
Zeitschrift für Analysis und ihre Anwendungen 
Journal for Analysis and its Applications 

Volume 18 (1999), No. 4, 849-858 

Limits of Inner Superposition Operators 
and Young Measures 

L. De Pascale 

Abstract. We apply some well known theorems from the theory of Young measures to the 
theory of inner superposition (composition) operators. We give an explicit characterization 
of the limit operator of a weak-convergent sequence of inner superposition operators between 
Lebesgue spaces. 
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1. Introduction 

In order to study the stability of the solution of boundary data problems for functional-
differential equations one is required to study weak and strong convergence (see Section 
2 for the definition) of operators Ill, while the applications to optimal control problems 
governed by such equations require the study of the so-called weak-continuous conver-
gence (see Section 2 for the definition and Section 4 and [ 3] for a full explanation). 

In the case of functional-differential equations with deviated argument, inner su-
perposition operators are naturally involved. Let ci be an open subset of R' and let 

ci R1V be a function such that 

IBI =0	:	g(B) = 0	 (1) 

where B is a subset of ci and IBI is the Lebesgue measure of the set. The inner 
superposition operator associated to g is defined by 

- I u(g(x)) if g(x) E ci 

	

(T9u)(x) - 0	if g(x) V Q.	 (S) 

Since (1) holds, this operator is well defined in the space of all measurable functions 
on Q. Indeed, (1) guarantees that the value of the operator does not depend on the 
representative in the equivalence class of functions. 

Young measures have been introduced (by L. C. Young) in the Calculus of Variations 
as generalized solutions for various kinds of problems, and are now used for many 
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different applications (see [19, 20] and the references therein). The theory developed up 
to now is fairly big and its discussion or exposition are out of the targets of this paper. 
In the next section we just report the basic definitions and theorems that we will need 
in this paper. 

In this paper we first use Young measures to give a representation formula for the 
limit of a sequence of inner superposition operators. Then, in the last section, we give 
some application to optimal control problems governed by a non-local state equation. 

2. Notation and preliminary results 
In this section we set the notation, and recall the main results about convergence of 
sequences of operators, in particular about inner superposition operators. From now 
on, Q is an open bounded subset of R' and g, a function verifying (1). As usual, XB is 
the indicatrix of the set B (i.e. is equal to 1 on B and 0 outside B). Further, £N is the 
Lebesgue measure in R", and £"(B) is sometimes denoted by IBI. The derivative of 
a measure with respect to another will be intended in Radon-Nikodym sense (see [131). 
M(1l , R N ) is the space of vector-valued Radon measures on Q, which is known to be 
the dual space of C0() in the case N = 1, and M+(cl x RN) is the space of positive 
Radon measures on Q x RN. 

Unless otherwise explicitly mentioned, we always assume A, A : X - Y to be 
linear operators between Banach spaces X and Y. We indicate with X' and Y' the 
duals of X and Y, respectively, and with Ai,, A' : Y' - X' the adjoints of the operators 
A L,, A, respectively. The space of linear operators between X and Y will be denoted by 
£(X, Y), and IITII p _. q will be the norm of the operator T in the space £(LP , Lu). 

Definition 2.1. We say that the sequence A,, converges to A 
(U) uniformly, if it converges in the norm of £(X, Y) 
(S) strongly, if A,,x - Ax in Y for all x E X 

(W) weakly, if A,,x - Ax in Y for all x E X 
(CW) continuously weakly, if A,.x,. - Ax in Y for any weakly converging sequence 

- x in X. 

For the weak and continuous weak convergence we adopt the notation A,. - A and 
respectively. We recall that all the above types of convergence are induced 

by the respective topologies in £(X, Y), which we will refer to as uniform, strong, weak 
and continuous weak operator topologies, respectively, but in general only the uniform 
topology is rnetrizable (see [12: Chapter IV]). In this paper, however, we operate in 
terms of sequences. (U'), (S') and (W') denote respectively the uniform, strong and 
weak (pointwise) convergences of the sequence A',, to A'. 

In the next lemma we summarize the relationships among various kinds of operator 
convergences. 

