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Abstract. The obtaining of sharp estimates for the asymptotic behaviour of the eigenvalues 
of the (semi-elliptic) operator acting in the anisotropic Sobolev space 

= I tL E w' 2 (cl): u I oc = 5T2 IaQ 
= o} 

generated by the quadratic form fn f(7)g(-y)d(y) is investigated. Here jz is an appropriate 
self-affine fractal measure on the unit disc Q C R2. 
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1. Introduction 

Fractal geometry is a very attractive and quickly developing field of modern mathemat-
ics. Thank to the work done by A. Jonsson and H. Wallin [181, K. Naimark and M. 
Solomyak [21, 221, H. .Triebel [32], D. E. Edmunds and H. Triebel [9] it turns out that 
various aspects of this theory are closely connected to Fourier analysis, to the modern 
theory of function spaces and to spectral theory of partial differential equations. This 
paper has to be understood as a contribution in this direction. The purpose of our work 
is to highlight the connection between the asymptotic behaviour of the eigenvalues of 
some differential operators related to some fractals and the properties of the fractals. 

Spectral properties and especially the distribution of the positive eigenvalues of 
fractal differential operators of the form 

U = (—z) o tr1'	 (1.1) 
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were studied in [9, 21, 22, 321. Here (-Lx)' is the inverse of the Dirichlet Laplacian in 
the bounded C°° domain ci C R', I' is a compact fractal with 

r c ci,	]r = 0,	dim,jI' < n,	 (1.2)


and i r , closely related to the trace operator try , is given by 

(trnf)() I(trrf)(r)	( E D(ci))	(1.3) 

where j.t is the Radon measure underlying the fractal r. The study of operators of type 
(1.1) is motivated in a natural way by the so-called fractal drums. If AA, (k E N) are the 
positive eigenvalues of (—Li)' o t r , ordered by magnitude and counted with respect 
to their multiplicities, then 77k = .\ are the eigenfrequencies of a vibrating membrane 
(interpreted as the bounded domain ci), fixed at its boundary, having the whole mass 
concentrated on the fractal r C Q. More details are given in [32: Subsections 26.2 and 
30.1 - 30.5], where one can find a detailed discussion on different aspects concerning 
fractal drums. 

Satisfactory results were obtained if I' is is a self-similar fractal (see [21, 22]) and 
if r is an (isotropic) d-set with n - 2 < dim H f' < n (see 132: Theorem 30.2)). Recall r C R2 is an isotropic d-set if there are a Radon measure p in 1R2 and two positive 
numbers c 1 and c2 such that suppi = r and, for all balls B(y,r) centred at y E 1' 
and of radius 0 < r < 1, c 1 r' < p(B(-y,r)) < c2 r'. Self-similar fractals are typical 
examples of (isotropic) d-sets. The notion of (isotropic) d-set occurs both in the theory 
of function spaces and in fractal geometry (see [10, 11, 18, 32)). 

For anisotropic fractals in R 2 with (1.2) as defined in [32: Definition 5.21 one has 
for the eigenvalues of U only two-side estimates of type 

c 1 k' < A k( U ) <c2 k' 2	(k E N)	 (1.4) 

for appropriate positive numbers w 1 and W2 with w, ^! 1 > w2 (see [32: Theorem 30.7)). 
Improvements of (1.4) were discussed in [14]. However, the exponents in (1.4) are not 
equal in the general case (see the precise formulation in [32: Theorem 30.71 and cf. 
114: Theorem 3.1]). This fact should be not a big surprise since one can imagine that 
the different nature of the (isotropic) operator -A and the (anisotropic) structure of r 
would cause difficulties (see also the discussion in [32: Subsection 4.16]). 

Let 0 < d < 2 and let a= (a i ,a2 ) with 0 < a2 < a < oo, a 1 + a2 2. A regular 
anisotropic d-set with respect to the anisotropy a is, roughly speaking, a compact set r C R2 which can be covered for any j E No with Ni ' 2 id disjoint rectangles having 
sides parallel to the axes and with side lengths r and r' 1 (1 = 1, ..., N) satisfying 

2_°' for i = 1,2 (the equivalence constants being independent of j, land i; cf. 
[32: Subsection 4.18] and see the precise definition in Section 2). Those fractals are 
special cases of the anisotropic fractals introduced in [32: Definition 5.21. 

Considering r a regular anisotropic d-set with respect to the anisotropy a = (a l , a2), 
our intention is here to replace the Dirichlet Laplacian —A in (1.1) with a model semi-
elliptic differential operator A whose "anisotropic structure" coincides with that of the
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fractal I'. We will investigate spectral properties of the new operator A- ' o tr 1' acting 
in an appropriate anisotropic Sobolev space W52)2' (ci) being interested mainly in the 
possibility of obtaining estimates of the type Ak(A' 0tr) k' (k E N) (equivalence 
constants independent of k E N) for its eigenvalues, where w is an appropriate positive 
number. 

