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Abstract. The paper is concerned with the spectrum of an operator A = C + K, where C is an 
orthomorphism and K is a compact operator. The proofs are in a certain sense constructive. 
The results are applied to Barbashin equations = Ax, where A = C+K with a multiplication 
operator C and an integral operator K. In some particular cases even necessary and sufficient 
conditions for stability are given. 
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0. Introduction 

The aim of this paper is two-fold: In Section 1, we calculate the essential spectrum of an 
orthomorphism in a Banach lattice and give some perturbation results for the spectrum. 
Although some of the results concerning the essential spectrum can already be found 
in the literature, we shall give constructive proofs (and some new perturbation results). 
In Section 2, we consider the stationary Barbashin equation 

b 

ax(t, s) = c(s)x(t, s) + J k(s, r)x(t, r) dr.	 (1) a 
The connection with orthomorphisms is the following: Let X = C([a, b]), or let X be 
an ideal space over [a, b]. The latter means that X is a Banach space of (classes of) 
measurable functions, such that for any x E X and any measurable function y satisfying 
I y( s )I	Ix(s)I a.e. we have y E X and Ilyll	II x II (see [17, 24]) . Ideal spaces are also 
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called (complete normed) Kôihe spaces [20] or Banach function spaces (but be aware 
that the definitions sometimes differ slightly in the literature). 

Under some natural conditions (see, e.g., [171), equation (1) may be written as a 
stationary linear differential equation in X, 

dx Tt =Ax	 (2) 

with
Ax(s) = Cx(s) + Kx(s). 

Here, C is a multiplication operator, defined by 

Cx(s) = c(s) x(s) 

and K is the integral operator with kernel k. The stationary Barbashin equation (2) is 
exponentially stable if and only if the spectrum a(A) belongs to the interior of the left 
half-plane [3). Thus we are interested in determining the spectral properties of A. 

In the described situation, A is the sum of an orthomorphism C in the Banach lattice 
X and a (usually) compact operator K. Applying the results of Section 1, we may reduce 
the calculation of the spectrum of A to the calculation of the point spectrum and even 
get estimates for the latter. However, if K is a Volterra operator or degenerated, we 
can even calculate the spectrum precisely. The latter can be applied to get arbitrary 
sharp estimates in the general case. 

1. The spectrum of orthomorphisms 

In this section, X will always denote a Banach lattice. For basic definitions concerning 
Banach lattices, we refer to 111, 21, 22] (see also [121). 

Recall that a subspace B c X is called a band, if it is an order ideal (i.e. Il lxI and x e B imply y E B), and if for any subset M c B for which x = sup  exists in 
X we have x E B. An order bounded operator C : X -, X is called orthomorphisin if 
CB ç B for any band B. It is an important result [21: Theorem 140.4 and Corollary 
144.3] that the set of all orthomorphisms of a Banach lattice with the operator norm 
is itself a Banach lattice with ICIx = Cxl for x 2 0, and that it is precisely the centre 
Z(X) of X, i.e. the ideal generated by the identity operator I. In other words: A linear 
operator C: X - X is an orthomorphism if and only if there is some A 

2 0 such that 
Cxl Ax for all x 0. It turns out that the infimum of all those A is the operator 

norm Il C ll . With composition as multiplication, Z(X) is a commutative f-algebra [20: 
Theorems 140.9 and 140.10]. 

Since we are interested in spectral properties, it is important that the above results 
turn over for complex Banach lattices: If XR is a real Banach lattice, we define the 
cornplexification X = XR+iXL as in [12: Chapter II,111, [21: §91], or [22: Sections 13 
and 15] (in the latter reference the application of representation theory is avoided; see 
also [21: Exercise 91.12] and [61). Any complex linear operator A : X - X is uniquely
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determined by its values on X, and on XR it has the form A (Re A) + i (Im A), where 
ReA,ImA : Xu - XR are linear. We put A = (Re A) - i(ImA). 

For the following theorem we require only that XR is a uniformly complete Archi-
medean Riesz space (any Banach lattice has this property, see [21: Theorem 100.41(u)] 
or [22: Theorem 15.31(u)]). Part 1 of the following proof is similar to the proof in the 
real case [21: Theorem 140.41. 

