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Spatial Riemann Problem 
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Analytic Functions of Two Complex Variables 
H. Begehr and D. Q. Dai 

Abstract. The Riemann boundary value problem is discussed for analytic functions in poly-
discs. Necessary and sufficient conditions for the existence of a finite number of solutions and 
a finite number of solvability conditions are derived. 
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1. Introduction 

Let
=	(z, W) E C2 

V	=	(z, W) E C2 

=	(Z' W) E 0 
= (z, W) E C2

zi < 1 and 1wl < i} 
IzI >1 and 1wl < i} 
ri < 1 and iwi > i} 

izi > 1 and lw > i} 
and let

T2={(l,L)EC2: iii=iwi=1} 
be the characteristic boundary. In this paper we shall be concerned with the spatial 
Riemann problem 

	

Problem (R2 ). Determine four analytic functions	on V ± such that


7Z2 ^P = A(t,)(t,c) + B(t,w)(t,w) 

+ C(t,w)	(t,) + D(t,)(t,La)	 (1) 

= F(t,w) 

on T2 , where A, B, C, D E W and F E W, W being the Wiener algebra of functions f 
defined on T2 such that

f(t,w) =	f,jPl 
(p ,q) EZ2 
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is continuous on T2 , with norm 

	

If 11T2 =	i	Ifp,qI < +, 
(p q) EZ2 

where Z2 = { (p,q) p and q are integers}. 
For the Riemann problem for analytic functions of one complex variable, due to a 

technique of canonical decomposition, complete solutions have been obtained (see, e.g., 
[9, 13]). This problem is also solved for generalized analytic functions, as well as linear 
and nonlinear elliptic and other systems of equations in the plane [1, 3, 4, 6, 7, 15, 161. 
Spatial Riemaun problems were investigated, e.g., in [8, 10 - 12, 14) (for more references 
one is referred to [2]). 

In this paper, we require the unknown functions to satisfy the Cauchy conditions 


	

o(z,00) = 0	for all Izi	1 

	

= 0	for all IwI 5 1 f	
(2) 

so that the homogeneous problem (1) with F = 0 and A = B = C = D = 1 has only 
the trivial solution. We restrict ourself to the case that 

A=1 
B = t'' 

	

C =	 (3) 

D = 

where (1, ), (rn, z), (n, v) E 7Z 2 .. In the general case, that is without condition (3), let 
us first review the main results concerning the one-dimensional Riemann problem 

1 i :=+ G=g on r, (4) 

where r is a closed smooth curve in C, C 54 0 on F and Holder continuous. The function 
C has a canonical decomposition (see [9, 13]) 

G(i) = X(t) (5) 

where X+ and X are respectively boundary values of functions holomorphic in the 
interior and exterior domains determined by F. Inserting (5) into (4) and setting 

+ 

	

+	-z 
+


X-(z) 

problem (4) is reduced to

(t) +i"(t) = g(t)	on r.	 (6) X+(t)
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Two consequences of (6) are now at hand (see [9, 131): 

(i) Problem (R ' , g) is solvable in the sense of Noether. 
(ii) The number of solutions and of solvability conditions is determined by the index 

K, not on other properties of the function G. 
Result (i) is, in general, not true for problem (1) - (2). For Result (ii), it was observed in 
[10] that the solvability of problem (1), i.e. lZ2 p = F, depends on the coefficients of the 
operator i2, which means dependence not only on the partial indices of the coefficients 
A, B, C, D, but also on other analytical properties, e.g. on being the boundary values 
of analytic functions. Some necessary and sufficient conditions for the solvability of 
problem (1) with special coefficients, for example when B = C = 0, were obtained in 
[10: Theorems 3 - 71. 

We remark that, for any positive integers a1 ,b,c1 ,d (i = 1,2) and any continuous 
functions a, b, c, d on T2 , the problem 

a(t,w)f	+ b(t,w)f	+ c(t,t.i)f	+ d(t,w)f	= Fo(t,w)	on 

where

Fo(t,w) = a(t,)tO2 + b(t,w)t)2 + c(t,w)tclw_c2 + d(t,w)t_d1c_d2, 

has the solution
f++(z,w) = za1w02	for (Z, W) E 

for (z, w) E 
f+_(z , w) = Z11W2	for (z, w) E 
f(z,w) = z I w i2	for (z, w) ED 

This example shows that it might be necessary to distinguish statements for the following 
two subjects: 

(a) The solvability (in some sense) of the problem R. 2 = F for a given function F 

(b) The solvability (in some sense) of the problem 1Z2 = F for any function F 

which are equivalent for the Noether solvability of R i I = g and were ignored in [10). 
We do not develop any further along this direction in this paper and confine ourselves 
to case (3). 