Let ci = {x = (x 1 ,x2 ) E R 2 : x + x < 1} be the unit disc in the plane and let 
Oci be its boundary. In order to extend the theory of regular elliptic operators to more 
general classes of operators, H. Triebel considered in [28] the semi-elliptic differential 
operator

	

52u(x) &u(x)	r 

	

(Aru)(x)=	
ax	

+ 
a4 +

2() u(x)	(x=(xi,x2)Eci)	(1.5) XI 

where r E IR and i is a C°°-function on the interval [-1, 1] with i7(t) > 0 if Itl < 1 and 

lim - - -- = lim --- = 1,


	

t T I 1-i	ij-i 1+t 

and a corresponding boundary value problem Aru(x) = 1(x) if x E ci, u(y) = 91(Y) (y E 
dci) and -(y) = 92(Y) (y E ici) where f, g ' and 92 are given functions. In [28] the au-
thor obtained a-priori estimates for the operator Ar in the framework of the anisotropic 
Besov spaces B,23)(ci,x0,xi) and the anisotropic Sobolev spaces Wr2(ci,xx1) 
where 1 < p < cc. These two scales of spaces (our notation here is slightly different 

(s ,2s)	 (3,23) from the original one in [28] where they were denoted	(ci) and W,,	(Il)) were 
considered in [29] taking into account the singular points x 0 (-1,0) and x 1 = ( 1, 0). 
They are close to the anisotropic spaces on ci but their elements show (roughly speaking) 
a peculiar behaviour near the singular points x 0 and x 1 . A description of this theory 
may be found also in [24: Section 4.8]. 

Spectral properties of Ar acting as an unbounded operator defined in L(Q) (1 < 
P < cc) having domain of definition V(A,.) = {u E Wp 2 ' 4 (ci,x°,x') : u I ôci = 
8x2 I aci	0} (see the proof of Theorem 4.2 below for the precise definition of the 

(24) o  p = 2) were space W,, (ci, x , x ')  if discussed by V. Shevchik in [25]. In particular, he 
proved that the asymptotic behaviour of the eigenvalues of Ar is "intermediate" between 
that one of the homogeneous boundary value problem for the Laplace operator on a do-
main (Ak(z)	k) and the same problem for the biharmonic operator (Ak(L 2 ) '-.. 
namely A k (Ar) U. 

Considering r c ci a regular anisotropic d-set with respect to the anisotropy a = 
(, ) and tr t' the trace operator in the interpretation (1.3), the main objective of 
this work is to show that for sufficiently large r the operator A o tr1' is compact, 
non-negative, self-adjoint in the anisotropic Sobolev space 

=	
E W'2(ci): u laci = --iaci = o} 

ox2

(12) and that it is generated by . the quadratic form f f(y) g(7) dj.t('y) in W2	(ci). More-
over, we prove that there exist constants c > 0 and C > 0 such that its positive eigenval-
ues tk(A,.' o irr), repeated according to multiplicity and ordered by their magnitude,
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can be estimated by

o trr )	Ck_(d+)	(k E N).	 (1.6) 

The precise formulation of (1.6) is contained in Theorem 4.2. 
To prove the second estimate in (1.6) we use mainly some mapping properties of the 

operator Ar which were proved by H. Triebel in [28], some recent results from [2, 31 of 
0. V. Besov concerning interpolation of anisotropic function spaces and the inequality 
of B. Carl between the eigenvalues and the entropy numbers of a compact operator. The 
first estimate in (1.6) is proved using the atomic decomposition theorem in anisotropic 
function spaces and some Hubert space techniques, in particular the theorem which 
states that for a compact, non-negative and self-adjoint operator acting in a Hilbert 
space its eigenvalues coincide with its approximation numbers. 

Briefly about the organizing of the manuscript. Regular anisotropic d-sets are pre-
sented in Section 2 whereas the L P-spaces on such fractals are presented in Section 3. 
The main result is formulated in Section 4 and it is proved in Section 5. Our aim was 
a self-contained work so that we included all necessary basic ingredients (entropy num-
bers, approximation numbers, atomic decompositions in anisotropic function spaces). 
The notation is standard. For a normed or quasi-normed space X we denote by IIxIXII 
the norm of the vector x. The embedding of the quasi-normed space X into the quasi-
normed space Y is denoted X - Y. 

2. Regular anisotropic fractals in 1R2 

Let A {A 1 , ..., A N} be a family of contractions of R 2 . It is well known (see [17] and 
cf. [10, 11)) that there exists a unique (non-empty) compact set 1' in 1R 2 invariant with 
respect to A, i.e. such that r = A, (r) U ... U A(r'). 1' is called the fractal associated 
with the system A. 

Let us assume that the contractions of the system A are affinities, i.e. each A R has 
the form A(x) = C 1 x + h1 where Ci E GL(2,R) and h1 E R2 . Let r be the fractal 
associated with A. The real number d = dA ([') uniquely defined by 

>IdetC iI 4 = 1	 (2.1) 

is called the affine dimension of r (see [32: Definition 4.12]). We want to remark 
that in the case of diagonal affinities the number dA(r) was already considered by B. 
Mandelbrot in [19] under the name gap dimension. 

A particular case of affinities A i is of interest. Let n1 2 2 and n2 2 2 be integers 
and let F be the subset of R 2 given by 

F= {(_" , 	t1,t2 integers, 0 t 1 < n 1 and 0 i2 <

fl i fl2
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Suppose that every element A 1 of the system A is of the form A 1 (x) = Cx + h, where 
the translation vectors h 1 are in F and 

C= D 
Thus each A 1 maps the unit square Q = [0, 11 x [0, 11 onto a rectangle contained in 
Q . The fractal associated with A is a generalisation of the Cantor set in the plane 
and is called general Sierpinski carpet in [201. The Hausdorif dimension for this type 
of fractals was computed in [20] (see also [11: Example 9.11]). The definition of a a 
regular anisotropic fractal in [32: Subsection 4.181 is slightly more general. We present 
it below. Assume that every A 1 is of the form A 1 (x) = C1 x + h 1 where 

-iL 0" 
±1 1	 (2.2) 