Theorem 1.1. The complex linear operator C : X -, X is an orihomorphism if 
and only if Re C and 1mG both are orthomorphisms. In this case, I CI is defined, and 

ICI lxi = I C l x ii = Cxl	(x E X).	 (3)


For all orthomorphisms C, D : X - X we have the formulas CD = DC, 

CDI= ICI IDI	 (4) 

C1 2 = (Re C)2 + (IM C)2'	 (5) 

and
sup{IReCI,lImCi}:5 ICI iReCi+lImCl2sup{iReCi,i1mCl}.	(6) 

Proof. The first statement follows by [21: Theorem 91.6] and the fact that the 
space of all order bounded operators of X is the complexification of the space of all 
order bounded operators of X [21: §921. 

1. Now we show that I CI is defined with J CJx = Cxi for x 0. We assume first 
that X is Dedekind complete. Then I CI is defined, and we have by [21: Theorem 92.6] 
(no representation theory is required in our situation, see [21: Exercise 92.7]) that 

C i x = sup iCzi	(x > 0).	 (7)

IzI^z 

In particular, JCxJ C ix. For the converse inequality we apply the complex form 
of Freudenthal's spectral theorem [21: Theorem 91.5]: For each e > 0 and each z E 
X with izl < x there is some finite sum y = > A k xk with ix - vi < ex with the 
following properties: Pki 5 1, and x 	0 are pairwise disjoint components of x, i.e. 
inf(Xk,x - x k) = inf(x k ,x 3 ) = 0 for k	j. We have I Cy 1 15 1 Cxi. Indeed, since C is

disjointness preserving we have by [21: Theorem 91.4/(i)] that 

lCyi =	ACx,4 = I Pi iCx k i = sup iAki lCxki 

and
Cxki	lCx k i + 1C(x - X k)i = Cxl. 

By (7) we have iCz - Cy l	CI ir - i !^ e JCJx, and so in view of the triangle inequality 
[11: Theorem 12.11 that iCzi	ICyi + E I C i x	iCxl + c i C i x. Since Xot is Archimedean, 
this implies iCzl 15 JCxi. Hence (7) gives the desired estimate I C I-	iCxi. 

Now we drop the assumption that X is Dedekind complete. We write C = C1 + i C2 
with Ck : XR - X. By [: Lemma 140.21, Ck may be extended to an orthomorphism 
Dk of the Dedekind completion of X. Put D = D 1 + i D2 . By what we just proved, 

	

lDix = iDxi = Cxi	(x E X, x 0).
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Hence, IDI : X - X. It thus is easily checked that this restriction of jDJ = sup(D 1 cost 
+D2 sin t) to X is the least upper bound for the set {C 1 cost + C2 sin t : t}, whence 
Cl = lDl exists, and JCJx = D l x = lCxl for x 0. 

2. Now we prove the second equality in (3). First assume that C 2 0. Then C 
is a Riesz homomorphism, by [11: Theorem 18.131 and [21: Theorem 140.5] even a 
normal Riesz homorphism, i.e. C preserves arbitrary suprema. Consequently, we have 
for x = x 1 + Z* X2 with Xk E XR that 

lCxl = sup(Cx i cost + Cx 2 sin t) 

= sup C(x i cost + x 2 sift) 

= Csup(x 1 cost +x 2 sin t)	
(8) 

=Clxl. 

Now we consider an arbitrary orthomorphism C, but suppose that X is Dedekind com-
plete. Then the space of all orthomorphisms of X R is Dedekind complete [21: Corollary 
142.91 and we may apply Freudenthal's spectral theorem [21: Theorem 91.51 for the corn-
plexification: For each e > 0 we find some finite sum E = > .\kCk with IC - El elCl where Ak E C and Ck 2 0 are pairwise disjoint orthomorphisms. By (7) we have for 
kj 

inf (lCk x l, iCxl)	inf {i Ckl l x i, 1C31 l x l} = ( inf { l Ckl, 1C3 1})lxl = 0	(x E X) 
whence Ckx are pairwise disjoint. Thus, [21: Theorem 91.4/(i)] implies 

	

lExl = I	AkCkxI =	l )'kl lCkxl. 

By (8), the right-hand side does not change if we replace x by JxJ, and so lExl = lElxI 
By the inverse triangle inequality and (7) we have 

I lCxl - lExl I :5 (C - E)xl	C - El lxl 5 C lCl lxl. 
Adding this formula for x and JxJ, the triangle inequality gives 

iCxi— lClxllI < 2,-ICI xl	(x E X). 
Since XR is Archimedean, this gives the desired formula. 