For problem (1) - (3), in [10: Theorem 2, p. 2231 it was shown that its solvability 
depends on no more than a countable number of necessary and sufficient conditions 
imposed on the free term. In [11: Theorem 2, p. 36] necessary conditions were found 
for the homogeneous problem to have a finite set of linearly independent solutions, and 
for the inhomogeneous problem to have a finite set of solvability conditions. Readers 
should be aware that the conditions stated in [11: p. 351 in Theorem 2 there are not 
correct, which might be due to misprints. 

We shall find necessary and sufficient conditions for the solvability of problem (1) - 
(3). It should be pointed out that the methods used in this paper could be generalized 
to higher dimensions. This will be carried out in a forthcoming publication.
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2. The homogeneous problem 

In this section, we consider the homogeneous problem (R 2 ), that is, F = 0 in (1). We 
introduée four subsets of V by 

dA {(p,q) E 7L 2 : p>0 and q> 01 
d8 = {(p,q) E Z 2 : p< I and  q >A) 

dc = { (p,q) E Z 2 : p > m and q < 

dD {(p,q) e Z2: p < n and q < 

Let I E W with
f(t,) = : i: fpqtPw,


(p, q) EZ2 

and let X be a subset of V. We define an operator Px : W - W by 

(Pxf)(t,w) = E fp,qtPJ.	 (7) 
(p,q)EX 

Then we have the following consequences. 

Lemma 1. The operator Px defined by (7) satisfies: 

(i) P	P. 
(ii) PxPy = Pxny for all X,Y (=- V. 

Proof. For any f E W with f(t,w) = (p,q)ez2 fpqtj, we have 

Pf Px(Pxf) = Px (
	

f(p,q)tPq) =	fpqtP = Pxf, 
(p,q)EX	 (p,q)EX 

hence P ç P, which proves (i). Moreover, we have 

Px Py f = Px(Py f) =	
(

ip,q iw) =	
fp,qtW = PXuyf. 

(p ,q)EY	 (p,q)EXnY 

Hence PxPx = Pxny, which proves (ii)I 

For the homogeneous problem (1) - (3), we are interested in finding non-trivial 
solutions. We have 

Theorem 1. The homogeneous problem (1) - ( 3) has non-trivial solutions if and 
only if there exist a,8 E {A,B,C,D}, a 0 fi, such that 

dafldflO.	 (8)
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Proof. Assume that (8) holds and let X = d0 fl dfl . Without loss of generality, we 
assume that a = A and 8 = B. Then the functions 

ç(z,w) =	 for (z, w) E 
P'q(z,w) 

= _P_t_A	for (z, W) E V+ 

(z, w) = 0	 for (z, w) E 
(Z ' W) = 0	 for (z, w) E 

for (p, q) E X are solutions of the homogeneous problem (1) - (3). 
Conversely, if (8) does not hold, then dafl dfl = 0 for all a, /3 E {A, B, C, D}, a 54 ,3, 

and, by virtue of Lemma 1, P,j 0 P,j = 0. By applying PdD to (1) we get	= 0. 
It then follows that	= 0. Similarly, we can show that	= 0,	= 0 and


= 0. That is the homogeneous problem has only the trivial solution I 

Let
E = (dA n dB) u (dA fl d) U (dD fl d,) U (dD fl dc).	 (9) 

From Theorem 1, if, for example, dA fldB 0 0, since its cardinal number will be infinite, 
the homogeneous problem (1) - (3) will have an infinite number of linearly independent 
solutions. We now derive conditions for finiteness of the number of solutions. 

Lemma 2. The number of solutions of the homogeneous problem (1) - (3) is finite 
if and only if E = 0, where E is defined by (9). 

Proof. Let E be not empty. Then there exists ( po, qo) E E. Without loss of 
generality, let (po, qo) E d, fl d. Then {(p, q) E 7L2 : p = Po and q ^: qo} C dA fl dB. 

From the proof of Theorem 1, problem (1) - (3) has an infinite number of linearly 
independent solutions. Hence E = 0. 

Conversely, let E = 0. Since dA fl dB  0 and dA fl d = 0, by applying Pd A to 
(1) we get	+(t,) + Pd A (t ) = 0 on T2 . From Pd A \d D ( t " w (p) = 0, we get 
Pd\dço	= 0. Noticing that dA fl dD is at most a finite subset of Z2 , the Fourier 
coefficients of p	contains only at most finitely many terms. One can argue similarly 
for	and	Hence problem (1) - (3) has at most finitely many solutions I 

Lemma 3. Let E be defined by (9). Then E is empty if and only if 

1<0 

.X>v
	 (10) 

Tn	TI. 