(the signs depend on i and indicate a possible reflection) and the vectors h 1 still have 
as components integer multiples of - and - and are chosen such that A i (Q) is still 
contained in Q and A 1 (Q) is disjoint from A,(Q) if i 0 j. The fractal generated by the 
affinities A i specified above is called a regular anisotropic fractal. In [32] the matrices 
C1 are written in the form

= (±2_''1 ±2-"'2)
	 (2.3) 

with
2logni	 2 log n 2	1 

a 1 =	,	a2 =	,	—log(n1n2).	(2.4) 
log(n l n2 )	log(nIn2)	2 

In particular, a = (a 1 , a2 ) is a so-called two-dimensional anisotropy, that is 0 < a2 , a 1 < 

oo and a 1 + a2 = 2 (cf. the next section). 
If j EN0 and Ni E N0 , we deal with sets of open rectangles {R,, : 1 = 1,..., N3 } in 

1R 2 having sides parallel to the axes; the side length of the rectangle Rj with respect 
to the x 1 -axis is denoted by r' 1 where i = 1, 2. We will always assume that the side 
lengths of the rectangles R3 , are ordered in the same way, for example r'	r'1 for any 

No and any 1= 1, ..., N3. 

Theorem 2.1 [13: Theorem 3.1 1 . Let 1' be the fractal generated by the system A 
of affinities specified by (2.2) - (2.4), having affine dimension d = dA( [' ) according to 
(2.1). There exist numbers c 1 , c2 > 0 such that for any) E N0 : there exists a natural 
number N3 with

c, 2 jd < Nj 5 C22 jd	if )EN, N0=1, 

and there exists a finite sequence of open rectangles { R3 , : I = 1,..., N3 ) having sides 
parallel to the axes, R01 = Q, satisfying the following conditions: 

(I) There exists a constant 0< co < 1 such that for all ] E No and all I = 1, ..., N, 

(co 2_)) a . <	< 2	(i = 1, 2).
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(ii) If 1 i4 1', then R3 , fl R3 j. = 0. 
(iii) For any rectangle J?j+1 , k there is a rectangle R31 , 1 = 1(k), such that R+ I ,k C 

R,,.
(iv) For any j EN0 and any 1 = l,...,N,, (vo1R,) = 

(v) F = fl'°=0 U1	. 

Taking into account Theorem 2.1 and the terminology from [32: Subsection 4.181 the 
fractal F is called a regular anisotropc d-set with respect to the anisotropy a = (ai,a2) 
(see [13]). 

As remarked in [32: Subsections 4.14 and 4.22], if the anisotropy a = (a i ,a2 ) is 
non-trivial, that means a = (a i ,a2 ) 54 (1, 1), then the number d from (2.1) and the 
Hausdorif dimension dim H F of the fractal F, are completely unrelated. Furthermore, it 
can happen that the regular anisotropic d-set F is also an isotropic d'-set with d 0 d' 
(see [32: Subsection 4.21]). 

For a detailed discussion concerning dimension problems for self-affine fractals the 
reader is referred to the recent work [1]. 

Theorem 2.2 [32: Theorems 5.5 and 4.151. Let 1' be a regular anisoiropic d-set 
with respect to the anisotropy a = (a 1 , a2 ) and let {R 1 : j E N0 , I = 1,..., N,} be 
the rectangles from Theorem 2.1. Then there exists a Radon measure y in R2 uniquely 
determined with suppp = F and 

1z(F n Ri ,) = (vol R 1 ) 4	for all j E No and I = 1,..., N.	(2.5) 

As it was remarked by M. Bricchi (cf. [5]), following the proofs in [32: Theorems 5.5 
and 4.15] and [17] it is not difficult to see that the measure z from Theorem 2.2 coincides 
with the unique Borel regular (outer) measure i constructed in [17], with supp = F 
and of total mass 1 which is invariant with respect to A, that is 

	

=	
for all E  R2 

We know that if F is an isotropic d-set with underlying measure jz and if 0 < K < 1, 
then

p(B(-y, r) fl F) p(B(-j, r) fl F) r'	 (2.6) 

where the equivalence constants depend on K but not on -y E F and 0 < r 1. For a 
regular anisotropic d-set F we have (2.5) but no counterpart of (2.6). At least a weak 
version of (2.6) will be needed. If 0 < K < 1, then kR j denotes the rectangle concentric 
with R, and with side lengths respectively cr'1 and 

Definition 2.3. A regular anisotropic d-set with respect to the anisotropy a = 
(a i , a 2 ) equipped with measure p according to Theorem 2.2 is called proper if there 
exist two numbers 0 < K < 1 and 0 < c < 1 such that 

p(Ffl KR j ) > c(volR,)ti	(j EN0 , 1 = 1,...,N,)	 (2.7)
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where {R,, : j € No and 1 = 1,..., N,} are the rectangles from Theorem 2.1. 

This is a slightly different version of 132: Definition 5.111. Since r is generated by 
linear contractions, following the lines of the proof of [32: Proposition 5.13] it turns out 
that if F fl Q A 0, then F is proper. Hence condition (2.7) is rather natural. 

3. L9-spaces on regular anisotropic fractals 

3.1 Some preliminaries on anisotropic function spaces. If 1 <p < cx and (S , .s2) 
1 is a pair of natural numbers, then the classical anisotropic Sobolev space W 332) 2 (R) 

is the collection of all tempered distributions f € S'(R2 ) such that 

IIa'f	 o'2f 
11f I	 ,32)(j2) = Ill I L(R2 ) +	L(R2) + 

is finite. In contrast to the usual (isotropic) Sobolev space (s i = S2) the smoothness 
properties of an element from W1(R2) depend on the chosen direction in R 2 . The 
number s defined by

1	
(si\+—j	 (3.1) 

s	2 	s2J 

is usually called the "mean smoothness" and a = (a i ,a2 ), where a 1 =	and a2 = 31
characterises the anisotropy. Sometimes we will use the notation W(R 2 ) for these 
spaces. 