To drop the assumption that X is Dedekind complete we consider as in Step 1 the 
extension of C to the orthomorphism D in the (complex) Dedekind completion of X. 
For  E X we have then ICxl= l Dx l= I D i x il = ICIxIl. 

3. The formula CD = DC follows by considering the real and imaginary parts 
separately, since real orthomorphisms commute. Repeated application of (3) gives 

IC) l D i x = I CI lDxl = ICDxI = iCDlx	(x 2 0) 
and so (4) holds. By [21: Theorem 142.1/(v)] we have (Re C)2 ' (IM C) 2 20, whence by 
(4)

(Re C)2 + 
(IM C)2 = ) ( Re C) 2 + ( ImC)2 1 = lCI = IC) lI = C12. 

Formula (6) can be proved straightforwardly as in [21: Theorem 91.2] I
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Formula (4) might be compared with the recent result in [6] which states that 
IcdI = cl Idi is valid in any complexification of a uniformly complete d-algebra. 

Corollary 1.1. The complex linear operator C : X - X is an orthomorphism if 
and only if it belongs to the centre Z(X), i.e. if and only if there is some A > 0 with 
lCxl < Ax for all x 0. In this case, the minimum of all those A is uGh. 

Proof. Write C, = Re  and C2 = ImC. By [21: Theorem 91.2] we have lCkxI 
lCxI < IC I xI + hC2xI for k = 1,2 and x 2 0. Theorem 1.1 thus reduces the first 
statement to the real case. Moreover, for orthomorphisms C the theorem implies that 
Cxl < Ax for x 2 0 is equivalent to ICI < Al. Since Z(Xa) is Archimedean, there 

exists a minimal A with this property, and since ICI is real, we already know that this 
minimum is 11 J CJ II = II C II I 

Lemma 1.1. For any orthomorphism C : X - X the following statements are 
equivalent: 

1. C is invertible and C — ' : X -+ X is an orthomorphism. 
2. ICI 2 ci for some c > 0. 

3. sup { l ReC l,I ImC l} 2 ci for some c>O. 
4. (Re C) 2 + (IM C)2 2 ci for some c > 0. 

Proof. Put C,=ReC,C2 =ImC, and E=C?+C. 
a) The equivalence of Statements 2 and 3 follows from (6). Since the Archimedean 

f-algebra Z(XR) is semiprime [21: Example 142.6/(i)], we have by [21: Theorem 
142.31(u)] that

C12 2 e 2 1 = (61)2	ICI 2 ci.	 (9) 

Hence (5) shows that Statements 2 and 4 are equivalent. 
b) Assume that Statement 4 holds. Since E E Z(Xa), there is some A 2 c such 

that E < Al. Hence,
hI-1Eh=I—*E_<I—I 

and so I— lEll 5 1— < 1. Using the Neumann series, we get that *E is invertible in 
the Banach algebra Z(XR) (alternatively, we could also have applied [21: Theorem 146.31 
to see this). Since Z(X) is commutative, we may conclude that 11- E) - iC2) 
is inverse to C = C, +iC2. 

c) Conversely, if C is invertible with C' = D = D, + i D 2 such that D k E Z(XIR), 
then we put F = D? + D. Observe that E, F 2 0. Since there is some A > 0 with 
F Al, we get

I = CDZTD= CDT = EF < E(AI) 

and Statement 4 holds for c = A' U 

Given an orthomorphism C: X -* X and a non-trivial band B c X, we denote the 
norm of the restriction C : B -* B by IICIIB, i.e. 

II C IIB =	sup	llCxll.

xEB,IIxII<,
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Theorem 1.2. Let the (real or complex) orthomorphism C : X -+ X satisfy 

inf {ll C ll8 B is a non-trivial band} >0.	 (10) 

Then C is invertible, and C — ' : X - X is an orihornorphism. 

