) 
satisfy the condition 91 + 92 = 2; as before we suppose 0	02, therefore we have 
9 1	1	92. If we consider in 1R2 the quasi-distance D9192 induced by N9 1 9 3 (see

Remark 5.6), we can easily prove that Proposition 6.1 now assumes the following form: 

For any E ç 1R2 , the inequalities 

	

dimjoo2 E < dimH E <	dimH,8 1 ,8 2 E	 (6.1)' 
01 

hold where dim H ,o,, 93 stands for the Hausdorff dimension in (1R2,D9192). 

To prove this assertion it is sufficient to observe that N1 (x) 1 implies 

(Ne,92(x)) 83 < N1 (x) < (N8192(x)) 

and then to proceed as in the final part of Proposition 6.1. 
Also Corollary 6.1 can be rewritten in this new framework. In fact, under the same 

hypotheses on the system 'I', formula (6.3) takes the form 

	

d,,1 1'	dimHF <	41',	 (6.3 02 

which for regular anisotropic fractals coincides with (6.4). 
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