We recall now the definition of anisotropic Besov spaces on R 2 . First we fix some 
notation. A pair a = (a 1 ,a2 ) with 0 < a 1 ,a2 < oo and a 1 + a = 2 is called an 
anisotropy. If a = (1, 1), then we speak about the "isotropic case". The action of 
t E [0,00) on x = ( X 1, X2) € R2 is defined by the formula 

t a X = (talxi,ta2x2). 

Fort > 0 and s € R let t 3 'x = (t-)'x. In particular, tx = (t - ')'x and 2"x = 
(2i)ax. 

For x = ( XI, x 2 ) E R2 and x 0 0 let I X Ia be the unique positive number t such that 

X2 x 
+t2a2= 1 

and let 101 a = 0. By M. Yamazaki [34: Theorem 1.4/3,81, is an anisotropic distance 
function in C°°(R2\{0}). Remark that in the isotropic case I X Ia is the Euclidean distance 
of x to the origin. 

	

Let po a C°° function on R2 , o(x)= 1 if I X Ia	1, supppo C {x € R2 : kla < 2) 
and pj (x) = 0(2_x) - p(2(_3+I)ax) if j € N. Then	pj(x) = 1 if x € R2 and

(j)jENo is a smooth anisotropic dyadic resolution of unity (cf. [24: Section 4.2]).
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Let 0 < p :5 no, 0 < q on and s E R. The anisotropic Besov space B(R2) 
consists of all tempered distributions f E S'(R2 ) for which the quasi-norm 

If I Bp' o ( 2 )II =	2'J) I L(R2)II) 
j=o 

(with usual modification if q = oo) is finite. Here land g' denote the Fourier transform 
of f respectively the inverse Fourier transform of g. These are quasi-Banach spaces 
(Banach spaces if p 1 and q 2 1) which are independent of the choice of (j)jENo. 
The space H(R 2 ) = B(R2 ) is the anzsotropic fractional Sobolev space. In particular, 

sa	2	sa	2 f s 1 = -3	S2 and	=	are natural numbers, then B22 i	 (R ) = W2 (IR ). 
Directly from the definition we have 

B'°(R2 )	B(R2 )	if e > 0	 (3.2) pqo 

for any .s e R, any 0 <p no, and any 0 < qo,qi 15 no (see [27: Proposition 2.3.2/2]). 
Anisotropic function spaces of F, '(R2 ) type, 0 <p < no, are defined changing the roles 
of the spaces L(lR2 ) and 1q in the above definition but we do not stress this point here. 
The above spaces are denoted B q ( R 2 ) in the isotropic case. A systematic treatment 
of the theory of isotropic B q ( R2 ) and F q (R2 ) spaces may be found in the books of H. 
Triebel [27, 30]. 

Anisotropic function spaces have been studied in great detail by S. M. Nikol'skij 
(see [23]) and by 0. V. Besov, V. P. Win and S. M. Nikol'skij (see [4]). For a list of 
contributions to the theory of anisotropic function spaces we refer to [12]. 

If s E IR, 1 < p < no, 1 < q < no, and Q C JR2 is a domain, then B(1) is the 
restriction of B'(R2 ) to normed by 

Ilf I Bpg3a(cl)f = nf Il	B;(R2)	 (3.3) 
where the infimum is taken over all g E B(R2 ) with g[Z = jr I (in the sense of 
distributions on Il). Of course, this definition works for all (bounded or unbounded) 
domains ci but we will be interested later only on the unit disc. Let us recall that 

W(Q) = B(Q)	if S > 0.	 (3.4)

For s E IR, 1 <p < no, and 1 <q < no we will use the (non-standard) notation 

= {i e B(1l): f[31l = L13ç =o}.
	

(3.5)
(9X2 

3.2 Embeddings of L(r) in anisotropic Besov spaces. Let r be a regular 
anisotropic d-set with respect to the given anisotropy a = (a i , a2 ). The L-spaces 
on T (0 < p < no) are introduced in the usual way with respect to the underlying 
Radon measure p on F according to Theorem 2.2. If 1 <p < no any fr E L(r) will be 
interpreted as a tempered distribution f E S'(1R 2 ) given by 

f( o ) = I fr(v)(IF ) ( y ) dp (7)	( E S(R 2 )),	 (3.6)

where V Ir is the restriction of V to F.
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Theorem 3.1. Let 0 < d < 2 and let I' be a regular ani3otropic d-set in R2 with 
respect to the anisotropy a = (a l , a2). ff1 <p < oo and + = 1, then (in the sense 
of (3-6)) 

L(r) =	€ BP0Ta(R2): f(ço) = 0 if € S(R2) and ir = o}.	(3.7) 
The above theorem was proved in [13: Theorem 3.6] and it is the anisotropic coun-

terpart of [33: Theorem 2] (see also [32: Theorem 18.2]). 