Proof. From 

dA fl dB = {(p,q) E 7L2 0 p <land q ^! max(A,0)} 

dA fldc = {(p,q) E	P > max(m,0) and 0 q <p} 
dD fldB = {(p, q) E

	p< thin(n,1) and A q < 

dD fl dc = {(p , q) E	m p <ii and q < min(t,u)}
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condition (10) follows. 
Lemma 4. Let E be defined by (9) and E = 0. Then if the homogeneous problem 

(1) - (3) has a non-trivial solution, we have either 

dAfldD O	 (11) 

or
dBfldCO.	 (12) 

Proof. If dA fl dD = 0 and dB fl dc = 0, by virtue of Theorem 1, the homogeneous 
problem (1) - (3) would have only the trivial solution U 

Lemma 5. Conditions (11) and (12) are equivalent to 

1i>0J	
(13) 

and
l>m 

12>A J'	
(14) 

respectively. 

Proof. From

dA fl dD = {(p,q) E Z2 0 p < n and 0< q < 
dB fldc={(p,q)eZ2 : m<p<l and .<q<z} 

conditions (13) and (14) follow I 
Lemma 6. Let E be defined by (9) and E= 0. Then if (13) or (14) hold, the 

homogeneous problem (1)—(3) has respectively nv and (l—m)(z—A) linearly independent 
solutions, which are given by 

++(Z' W) = 
2;-- (Z,W) =0 

+— ( Z ' W) =0 
(Z ' W) = _P_ng_L 

for all (p, q) E dA fldD, or by 

( Z ' W) = 0 

W) = 
4(z,w) = 

co(z,w) = 0

for (z, W) E 

for (z, w) E D 

for (z, w) E	(	
(15) 

for (z, w) ED	J 

for (z, w) E 

for (z, W) E 

for (z, W) E	
(16) 

for (z, w) ED
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for all (p,q) E d8fldc. 

Proof. We prove only (15). When (13) holds, we have for (p, q) E dA fl dD 

p^!0,q^!0	and	p—n<0,q—v<O. 

Hence the functions ZpWq and	are holomorphic in D+ and V, respectively.

Moreover, we have for (t, w) E T2 

1 . i(t,w) + t 1w'ço(t,w) + tm(t,) + t'p ( t , w )p,qP 1 q

= 1 t"w'1 + t I W o + t m . 0 + 

=0. 

Hence (15) is a solution of the homogeneous problem (1) - (3). 
For different (p,q),(p,q) E dA fl dD it is clear that PPI,g,,CPP2,q2 are linearly 

independent. By calculating the cardinality of dA fl dD, the homogeneous problem 
(1) - (3) has therefore nv linearly independent solutions I 

Theorem 2. The homogeneous problem (1)—(3) has a finite number of non-trivial 
solutions if and only if

1<0

(17) 

m>n>0 

or
O>l>m>n

(18) 

Moreover, if (17) - (18) are satisfied, the linearly independent solutions are given by 
(15) and (16), respectively. 

Proof. Combining Lemmas 2 - 5, we get (17) and (18). The rest follows from 
Lemma 6 U 

Remarks. It seems worth of mentioning the symmetry of the roles of t and w in 
problem (1)- (3). We denote the indices in (3) by (0,0),(1,A),(m,jt) and (n, V). After 
the transform t —* w,' -* t, the indicies become correspondingly (0,0),(11,m),(A,1) 
and (v,n) since B and C are interchanged with one another. In conditions (17) and 
(18) this symmetry is well-preserved. This remark applies also to (26) and (27) below.
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3. The inhomogeneous problem 
For the solvability of problem (R 2 ), we have the following necessary condition. 

Lemma 7. If problem (112 ) is solvable for any F E W, then 

dAudBudcudD=7 2 .	 (19) 
Proof. Let

X Z2 \(dA U dB U dc U dD),	 (20) 
suppose that X 54 0 and consider the operator P. From 

X = (Z 2 \dA ) fl (Z2 \dB ) fl (Z2 \dc) fl (Z2\dD), 

by virtue of Lemma 1, we have 

PX = Pz2\dAPZ2\dBPz2\dcPz2\d 

and

Pz2\d A + = Pz2\dB ( t 1w A co_ + ) = Pz2\(tmwç1+_) = Pz2\d 0 (tw ') = 0. 

Applying Px to both sides of (1), we get 0 = PxF. Thus problem (112 ) is not solvable 
for F satisfying PxF 0. 

Supposing now that (19) holds we seek a particular solution to problem (R 2 ). We 
shrink the sets dA, dB , dc, dD to d'A, dB, d,d'D so that d U d U d' U d'D = Z2 and 
d', fl d = 0 for all a,/3 E {A,B,C,D},a 54 0. Let the free term F have the Fourier 
series representation

F(t,) =	Fp,qt.