Proof. Assume the conclusion is false. Then Lemma 1.1 implies that for no e > 0 
the operator D = Ci - ci is positive, i.e. D	0. The null space of D is a band B 
[21: Theorem 140.51(i)] which in view of DD = 0 (see [21: Theorem 142.1/(iv)]) and 
D	0 is non-trivial. For each 0 <x E B we have Dx = (D+x - Dx) = —Dx <0, 
i.e. j Cxj	ex. Corollary 1.1 thus implies li C liB. !^ c, and (10) must fail I 

The theorem has a converse; even more holds. Recall that an element x 0 0 is called 
an atom of a Riesz space, if it follows from 0 u, v < lxi and inf{u, v} = 0 that either 
U = 0 or v = 0. 

Theorem 1.3. Let the (real or complex) orthomorphism C : X -+ X have closed 
range and a finite - dimensional null space. Assume that either X1R is non-atomic or that 
C is one-to-one. Then (10) holds. 

Proof. The 'real' null space N(C) = {x E X : Cx = 01 = N(Re C) fl N(Im C) 
is a band in XR 121: Theorem 140.5/(i)]. In particular, if N(C) has finite but positive 
dimension, it is a finite-dimensional Riesz space which thus contains atoms [11: Theorem 
26.3]. Since N(C) is a band, each atom in N(C) is also an atom in XIR. Our assumptions 
thus imply in both cases that C is one-to-one. Since the range Y of C is a Banach space, 
the open mapping theorem implies that C' : Y - X is a bounded linear operator; 
denote the operator norm by N = ii C 'ii > 0. Then we have for all x E X that 

l x ii = ii C ' Cx iI < NCx, which shows that 1I C I18 ^: N — ' for any non-trivial band 
BI

Corollary 1.2. If the (real or complex) orthomorphism C : X - X is one-to-one 
and has closed range, then C is onto. 

Corollary 1.3. If the (real or complex) orthomorphism C : X - X is invertible, 
then C' : X -i X is an orthomorphism. 

For any orthomorphism C : X - X we call 

essC	E C: inf {II C - AIIIB : B a non-trivial band} = o} 

the essential range of C. 

Corollary 1.4. For any orthomorphism C : X - X, we have for the spectrum 
o(C) = essC. 

Proof. Observe that C,, = C - Al is an orthomorphism. If A V a(C), then C,, 
is invertible, and Theorem 1.3 implies that 0 V essC,,, i.e. A V essC. Conversely, if 
A ess C, then Theorem 1.2 implies that C,, is invertible, i.e. A V o(C)I
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We call a point A E C Fredhoim point of a linear operator A : X - X, if 
1. A - Al has closed range. 
2. The codimension rn of the range of A - Al is finite. 
3. The null space of A - Al has finite dimension n. 

If additionally m = n, we call A Fredholm point of index 0. We consider only bounded 
operators A, and so the first condition for Fredholm points is actually superfluous, 
because it follows from the second. 

We denote by cr(A) the essential spectrum of A in the sense of Wolf [19], i.e. 
the complement of the set of all Fredholm points, and by acm(A) the complement of 
all Fredholm points of index 0 (which is the essential spectrum of A in the sense of 
Schechter [13]). Both sets are invariant under compact perturbations [13: Corollary 21 
(see also [1: Theorem 2.3.7]). 

Corollary 1.5. Let XIR be non-atomic, C : X - X be an orthomorphism, K 
X -4 X be compact, and A= C+K. Then 

oew(A) = a,,,, (A) = a(C) = essC. 

Proof. Since a(A) a(A - K) and aem(A) = aem(A - K) it suffices to prove 
the statement for A C. Evidently, c(C) ç Oem(C) c a(C). Applied for the 
orthomorphisms C,, = C - Al, Theorem 1.2 implies a(C) c essC, and Theorem 1.3 
gives similarly essC c aew(C) I 

Lemma 1.1 implies in view of Corollary 1.3 other representations for ess C: 

Corollary 1.6. For any orthomorphzm C: X - X, the spectrum a(C) = essC is 
the (identical) null set of the functions 

62 (A;C)= max {c >0: IC — AII> eI} 

= max {e >0: (Re(C - AI))' + (Im(C - Al)) 2 ^ 2j} 

and	
6,,.(A; C) = max f C > 0: sup { I Re ( C - AI)I,lIm(C - Al)[} ^! ei}.


We have 600 62 2600. 
Observe that the maxima in the definition of 62 and 600 indeed exist for all A, since 

Z(X) is Archimedean. The identity for 62 in the corollary follows from (5) and (9), 
and the estimate follows from (6). 