3.3 Traces of anisotropic Besov spaces on fractals. Assume that r is a regular 
anisotropic d-set in R2 with respect to the anisotropy a = (a 1 , a2 ). If V E S(1R2 ), then 
trr = p]F makes sense pointwise. If 0 <p,q < cx and S € R, then the embedding 
trr BP' (R2 ) -+ L() must be understood as follows: there exists a positive number 
c > 0 such that, for any V € S(R2), II trr I L(r)II c 11w I B 2 (R 2 )lI. Since S(R2 ) is 
dense in B(R 2 ) for 0 < p, q < oo this inequality can be extended by completion to 
any I E B'(R2 ) and the resulting function is denoted trrf. In addition, the equality 
trB(R2 ) = L(r) means that any fr € L(I') is the trace of a suitable g E B; (R2) 
on r and IIfr I L(F)II - inf{IIg I B'(R2 )II : trrg = fr}. 

Theorem 3.2. Let 0 < d < 2 and let I' be a regular anisotropic d-set in R2 with 
respect to the anisotropy a = (a i ,a2 ). If 4 <p <oo and 0< q ^ min(1,p), then 

2-a 
trrB' a(R2) = L(f).	 (3.8) 

The above theorem was proved in [13: Theorem 3.71 and it is the anisotropic coun-
terpart of [33: Theorem 31 (see also 132: Theorem 18.6)). 

4. The main result 

Let ci = {x = (x 1 ,x 2 ) E R 2 : x + x < 11 be the unit disc in the plane and let aci be 
its boundary. In what follows we will consider r C ci a regular anisotropic d-set with 
respect to the anisotropy a = (, ). One can take, for example, n 1 = 16 and n 2 = 4 
in (2.4) and (2.2). In the sequel we shall not distinguish between fr as an element of 
some L([') and as the distribution belonging to some B(ci) according to (3.7). 

To avoid any misunderstanding we emphasise that the trace operator has two dif-
ferent meanings which we distinguish by trr and tr y' if extra clarity is desirable. If 
1 <p < oo, then by (3.8)

trr: Ba(ci) - L(r),	(4.1) 
and if one applies in addition (3.7)

2-a	 2-d 
irr: BP '(cl) - BPOO 	 (4.2) 

The latter can be rephrased asking for an optimal extension of tr r considered as a 
mapping from D(Q) into D'(ci) given by (1.3) (cf. [32: Subsection 28.1]).
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We consider the anisotropic Sobolev space 

= { E 5'(Il) : lu I L2(1Z)II +	I	+	I L(1) < oo} 

Clearly (see (3.1)), the mean smoothness is s =	and a ( 1, ) characterises the

anisotropy. Using the notation from the previous section we have 

w2(c) = r112)(c)	 (43) 
Remark 4.1. Let 

4r(i2)(cl){Ew(12)(c). 
ulaQ =.-locl=o}


and let A, be the operator defined in (1.5). We know from [28: Proposition 1] that 
(1,2) there exists an r0	 ,. R such that for any r > r0 the operator A maps W2	() 

isomorphically onto L2 (1); consequently, we may fix the norm on W 2)2' ' (Q) by 

lu I iV' 2 (cl)II = lI A ,. 0 I L2(1)II 
and a corresponding scalar product. 

We are able now to present our main result. 
Theorem 4.2. Let 0 < d <2 and let Q be the unit disc in the plane. Let 1' C SI be 

a regular anisotropic d-set with respect to the anisotropy a= (, ). Let tr 1' be the trace 
operator in the interpretation (4.2) and (1.3) whereas trr stands for the trace operator 
according to (4.1). Let Ar be the operator from (1.5). 

(i) There exists ro E R such that for any r > r0 the operator 

	

T = A,.' o trr	 (4.4) 

is compact, non-negative, self-adjoint in 1T ,2 (Q) and has null space 

	

N(T) {f E W 1' 2 (c) : trrf = 01.	 (4.5) 
(1,2) Furthermore, T is generated by the quadratic form in W2 

	

= (Tf,9)w(1.2)(n)	where 1,9 E W' 2 (fl)	(4.6)


and i is the Radon measure according to Theorem 2.2. 
(ii) Let r > r0 . There exists a constant C > 0 such that positive eigenvalues 

A k(T) of T, repeated according to the multiplicity and ordered by their magnitude, can 
be estimated by

	

Ak(T) Ck )	( IcE N).	 (4.7)

If, in addition, F is proper according to Definition 2.3, then there exists a constant c > 0 
such that

	

<A,(T)	(k E N). 
The detailed proof is given in the next section. 
Remark 4.3. The additional assumption on F to be proper in the estimate (4.8) 

excludes by the considerations after Definition 2.3 only pathological cases where the 
whole fractal retreats in the boundary of the starting square.
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5. Proof of Theorem 4.2 

Proof of Theorem 4.2/(i). Let a = (, ). Using the elementary embedding 
w"2 (cz)	W23 a ( fl )	BI''(cz) (see (3.2)) and applying (3.8) there exists a con-
stant c > 0 such that 

trrf I L2(r)II < C	
2) 

Ilf
	

for any I E * 1 ' 2 (ci)	(5.1) 

Defining

q(f,g) = Jr f(7)d(7)
	

for any f,g E 

it is clear that q(,) is a non-negative quadratic form in W' 2 (cl). By [31: page 911

there exists a non-negative and self-adjoint operator T uniquely determined such that


q(f, g ) = (Tf,g)(t2)()	for any f,g E W2 i2) (c)) 

Furthermore,
Ilirrf I L2(I')II = IIv'f I W2	All

	 (5.2) 
where './i = T and this proves (4.5). 

So it remains to prove that the above operator is the same as in (4.4). Let f E 
(1,2) W2 (Q) and W E D(). Then 

ff(t) Fi4 d r) = (Tf,c) w12() = (4 Tf,AJ so) L2( n) = (ATTf,o)L3( o ) (5.3) 

the second equality in (5.3) being justified by the fact that for r > r0 we fixed the norm 
° (1,2) in W2 (cl) by lI Ar () I L2()II and a corresponding scalar product (see Remark 4.1). 