Lemma 2.1. The following implications hold: 

(5) = (W)	(W') .	(CW) .= (S') 

(U)	 (U')



Limits of Inner Superposition Operators	851 

Moreover, if X is reflexive and Y is uniformly convex (in particular, if Y is a Hubert 
space), then (CW) (S'). Any of the above convergences implies the uniform bound-
edness of the whole sequence and the boundedness of the limit operator. 

Proof. For the proof of most of the implications the reader may consult [11], the 
others being trivial I 

Remark. All the convergences of the previous lemma imply the weak convergence, 
so a representation theorem for weak limits cover all the others cases. 

2.1 Convergence of inner superposition operators. We now turn our attention 
to the case of inner superposition operators. Inner superposition operators have been 
introduced in [1) while the study of strong convergence of sequences of these operators 
has been started by M. E. Drakhlin [9] in order to enable the study of continuous 
dependence on parameters of solutions of functional differential equations. The interest 
on weak continuous convergence in optimal control theory is explained in [3, 4] for the 
case of inner superposition operators. We recall some results contained in [11], the first 
important paper on the subject, and from [15]. 

Let M(ST) the space of measurable functions on Q. 

Theorem 2.1. Let a sequence of inner superposition operators T9  
converge strongly to an operator T : M -* M. Then T is an inner superposition 
operator, that is T = T9 for some g. 

Theorem 2.2. Let a sequence of inner superposition operators Tg : LP -* 
converge weakly to an operator T9 : L -+ L', while 1	q	p < +00. Then the

convergence is strong. 

Theorem 2.3. Let a sequence of inner superposition operators T9 . : LP - 
converge weakly to an operator T L -	while 1 < q < p < +00. Then T has the

following properties: 

(1) T is a positive operator (i.e. maps non-negative functions in non-negative ones). 
(ii) II T IIoo.r < ici, where 1	r	+00. 

T E C(L r , L 3 ), if either 1 < s	r < +00 and ^ , or r = +oo and 
1 <S +00. 

Finally, we recall a recent result from [15] which states that the linear combinations 
of inner superposition operators are sequentially dense in £(LP, L) with respect to the 
strong and weak-continuous convergences. 

Theorem 2.4. Any operator in £(LP,L) (1 <q p < +00) is a limit of some se-
quence of linear combinations of inner superposition operators, converging both strongly 
and continuously weakly. 

2.2 Young measures theory. In this short subsection we recall the main definitions 
and results of Young measures theory. Moreover, we give some fundamental biblio-
graphical references on this subject. This introduction is in the spirit of [7].
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• Definition 2.2. Let ci a bounded open set in R", and let u E L°°(ci,R"). The 
measure Yu E M(ci x R N ) defined by 

	

fOXRN
ydY = fn ço(x,u(x))dx	 (2) 

for all : ci x RN	R, W E C(ci x RN), is called Young measure associated to u. 

It follows from this definition that 

7r#y _rN[ci 

where ir denote the projection ci x R" —* ci and 7r#,u(E) := ji(E x R N ) . The last 
property motivates the following definition. 

Definition 2.3. A Young measure in ci x R" is a non-negative Radon measure 
IL E M(ci x RN) satisfying #i = r[ci. 

Then a standard application of the disintegration theorem for measures allow us to 
write a Young measure as a parametrized measure, i.e. a weakly measurable function 

ci	M(R"). We will use for such a function the notation v = { uz}rEc2. 

The fundamental theorem for Young measures has various versions more or less 
general. We report the following from [2]. 

Theorem 2.5 (see Ball [2]). Let ci be a bounded measurable set in RN and let 
K C R' be closed. Let {u k } be a sequence of measurable maps with values in RN 
satisfying for any open set U containing K 

E ciUk(X) V u)) — 0	ask 

Then there exist a subsequence { u k, } of {Uk} and a measurable family of positive mea-
sures { Vz}XEO on RN such that 

(I) v(R') < 1 for a.e. x E ci 
(ii) suppux C K for a. e. x E ci 

(iii) for any l' E C 0 (R N ) with '(y) — 0 as II — +00 we have 0 0 U k, — v weakly* 
in L where v(x) = ffiN ,&(y)dv(y). 