Now we prove a perturbation result for 62 and 800: 

Lemma 1.2. Let C,D: X -' X be orthomorphisms. Then 

62 (A; C - D) > 62 (A; C) - II D II	 (11) 

and
600(A; C - D) > 600 (A; C) - max {II ReD II, J j Im Djj j.	 (12)
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Proof. Without loss of generality, let A = 0 (consider C = C - Al instead of C). 
Recall that IDP	II D II I. By the triangle inequality 

IC - DI 2 Cl - DI 2 (62 (0;C) - IIDII)I 

which implies (11). To prove (12), we write C = C 1 +iC2 and D = D 1 +iDz with real 
operators C1, C2 and D 1 , D2 and put a = max {II D 1II,II D2II} . In view of IDkI	IIDkIII

we have

Ck — DkI 2 ICl— IDkI 2 ICk I — cI. 

By [11: Theorem 11.5/(v)] this implies 

sup {1C1 - DI I,  IC2 -D21) 2 sup {1 C11 - al, C2] - aI} 2 (8(0;C) - or)I 

which gives (12)1 

For sets in the complex plane, we denote the Euclidean distance by dist 2 , and the 
distance with respect to the maximum-norm by dist. 

Corollary 1.7. For any orthomorphism C we have 

82 (A; C) 2 dist 2 (A, o(C))	 (13) 

and
8.(A; C) 2 dist(A,a(C)).	 (14) 

Proof. If Jpj < 52 ;C), then 

62( 1\ + p; C) = 62( 1\ ; C - pI) 2 62 (A; C) - l,Ll > 0. 

Hence A + p a(C). This shows (13). The proof of (14) is analogous and omitted I 

We can prove now that in Corollary 1.5 not only the essential spectrum but also 
the spectrum of A = C + K is mainly determined by C, provided that K is 'small'. Let 
B(r) denote the set of all complex numbers z with Izi <r.• 

Theorem 1.4. If X is non-atomic, C: X - X is an orihomorphism, K: X - X 
is compact, and A = C + K, then 

a(A) ç o(C) + B(IIK11). 
Proof. If the statement is false, there is some A E a(A) with II K I1 < dist 2 (A, o(C)) 

< 2 (A;C). By Corollary 1.5, A V a(C) = aem(A). Hence, A E a(A) must be an 
eigenvalue of A to some eigenvector x 0 0. But Cx + Kx = Ax implies by (3) 

IKxI = i(C - AI)xi = IC - All JxJ 2 2 (A; C) lxi 

and so Il Kx ll 2 52(A; C )ll x ll gives the contradiction JJKJJ 2 82 (A; C) I
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2. The spectrum of Barbashin operators 

Let us now return to the Barbashin equation (2). For the rest of this paper, let X be 
an ideal space over [a, b], or X = C([a, b]). For simplicity, we will assume that the ideal 
space X has full support which means that X contains a non-vanishing function (see 
[17, 24]). Let c be a (real or complex) function such that the multiplication operator 
defined by Cx(s) = c(s)x(s) acts in X. Then c is (essentially) bounded (see, e.g., [17: 
Theorem 5.1.4]). Hence, C is an orthomorphism in X, and 

C i x ( s ) = 144 x(s). 

The formulas of Theorem 1.1 are evident in this case. In view of the fact that X 
contains a non-vanishing function, Corollary 1.1 reduces to the following statement: If 
C is an orthomorphism in X, then c is (essentially) bounded, and I1 C I1 = ess sup ic(s)i. 
Theorem 1.2 just means that the condition ess inf c(s)i > 0 implies that C is invertible 
with C' being an orthomorphism (of course, C'x(s) = (c(s))'x(s)). Theorem 1.3 
becomes the not so obvious fact that the condition ess inf c(s)I > 0 must be satisfied if 
C has a closed range and a finite-dimensional null space. In particular, if c is continuous 
with finitely many zero's, then CX is not closed in X. If one wants to see this elementary, 
one will probably like to apply the open mapping theorem; but this is precisely what 
we did in the proof of Theorem 1.3. 

For the Barbashin equation, we have also a compact and linear operator K : X - X 
be given (for our results we do not need that K is an integral operator). Let 

essc(a,b) = lu: ess inf ic(s) - ui = o} I.	.'E[a,b] 

be the essential range of c (in the case X = C([a, b]) the essential range is of course the 
range c([a, b])). Then Corollary 1.5 immediately implies: 

Theorem 2.1. Under the above assumptions, 

= a,,,, (A) = a(C) = ess c(a, b). 