Considered as a dual pairing in (D(), D'()) we obtain .ArTf = trn f and (4.6) follows 
by the same arguments as in [32: Theorem 27.15/Step 1]. This completes the first part 
of the proof of Theorem 4.2. 

5.2 Proof of the estimate (4.7). Step 1: Basic facts on entropy numbers and their 
relation to the eigenvalues. Let B1 and B2 two quasi-Banach spaces. The family of all 
linear bounded operators U : B1 - B2 is denoted by L(B 1 ,B2 ) or L(B 1 ) if B 1 = B2. 
We will assume that the reader is familiar with the definition of the entropy numbers 
ek(U) (k e N) of a compact map U E L(B 1 ,B2 ). This definition is given, for example, 
in [8: Subsection 1.3.11 where one can find also comments and historical references. We 
only want to mention here that if B 1 , B2 , B3 are quasi-Banach spaces, if X E L(B 1 , B2) 
and RE L(B2 ,B3 ), then for all Ic,1 EN,

X) < ek(R) e,(X)	 (5.4) 

(see [8: Lemma 1.3.1/1]).	 - 
Let B be a complex quasi-Banach space and U E L(B) a compact map. We know 

from [8: Theorem 1.21 that the spectrum of U, apart from the point 0, consists solely
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of eigenvalues of finite algebraic multiplicity: let {.\k(U) : k e N) be the sequence of all 
non-zero eigenvalues of U, repeated according to algebraic multiplicity and ordered so 
that

IA1(U)I 2 A2(U)I 2 ... 2 0. (5.5) 

If the operator U has only m (< ) distinct eigenvalues and M is the sum of their 
algebraic multiplicities, we put A k( U ) = 0 for k > M. Due to B. Carl (see [61) we know 
the following connection between the eigenvalues of the operator U and its entropy 
numbers: Let U and { )lk(U) : k E N} as above. Then 

	

\/' ek(U).	 (5.6)


Step 2: Entropy numbers for traces on regular anisotropic d-sets. 

Theorem 5.1. Let 0 < d < 2 and let IF be a regular anisotropic d-set in R 2 with 
respect to the anisotropy a = (a i ,a2 ). Let 0 < p '	, 0 <	, 0 < q :5 co and

s E R such that

1	1\ 
=s — d(

	

/ pi 
--- 

P2
—1 >0.	 (5.7) 

\J 

Then the trace operator
+ 2—d 

	

trr : B;,
a ( 2 )	L 2 (r)	 (5.8)


is compact and there exists a constant C > 0 such that, for all k E N, 

, + 
ek(trr. : B; ,q ' I(R 2)	L 2 (r))	Ck. 

The above theorem was proved in [13: Theorem 6.1] and it is the anisotropic coun-
terpart of [32: Theorem 20.61 (cf. also [32: Theorem 22.2]). If, in addition, r is proper 
according to Definition 2.3, then there exists a constant c> 0 such that, for all Ic E N, 

ck- <ek	. fl(trr	
s+ P1 a 

iq ' (R2 ) — L 2 (r)). — 

But the last estimate will not be used later. We want to remark also that assumption 
(5.7) is crucial for the compactness of the operator in (5.8) and that this assumption 
cannot be weakened by + = 0 (see [32: Subsection 20.7)). 

Step 3: Let a = (, ) and let, according to (4.3), W2a(cl) = W 1 
' 2 (1l). Let also 

r > r0 and recall the notation (3.5). We prove now that the operator T =	o trt'

can be factorised by

T = icl2 o	o id, 0 try-

where
irr : W25 ( Q ) -  L2 (r) 

2—d 
id, : L 2 (r) —+

	

2oo	) 
2-a	 S 2-4	 (5.9) 

2. 
o 8_2—d 

id2 B	s_a(ç) 
2oo
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The boundedness of trr in the first line of (5.9) was discussed in the previous section 
(see (5.1)). According to (3.3) the embedding id, is (3.7) whereas the embedding id2 is 
a simple consequence of the inequality 1 -and of the elementary embedding 
(3.2) between anisotropic function spaces. 

So it remains only to justify the boundedness of A' as indicated in the third 
line of (5.9). Let us denote x 0 = ( - 1,0) and x 1 = ( 1,0) and let W"2(,x°,x1) = 
w 24 )(cl , x 0 ,x 1 ) be the collection of all f e W23 "(cl) such that 

3m,+m2f 0	omI+m2f	 3 
orn1arn2)arn1orn2)°	if 2m1+m2+<4 

(see (28: Formula (17)]). Let also

(5.10) 

Recall that there exists a number r0 e R such that for any r > r0 the operator 

Ar maps W'°(,x°,x') isomorphically onto L2(1) (5.11) 

(this was proved by H. Triebel in (28: Theorem 41; see also [25: Theorem 2.1]). Fur-
thermore, by [28: Proposition 2 and Remark 6] the operator 

A,. maps rsG(ç) isomorphically onto B22 a (1l).	(5.12) 

Let
3(2—d)	 (5.13) 

Then, clearly, we have 0 < 9< 1 and (1 —8).0+9.(—) =	Since the unit disc ci 
is a domain in R 2 having the so-called C m flexible(, ) horn condition for any m E 
(see [2: Definition 1.2]), by [3] with the above 9 we have the interpolation result 

a()	
2-4 

(L2 (Q),  B22 3	- ' 2oo - P r 0 

	