Moreover, if we assume that Supk f0 h( I u kI) dx < oofor some continuous non-decreasing 
function h : [0,00] — R such that h(t) —+ oo when t —* oo, then u1 is a probability 
measure. 

For a short and smart introduction of the concept of Young measure the reader is 
referred to [7] and to [2, 16 - 20] and references therein for a deeper account on old and 
recent development and application of the theory.
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3. A representation theorem 

Let {T9 } be a sequence of inner superposition operators in £(LP(cz), L(cz)), and let 
x0 Q be fixed. We can assume that for x E Q either gn(x) E Q or g(x) = zo without 
modifying the operators T9. 

Assume that T9 - A weakly. The scope of this section is to give a representation 
formula for A. 

Lemma 3.1. Assume that {g,,} C Loo ( , RN ) satisfy all the hypotheses above, i.e. 
the values of gn(X) are in Q U(xo), and that the associate sequence of inner superposi-
tion operators converges weakly to some operator A. Then: 

a) {g,} generates just one Young measure v = {vZ}ZEc. 
b) For a. e. x, SUPP(VX ) C Q U{xo}. 
C) If ç E Co(1l), then Ap(x) = 
Proof. Let u e C0(RN) and let ü be the restriction of u to 9. We have 


u(g(x)) = (T9 u)(x) + X\g_i(fl)(X)U(XO) 
= (Tgn i)(x) + (xn -Xg(fl))(X)U(XO)	

() 
= (T9,,i)(x) + (Xn - Tg)(x)u(xo) 
- Au(x) + (xcz - A)(x)u(xo). 

So the weak limit in Lq of u(g) exists and does not depend on the subsequence of 
{g,,} we choose. This proves statement(a). Statement (b) follows from the fundamental 
theorem on Young measures, while statement (c) follows from the proof of statement 
(a)I 

It is natural now to define an operator A: C0 (l) —p Ll) in the following way: 

(Au)(x) = (u, v.) (4) 

Using the Jensen inequality and the fact that A coincides with the restriction of A to 
Co(Q) we obtain

= 
f(u,v)dx 

	

L(I'l , V,)dx	
(5) 

= lim 
in 

T9(IuI9)(x)dx TIOO 

^ cIIuIIP 
for any u E C0(cZ). 

The following theorem adds a "nice" property to the parametrized measure ii = 
{ zi}ç. For each Borel set B C Q define 

	

A(B) = fi'(B)dx	 (6)


This is a measure on ft
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Theorem 3.1. If the operator A admits a continuous extension in £(LP, La) , then 
is absolutely continuous with respect to the Lebesgue measure 

Proof. Suppose by contradiction that there exists c > 0 such that for any 8 > 0 
there exists an open set A5 with IA 5 I <8 but A(A 6 ) > E. Then we can choose a function 
yb E Co(R N) such that 1 on A 5 , 0 < W6 < 1, cps(xo) = 0 and Ik5IILP <28. Then 
we have

I (, vdx > I ( L/1 (A5 ))dx > cj ( A6 ) > Ceq.	 (7) 
Jc	 Jcz 

Then	— 0 in L P but A 5 74 0 in L q which is a contradiction I 

Consider now a positive Borel function h. For each x E Q the integral 

(h, ii )
	

(8) 

is well defined. Moreover, thanks to Theorem 2.5 given another Borel function h 1 such 
that h 1 = hL N a . e ., we have 

(h, v.) = ( h 1 ,v)	£N — a.e.	 (9) 

For any positive u E LP (1l) we can define (Au)(x) = (u, zi), where ü is any Borel 
representative of u. Let us now prove that A =A on the cone of the positive functions 
of L. This will permit to define Au = Au+ — Au and to prove that 

Au(x)=(u,u).	 (10)


Theorem 3.2. For all positive u e L, Au = Au. 
Proof. To prove that the two operators coincide we will prove that there exists a 

constant c such that for all positive functions u in LP the inequality I l AuIlL C IIuIILv 
holds true. From this we will reach the conclusion, since we know that A and A coincide 
on a dense subset, namely Co(1l), and that A is continuous. 

Step 1 (Bounded functions): Let 0	h(x)	M, e > 0, and consider a function 
h	Co() such that £''({x E Q1 h(x) 54 h(x)}) E, II 1lc- 1 IILp <eand  < h <2M.