If one is only interested in Theorem 2.1, one can of course simplify the proof: As 
we have just seen, the only deeper statement needed for the proof is a corresponding 
variant of Theorem 1.3. However, the main steps of such an 'elementary' proof are the 
same that we used. A result analogous to Theorem 2.1 was proved (independently) for 
matrix-valued functions in L 2 in [5]. 

Theorem 2.1 implies that ess sup c(s) <0 is a necessary condition for the exponential 
stability of equation (2). Conversely, if ess sup c(s) < 0, the equation is exponentially 
stable if and only if A has no eigenvalues in the right half plane or the imaginary axis. 
Thus in the following we will concentrate on the point spectrum of A. 

If K is an integral operator with a degenerate kernel, we may reduce the problem 
to a finite-dimensional system:
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Example 2.1. Let 

	

Kr(s) 
= I k(s, r)x(r) dr	with k(s, r) =	at (s) b(r)	(15) 

where the linearly independent functions a, belong to X, and b belong to the associate 
space X' [17, 20, 24] (for X = C([a,b]) put X' = L i fa,bj)). To determine a(A) it 
suffices to calculate the cigenvalues A V ess c(a, b). For such A there exists x 54 0 with 

c(s)x(s) +
	

at(s) I b(r)x(r) dr = A x(s). 

Putting
6 

= I bi (r)x(r) dr	(i = 1,...,n)	 (16) 
a 

we find by ess iflf E[abl IA - c(s)I > 0 that 

	

X(s) =	A	 (17)
—c(s) j= 1 

Equations (16) now become
= /3
	

(18) 
where j3 = (/3) and rA = (y,,) with

6 

7ij - 
J b,(r)a(r) 

dr.
 

-.	A — c(r) 
a 

(17) implies 3	0 by x 54 0. Thus a necessary condition for A V essc(a,b) to be an

eigenvalue is

det(I'A - I) = 0.	 (19) 
But (19) is also sufficient, since in this case there exists a non-trivial solution /3 = (/3) 
of (18), and a straightforward calculation shows that (17) is an eigenfunction of A for 
A. In other words: a(A) is the union of ess c(a, b) and all other values A satisfying (19). 

In order to estimate the spectrum of A in the general case, we may apply the results 
of Section 1. Note that the functions 82 and 6 for the multiplication operator C 
just become 62 (A; C) = ess inf c(s) - Al and 8(A; C) = ess inf c(s) - Al,,.(with the 
notation l z loo := max {l Rez l, IImzl}). The statement of Corollary 1.7 is evident in this 
case, but Theorem 1.4 provides a non-trivial and very useful estimate for the spectrum: 

Theorem 2.2. In the situation of Theorem 2.1 we have o(A) 9 essc(a,b) + 
B(llKll). 

For some important cases we also have sharper estimates:
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Example 2.2. If additionally X is a Hubert space and C and K are self-adjoint, 
then 0(A) is contained in the interval 

less inf c(s) + min 0(K), ess sup c(s) + max 0(K)]. 

This follows by (Ax, x) = (Cx,x) + (Kx,x) and a(C) = essc(a,b). 

Theorem 2.3. If K in Theorem 2.2 is a compact Volterra integral operator, i.e. 

Kr(s) = / k(s, r)x(r) dr, 

then 0(A) = ess c(a, b).	 - 

Proof. Assume, there exists some A E 0(A) \ ess c(a, b). Then A is an eigenvalue of 
A, i.e. there is some XA 0 0 satisfying a.e. 

0 = (A - AI)X A (s) = (c(s) - A ) X A(s) + KXA(s) .	 ( 20) 

Since ess inf3E[Q,b] ic(s) - Al > 0 we have that the linear operator (C - AI)'x(s) = 
(c(s) - A)' x(s) is bounded. Hence, (C - AI)-'K again is a compact Volterra operator. 
Thus it has spectral radius 0 (see [18]; an alternative proof for the special cases that X 
is regular or that X = C([a, 5]) can be found in [23]). In particular, —1 can not be an 
eigenvalue of (C - Al) 'K, i.e. XA can not satisfy (20) I 

By the above results one might suspect that it is always possible to replace IIKII 
by the spectral radius r(K) of K in Theorem 2.2, i.e. 0(A) c essc(a,b) + B(r(K)). 
However, this is not true in general. It is not even true that the maximal real part 
of 0(A) is bounded by ess supc(s) + r(K) (as in Example 2.2). We give a class of 
counterexamples of integral operators with degenerate kernels: 

Example 2.3. Consider the interval [-1,1] and 

Kr(s) = fa(s)b(r)x(r)dr. 