'(cl)	 (5.14) 

From (5.11), (5.12) and (5.14) it follows that for r > r0 sufficiently large the operator 

maps B	.a(ci) bounded into (W'°(ci, x0 , x'),	ci)).	(5.15) 

Since

{fE W (1Z,x°,x')+W(ci): iiaci= ox2 

is a complemented subspace of Wa(ci,XO,XI) + Wa(ci) with the same projection 
operator, we may use (26: Theorem 1.17.1/1] and have 

(vV2 '°(ci, x, x'), Wa(ci)) 

= {i € (W2 ( ci , x0 , x 1 ) , W 0 (ci))	:	=	oci 0}	
(5.16) 

	

61 ,00	 8X2
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On the other hand, using (3.4), by [2: Theorem 4.2/a) we have 

	

(w2 a ( ci W2 (1f1	= B	2 a()	 (5.17) 200 19,00 

where 0 is again the number defined in (5.13). It follows from (5.15) - (5.17) and 
elementary properties of real interpolation that 

maps B'l) bounded into
 f, §— a(cl) 

and this completes the proof of the boundedness from the third line of (5.9). 

Step 4: Let I E W' 2 (1) be an eigenfunction of T. Then it follows from (5.9) that 
I belongs also to

hL O(ç) 

and so it is an eigenfunction of the operator T restricted to this space. Obviously, 
the converse is also true. Hence the root systems considered in W" 2 (I?) and in 
Ba(c) coincide. Then the eigenvalues of  considered in these spaces also coin-
cide, inclusively their multiplicities. Using the multiplicity property (5.4) for entropy 
numbers and using (5.9) there exists a constant c > 0 such that, for all k E N, 

	

8 2-a	 8_j 

ek(T : B'°(1Z) - B5 2 a() 

	

200 ) 
<	 200 cek(irr B	''(1l) - L2 (r)). (5.18) 

Inserting in Theorem 5.1 a = (, ), I = P2 = 2, q = oo and s +	= -	we

have from (5.18)

1k (T: hs__s_a() 	j3 1	a)^
	 (5.19) 

Estimate (4.7) is now a simple consequence of (5.19) using Carl's inequality (5.6). 

5.3 Proof of estimate (4.8). Step 1: Atomic decompositions in anisotropic Besov 

spaces. Let a = (a j , a2 ) be a given two-dimensional anisotropy and let Z 2 be the lattice

of all points in R2 with integer-valued components. If ii E No and rn = (M I, rn 2 ) E Z2,

we denote Qm the rectangle in R2 centred at 2- m = (2 0 Im i, 2_ L 2m2 ) which has

sides parallel to the axes and side lengths respectively 2'°' and 202. Remark that


is a square with side length 1. If Q'vm is such a rectangle in R2 and c > 0, then

CQm is the rectangle in 2 concentric with Qm and with side lengths respectively 
c2- a I and c2— a2. 

If /3 = (/31,132) E N, the derivatives D have the usual meaning, and if x = 
(x 1 , x2 ) E R2 , then x fl = X 01 x. The scalar product between the anisotropy a = (a i , a2) 
and /3 is a/3 a 1[31 + a202.
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Definition 5.2. Let s > 0, 1 p cc, K € R and c> 1. A function p: R 2 - C 
for which there exist all derivatives Dp if a/3 K (continuous if K $ 0) is called an 
anisotropic (s,p)K-atom or simply (s,p)-atom, if 

	

suppp C cQ	for some v E N and in € V	 (5.20) 

if a/3	K.	 (5.21) 

If conditions (5.20) and (5.21) are satisfied for ii = 0, then p : 1R2 —i C is called an 
anisotropic 1K-atom. 

If the atom p is located at Qm (that means SUPPPm C cQ with ii € N0 , m € V 
and c> 1), then we will write it Pm• 

We give some technical explanations. The value of the number c > 1 in (5.20) is 
unimportant. It simply makes clear that at the level u some controlled overlapping of 
the supports of p,, must be allowed. If K < 0, then (5.21) is Ip(x)l < The 
reason for the normalising factor in (5.21) is that there exists a constant c > 0 such 
that for all these atoms we have II p I B 2) ( R2 )II < c. Hence, as in the isotropic case, 
atoms are normalised building blocks. This construction generalizes isotropic atoms as 
they are in the works of M. Frazier and B. Jawerth (see [15, 161). 

If 0 < p,q < cc, then bpq is the collection of all sequences A = {A,..m E C : ii E 
No and in € Z2 1 such that

AIblI= ((	A	

) 1) 1. 

Pq  

\mEZ2 

(with the usual modification if p = cc and/or q = cc) is finite. Clearly bp, is a quasi-
Banach space. 

	

Theorem 5.3. Let a = (al,a2) a given anisotropy with a2	a1. Let s > 0, 
1 <p< cc, 0< q cc, and let  ER such that K? a 1 +s. Then  € S'(R2 ) belongs 
to B(R2 ) if and only if it can be represented as 

Pq

= 

Co 

 i	
pm	(convergence being in S'(R2 ))	(5.22) 

P = O mEZ' 

where Pm are anisoiropic 1K- atoms (ii = 0) or anisotropic (s,p)K-atoms (zi E N) and 
A E bp, where A = {A um : i/ E No and in E V}. Furthermore, inf 11A I bpq ]I where the 
infimum is taken over all admissible representations (5.22) is an equivalent quasi-norm 
in B1(Rz). 