We get 

For the first term in the last expression we have 

I (h,v)dx= lim [Tg,(h)(x)dx
n co Jci

= lim fn (T9h(x)dx (12) 
= lim IITgn1cIIq 

TI	X) 

< cqIIh hg — LP
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and for the second term 

0 J (h_h,u)dx 
< Jf	 2MA(SI 	 (13) 

where Q, denotes the set {x E S11 h(x) 54 he(x)}. Since ft is absolutely continuous with 
respect to £", the proof of this step is completed. 

Step 2: 0 h(x) oo (the unbounded case). We apply a classical technique from 
the theory of semicontinuity for integral functionals. Let {h} be a pointwise increasing 
sequence of bounded functions converging almost everywhere and in LP to h. Using the 
Beppo-Levis theorem we get

(h, v1)	a.e.	 (14)


and, using the Fatou lemma, 

in
<liminf ff, (h,v)dx	liminfcllhnlll,. (15)
 °°  

Thus the theorem is proved U 

4. Some applications 

Consider a sequence of optimal control problems for abstract state equations of the form 

min {J(u,y): A(y) = Bu ((u, y) E  x Y)}	 (16)


where Y is a topological space of states, U is an Hilbert space of controls, and 

J:UxY-4R	 (17)


is the cost functional defined by

J(u,y) = IIuII 2 + '4'(y) (18) 

with 'P a continuous functional on Y, A : Y - V, and Bn E £(U, V) where V is some 
reflexive Banach space. A general theory of the convergence of optimal control problems 
in this setting as been developed in [3]. 

Assume that A n- + A (see [3] for the definition), and that B - B and BB - K, 
where K is some linear operator. Then the following theorem holds (see [3]). 

Theorem 4.1. Let (u,y) € U x Y be a sequence satisfying A(y) = Bn Un for 
every n E N and

lim J(u,y) = inf {J(u,y) : A(y) = Bu} n—.00	 UxY
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(in particular, (Un,yn) can be an optimal pair for the n-th problem). Suppose that 
(un,yn)	(u, y) in U x Y. Then: 

(i) (u, y) E U x Y is an optimal pair for the problem 

min ^Au,)+ inf {v,A Y - Bu): Ev	A(y) - Bu (v 5 E V*)  UXY

where E = K - BB*. 
(ii) lim_ J(u, y,,) = m, where ni is the minimum value of problem (19). 

It is clear that the limit problem can be of different nature from those of the sequence 
(16) (see [3, 41 for examples). If K = BBS, then the limit problem (19) can be written 
as

min {J(u,y) : A(y) = Bu}. 

For example, this occur if Y is a uniformly convex Banach space and BTh B continu-
ously weakly. 

We now consider the case of state equations of the form 

= a(t,y(t)) + T9 u(t) (t E [0,1]) }

	
(F) 

Y(0) = yo. 

According to our notation we have 

	

Ay = Ay	(y' - a(t, y(t)), y (0 ) - Yo) 
B. u = (T9,u,0). 

Using the results of the previous sections we can state that if the sequence {Tg } con-
verges continuously weakly to some operator, then the limit problem is still an optimal 
control problem and that the state equation is given by 

= a(t,y(t)) + (ui,u) 

Y( 0) = !Jo• 

Let us give some examples. 

Example 4.1. If the n-th state equation is 

= a(t,y(t)) + u(rnx - [mx]) 

y(0)=yo 

where [xj is the integer part of x, then the limit state equation is 

= a(t,y(t)) + f u(s)ds 

Y(0 ) = I/o.
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Example 4.2. If the n-th state equation is 

= a(t,y(t)) +u(sin(2kirx)) 

y(0) = Yo, 

then the limit state equation is 

	

= a(t,y(t)) + f 1	1

	

u(s)ds 7r	S2 j_ 
y(0) = yo .	 I 

Note that in both examples we have a sequence of optimal control problems governed 
by a functional-differential equation with deviating argoument converging to an optimal 
control problem governed by an integro-differential state equation. 

Remark. Note that Theorems 2.1 and 2.2 can be proved by using our results and 
some elementary theorems on convergence of measures. 
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