Example 2.1 shows for c 0 that the spectrum of the integral operator consists of the 
points 0 and

Ja(r)b(r) 

We now consider the special function c(s) = —1 for s < 0 and c(s) = 0 for s 2 0, i.e. 
essc(a,b) = {-1,0}. Example 2.1 shows that A 54 —1,0 belongs to 0(A) if and only if 

(21)
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where we have put

	

(,)b(,) d,.	and	 (,)b(,) d,. 

Given any numbers A > 6 > 0, choose functions a and b such that


	

=-8(A+i)	and	13=((5+1)A. 

Then (21) holds, i.e. A is an eigenvalue of the corresponding operator A. However, the 
spectrum of the integral operator is just {0, a + 01 = 10, A - 61. In particular, if r(K) 
denotes the spectral radius of the integral operator K, then A = ess sup c(s) + r(K) + (5 
belongs to the spectrum of A. This means that the difference of the maximal real value 
in a(A) and ess sup c(s) + r(K) is positive and may even be arbitrarily large. 

3. Remarks 

1. All proofs given in this paper are constructive in the following sense: The results 
remain true, if one replaces the axiom of choice by the axiom of dependent choices (see, 
e.g., [7]) which only allows countably many (recursive or non-recursive) choices. 

There is only one exception to this rule: We do not know whether it can be proved 
under this axiom that the essential spectrum (in the sense of Wolf or Schechter) is 
invariant under compact perturbations. However, there do exist constructive proofs, if 
one requires in the definition of "Fredholm point" additionally that the null space of 
A - Al be topologically complemented in X. If one assumes the axiom of choice, this 
modification does not change the definition because each finite-dimensional subspace is 
topologically complemented by Hahn-Banach's extension theorem. However, one may 
construct an operator A in the space X = 1/co with a one-dimensional null space; the 
axiom of dependent choice is not sufficent to prove that this null space is topologically 
complemented (because it can not be disproved that X is trivial). See [10] for details. 

2. The centre Z(X) of a (real or complex) Banach lattice X is an AM-space with the 
strong norm unit I. If we assume the axiom of choice, Z(X) thus is algebraically and 
isometrically isomorphic to a representation space Y = C(S) of continuous functions 
over an appropriate compact Hausdorif space S [21: Theorem 121.1] (to see that also the 
multiplicative structure is preserved, apply the two directions of [21: Theorem 141.1] in 
the f-algebras Y and Z(X), respectively). 

If we have such a representation space Y - it also suffices that Y = L(S) with 
some measure space S - Lemma 1.1 is evident. Moreover, we may interpret essC as 
the (essential) range of the function which corresponds to the orthomorphism C in the 
representation space Y (this follows from Corollary 1.4 together with Corollary 1.3). 
This explains our name 'essential range' for this set. 

One might also try to use this as a definition of essC. In this case, Corollary 1.5 
already follows from known results: In [14: Theorem 1.11] the equality a(C) = o(C)
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for orthomorphisms C in non-atomic Banach lattices has been proved (but the proof 
requires further applications of the axiom of choice); also Corollary 1.3 has been proved 
in [14: Theorem 1.81 by considering the representation space Y for Z(X). 

However, our proofs are 'constructive', and for our definition of ess C no represen-
tation space Y for Z(X) has to be known. Without the axiom of choice it is not clear 
at all, whether such a representation space must exist. 