This is a weak version of [12: Theorem 33] which will be needed below. We will refer 
to the above theorem as to the atomic decomposition theorem in anisotropic function 
spaces since it generalises to the anisotropic case the well known results of M. Frazier 
and B. Jawerth from [15, 16]. 

Step 2: Approximation numbers and eigenvalues of operators acting in Hubert 
spaces. We recall the definition of the approximation numbers. Let B 1 and B2 be
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two quasi-Banach spaces and let U E L(B 1 ,B2 ). Then given any k E N, the k-th 
approximation numbr k(U) of U is defined by 

k(U) = inf {iiu - L II : L E L(B 1 ,B2 ) and rank  < k} 

where rank L is the dimension of the range of L. Usually the approximation numbers 
are denoted ak (U). The above notation is used only to avoid any possible confusion 
between these numbers and the anisotropy a = (a 1 , a2) . We do not want to discuss here 
properties of approximation numbers, this is done in [8: Lemma 1.3.1/2 and Remark 
1.3.1/61 and [7: Section 11.2.3]. We only want to mention that approximation numbers 
have important connections with eigenvalues, the picture being clearest in a Hubert 
space setting. 

Theorem 5.4. Let H be a Hubert space and let U E L(H) be a compact, non-
negative and self-adjoint operator. Then the approximation numbers ak(U) of U coin-
cide with its ezgenvalues (ordered as in (5.5)). 

A proof can be found in [7: Section 11.5.10] (see also [8: page 21]). 
Step 3: If one applies Theorem 5.4, then estimate (4.8) is a simple consequence of 

the next proposition. 

Proposition 5.5. Let ci and d as above, let r be proper and let T be the compact, 
non-negative, self-adjoint operator in W 1

' 2 (ci) defined in (4.4). There exists a constant 
c> 0 such that the approximation numbers c k(\/ ') of v = 7` 12 can be estimated by 

	

Ce k(V) 2 ckè)	(k E N).	 (5.23) 

Step 4: Proof of Proposition 5.5. Let x' 1 be the centre of the rectangle R 1 of side 
lengths r'1 and ril l, and let N3 - 2" having the same meaning as in Theorem 2.1. Since 
r c ci, it is clear that there exists a Jo E No such that for any j 2 jo the rectangles 
R,, (I = 1, ..., Ni) are contained in ci. Let p a non-negative C function on R 2 with 
support in {x E R 2 : 1xi l < land 1x21 <1). We may assume I(x)I 28>0 if IxiI 
and Ix2 I <ic where 0 < ic < 1 is the number from Definition 2.3 of a proper set. If 

1((2(X1X1) 

2(x2—x2 ) 

	

,	r"	) 

then supp jj C R31 . Furthermore, there exist two constants C 1, C2 >0 such that 

1 ?f (
N 

2	Cjl 	 cii soil I L2 (r)	C 

	

IcII2)	(5.24) 
i=1 

for any complex numbers c 7j and for any j 2 io and 1 = 1,...,N3 . Indeed, using (2.7)
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we have
Ni	 ii 2	N 

cjj wit I L2 ( r )
	=	

IFflR,, 
Ic,I2IcoJ,(7)I2d,L(7) 

N,

c 22 1([' n R3j) 

Ni 

> 

and this is the first inequality in (5.24). The second part of (5.24) is a simple consequence 
of (2.5). 

Remark now that if j > Jo is fixed and 1 E {1, ..., Ni ), then	is an anisotropic 
2) atom in W( 12) (Q). Hence, using (4.3) and the atomic decomposition theorem in 

anisotropic Besov spaces with .s = 4 5 and p = q = 2 we have 

N, 

II g I	12)()II <c2	

(	
i C Ii)	 (5.25) 

l=1 

for any function gj of the type

Ni	 Ni 

	

= >cjvpj: = 2'	 (5.26) 

the constant c > 0 in (5.25) being independent of j, 1 and of the complex numbers 
By (5.2), (5.24) and (5.25) we find a constant co such that 

N, 

II gj I	
(1,2)	

(	
lcii l 2)	> C 2(4gj I	 (5.27) 

1=1 

There exists an operator L = L(N3 ) in W"2 ?) with rank  <N, such that 

aN(\/ ) ^! II v — L II - 2 3 

where co is the number from the last line in (5.27). We may assume that the dimension 
of the span of the admitted functions g 3 in (5.26) is larger than Ni 23d• Then we find 
a function g3 of type (5.26) in W"2 (1l) such that 11gj I W"2 (cl)II = 1 and L93 = 0. It 
follows

aN(V' ) ^ IIv g - Lg3 I *"2 (cl)II - CO 
2)(ff ^ 

CO	 (5.28) 

where co > 0 is independent of j. Using elementary properties of approximation numbers 
it is easy to see that (5.28) implies (5.23) and this completes the proof of the theorem U
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A final remark. Probably the most important result stated in Theorem 4.2 is 
estimate (4.7). We want to point out that in the proof of (4.7) the key role is played 
by the mapping property in the third line of (5.9), more precisely by the fact that 
for sufficiently large r the operator A' maps the anisotropic Besov space B"() 
bounded into

2-a 
B'°() - i E B (cl): f(31 = aX2	 J 

This was obtained as 'a consequence of the results from [28] using some interpolation 
results from [2, 3]. 

We think this remark paves the way to further investigations. One can try to replace 
the model operator Ar by a more general (semi-elliptic) operator, the space 
by another anisotropic function space but the considered anisotropic fractal should be 
chosen having the same anisotropy as the differential operator. Some steps in this 
direction were done in [13] were the surrounding domain of the fractal was the whole 
R2 
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