(p q) EZ2 

We define

= (pq),Fp,qZPW	
for (z, w) E 

-+(z , w) =	(p,q)EcL'8 Fp,qz_tw	for (z, w) E 
=	 for (z, w) E D+ 

(z,w) = >1(p,q),Fp,qZPwQv	for (z, w) E V. 

From d C d8 , it follows that, for all (p, q) E d, we have p < 1 and q > A. Hence , 
satisfies (2). Similarly, we can show that the rest meet with (2), too. Thus {} is a 
solution of problem (11 2 ) I 

From Lemma 7, we therefore have 
Theorem 3. Problem (112 ) is solvable for any F E W if and only if (19) holds. 
If the set X defined by (20) is not empty, then by virtue of Lemma 7 problem (112) 

is not solvable. Moreover, when X is an infinite set, the free term F has to satisfy an 
infinite number of solvability conditions. We now seek conditions so that only a finite 
number of solvability conditions is needed.
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Lemma 8. If problem (R2 ) has only a finite number of solvability conditions, then 

1>0 

-  
n>m	

(21) 

it 20. 

Proof. From the proof of Lemma 7, the set 

X =Z2\(dAUdBUdCUdD) 

must be finite. Ill < 0, there would be an infinite gap 

((p, q) E Z2 : l<p <0 and q > max(A,0)} 

between dA and dB for whatever A is. This gap can not be filled up by dc and dD since 
for (p, q) E dc or (p, q) E dD, we have q < z or q < ii. Hence we must have 1 2 0. By 
considering dB fl dD, dc fl dD and dc fl dA, respectively, we get the rest of (21) I 

Lemma 9. If problem (R2 ) has a non-empty finite set of solvability conditions, 
then'

Ar,0) 
M 0	 (22) 

n$o.J 

Proof. If A = 0, by virtue of Lemma 8, we have 

	

dA UdB ={(p,q)eZ2 : —cx<p<+oo and q2o}=7L?4 .	(23) 

Let V = Z\Z. Then from 

X = dc fl Z2	(p, q) E 7L 2 : p2 in and q < min(j,0)} 
= (p, q) E Z 2 : p2 m and q < 01 

and
d = dD fl Z2	(p, q) E Z 2 : p < n and q < min(zi3O)} 

={(p,q)EZ2: p<n and q<0} 

we have, in view of (21),
dud=Z.	 (24) 

From (23) - (24) we get
dA u dB u dc u dD = Z2.	 (25) 

By Lemma 7, (25) implies that the set of solvability conditions is empty. Hence A $ 0. 
Similarly, we have in 0 0 and n 0 01
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Lemma 10. Under the assumption of Lemma 9, we have: 

(i) If A >0, then ii <0 and A> p (and in n <0). 
(ii) If A< 0 then rn >l(>0) and u<0 (and n >rri> 0). 
Proof. We prove only the first statement. Suppose that n 0. From zi 2 A, we 

have
dB U dj D {(p,q) e Z2: p < min(l,n) and q 2 A} 

U {(p,q)	: p < min(l,n) and q < 
= (p, q) e Z2 p < min(l,n) and -	<q < +oo} 

((p, q) e Z2 p <0 and - cc <q < +oo}. 

Since p20 and v>A>0,wehave 

dD UdC D {(p,q) E V p < n and q < o} U {(p,q) E Z2 : p2 m and q < 0} 
D{(p,q)EZ 2 : _cx<p<+ooandq<0}. 

Hence dA U dB. U dc U dD = V which shows that n <0. Similarly, we can show that 
A>pI 

From Lemmas 8 - 11, we get 
Lemma 11. Problem (112 ) has a finite number of solvablity conditions only if 

120 
v>A>p20>n2m}	

(26) 

or
n2m>120>u^A}	

(27) 
p> 0. 

Let X 1 , X2 C V be defined by 

X i ={(p,q)E7Z 2 :n<p<O and p<q<A}	 (28) 
X2 = {(p,q) E Z 2 : l <p < m and v q <o}.	 (29) 

The cardinalities of these sets are respectively (p - A)n and (I - m)v. Moreover, we 
have

Lemma 12. Let conditions (26) or (27) be satisfied. Then 

Z2 \(dA U dB U dc U dD) 
= {

X 1 if (26) is satisfied 

X2 if (27) 
is 

satisfied 

where X 1 and X2 are defined by (28) and (29). 
From Lemmas 11 and 12, we get 
Theorem 4. Problem (112 ) has a finite number of solvability conditions if and only 

if (26) or (27) hold, i.e. P 1 F = 0 or P,F = 0. 
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