3. The reader may find more results on representations of Banach lattices by spaces 
of continuous or measurable functions in the monographs [2, 9, 12, 16, 211 and the 
references therein. As an example, let us give a short proof of Theorem 1.1 for Banach 
lattices X, using representation theory (and thus the axiom of choice): 

Fix x E X, and let Y be the ideal in XR generated by l x i . Then the Archimedean 
Riesz space Y has the strong unit lxi and is uniformly complete. Hence the Yosida 
representation theorem [11: Theorem 45.4] implies that Y is Riesz isomorphic to some 
space C(S) with a compact Hausdorif space S. The orthomorphisms of X R belong to 
Z(X) and thus map the ideal Y into itself. Hence they may be interpreted precisely as 
the orthomorphisms of C(S), and thus precisely as the multiplication operators (see 121: 
Example 142.2]). Considering complexifications, we may thus interpret x as a function 
in the complex Banach lattice C(S), and orthomorphisms C precisely as multiplica-
tion operators Cx(s) = c(s) x(s). Now (3) is evident. The remaining formulas follow 
immediately by interpreting Z(X) as some space C(S). 

4. The crucial Theorem 2.1 (respectively Corollary 1.5) fails without the condition that 
X is non-atomic. It may even fail for complete subspaces of ideal spaces over [a, b]: 

Let Y be some ideal space over [a, b] = [0, 2] containing the constant functions, and 
X be the subspace of Y containing all those functions, which are constant on [0, 1]. 
Then for any c E L([0, 2]), c(s) = 0 on [0, 1] and c(s) j4 0 otherwise, we have that 0 is 
a Fredholm point of C : X —* X with index 0 (m = n = 1), whence 0 does not belong 
to the essential spectrum of C (or of A = C + K with compact K : X —* X). 

5. Theorem 2.1 illustrates the formula for the radius R(A) of a(A), 

R(A) = ln /llAlL 

[1: Theorem 2.6.11/(h)], where 

lI A Il = ml {L: y(AM) <L 1(M) for all M ç x} 

is the measure of non-compactness of A with respect to the Hausdorif measure y of 
non-compactness (i.e. 1(M) is the infimum of all e > 0, such that there exists a finite 
,--net for M in X). In fact, we have il A ll = llCIleo([a,bl) whence R(A) = llcIlLUa,bl) 
in Theorem 2.1. To see this, observe that A n = C'1 + K, with some compact operator 
R, and thus that 11 A '1 1i = 11 C '1 ll by 11: Lemma 2.6.7/(e,j)]. Now the statement 
follows by the fact that 1I C '1 ll = Ii C '1 Ii = ll C II	([ab)) (for the first equality, apply, e.g., 
[15: Theorem 2.6]). For further studies of the measure of non-compactness in Banach 
lattices see also [4].
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6. Example 2.1 may be used to estimate numerically the borders of a(A): Any compact 
set R of resolvent points of A still belongs to the resolvent set under small (depending 
on R) perturbations of the operator [8: Theorem 3.1J. In particular, for estimates it 
suffices to approximate A = C + K by more simple operators (in operator norm). 

If K may be approximated by finite rank operators, and if X is a regular ideal space 
(i.e. any x E X satisfies II PD x II - 0 for D 10), these approximating operators have 
the form (15). Indeed, let a finite rank operator K0 be given. Then K0 may be written 
as

K0x = >ailj(x) 

with a 1 E X and continuous linear functionals 1,. By the regularity of X any continuous 
linear functional has the form

l(x) = I b i (r)x(r) dr 

with b 1 E X' [201. Thus for the spectrum of the approximating operators one may use 
Example 2.1. 

But one may even simplify the calculation, by observing that (19) becomes a poly-
nomial equation, if c is a simple function. Now use the fact that any c E L([a, b]) may 
be approximated by simple functions in the L-norm: Given e > 0, divide ess c(a, b) in 
a finite number of Borel sets I,, with diamI <e. Let E = c'(I) and c, E I,. Then 

c_C flXEnhI L <e. 

7. Theorem 2.1 may be interpreted as a result for the integral equation of the third 
kind,

C(S)X(S) + / k(s, r)x(r) dr = y(s)	 (22) 

with ess inf Ic(s)I = 0: If the integral operator occuring in (22) is compact in an ideal 
space X or in X = C([a, b]), then the operator A defined by the left-hand side of (22) 
is not a Fredholm operator, i.e. either the null space of A has infinite dimension or its 
range has infinite codimension. In particular, it may not happen that (22) has for each 
Y E X a unique solution. 

8. All results remain unchanged, if the interval [a, b] is replaced by some non-atomic 
a-finite measure space (respectively by a compact Hausdorif space without discrete 
elements).
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