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The Behaviour of the Eigenvalues
for a Class of Operators Related to some
Self-Affine Fractals in R?
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Abstract. The obtaining of sharp estimates for the asymptotic behaviour of the eigenvalues
of the (semi-elliptic) operator acting in the anisotropic Sobolev space

W (@) = {we Wi (@) s won = 2100 = o]
2

generated by the quadratic form [, f(v) g(v)du(7) is investigated. Here p is an appropriate
self-affine fractal measure on the unit disc @ C R2.
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1. Introduction

Fractal geometry is a very attractive and quickly developing field of modern mathemat-
ics. Thank to the work done by A. Jonsson and H. Wallin [18], K. Naimark and M.
Solomyak [21, 22], H. Triebel [32], D. E. Edmunds and H. Triebel [9] it turns out that
various aspects of this theory are closely connected to Fourier analysis, to the modern
theory of function spaces and to spectral theory of partial differential equations. This
paper has to be understood as a contribution in this direction. The purpose of our work
is to highlight the connection between the asymptotic behaviour of the eigenvalues of
some differential operators related to some fractals and the properties of the fractals.

Spectral propérties and especially the distribution of the positive eigenvalues of
fractal differential operators of the form

U=(-A)"totrh (1.1)
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were studied in [9, 21, 22, 32]. Here (~A)~! is the inverse of the Dirichlet Laplacian in
the bounded C* domain @ C R", T is a compact fractal with

rcQ, [N=0, dimgl<n, . (1.2)

and tr' closely related to the trace operator trr, is given by

(7 f)() = / (tre Y (@D du(v) (o € D(Q)) (1.3)

where p is the Radon measure underlying the fractal I'. The study of operators of type
(1.1) is motivated in a natural way by the so-called fractal drums. If Ax (k € N) are the
positive eigenvalues of (—A)~! o trT, ordered by magnitude and counted with respect

to their multiplicities, then 7y = A, ? are the eigenfrequencies of a vibrating membrane
(interpreted as the bounded domain ), fixed at its boundary, having the whole mass
concentrated on the fractal I' C Q2. More details are given in [32: Subsections 26.2 and

30.1 - 30.5], where one can find a detailed discussion on different aspects concerning
fractal drums.

Satisfactory results were obtained if T is is a self-similar fractal (see [21, 22]) and
if I' is an (isotropic) d-set with n — 2 < dimyT’ < n (see [32: Theorem 30.2]). Recall
I' C R? is an isotropic d-set if there are a Radon measure i in R? and two positive
numbers ¢; and ¢; such that suppu = T and, for all balls B(~,r) centred at v € T
and of radius 0 < r < 1, ¢y < p(B(v,7)) < czr?. Self-similar fractals are typical
examples of (isotropic) d-sets. The notion of (isotropic) d-set occurs both in the theory
of function spaces and in fractal geometry (see (10, 11, 18, 32]).

For anisotropic fractals in R? with (1.2) as defined in [32: Definition 5.2] one has
for the eigenvalues of U only two-side estimates of type

k™ S MU) < k™ (keN) (1.4)

for appropriate positive numbers w, and w, with w; > 1 > w; (see [32: Theorem 30.7)).
Improvements of (1.4) were discussed in [14]. However, the exponents in (1.4) are not
equal in the general case (see the precise formulation in {32: Theorem 30.7] and cf.
[14: Theorem 3.1]). This fact should be not a big surprise since one can imagine that
the different nature of the (isotropic) operator —A and the (anisotropic) structure of T'
. would cause difficulties (see also the discussion in [32: Subsection 4.16)).

Let 0 < d < 2 and let a = (aj,a2) with 0 < a3 < a; < 00, a1 +az = 2. A regular
anisotropic d-set with respect to the anisotropy a is, roughly speaking, a compact set
I' C R? which can be covered for any j € No with N; ~ 27¢ disjoint rectangles having
sides parallel to the axes and with side lengths rl“l and r%’l (I = 1,...,N;) satisfying .
rf" ~277% for 3 = 1,2 (the equivalence constants being independent of j, I and #; cf.
[32: Subsection 4.18] and see the precise definition in Section 2). Those fractals are
special cases of the anisotropic fractals introduced in [32: Definition 5.2].

Considering I a regular anisotropic d-set with respect to the anisotropy a = (a;, az),
our intention is here to replace the Dirichlet Laplacian —A in (1.1) with a model semi-
elliptic differential operator A whose “anisotropic structure” coincides with that of the
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fractal I. We will investigate spectral properties of the new operator A~! o trF acting
in an appropriate anisotropic Sobolev space W**?(2) being interested mainly in the
possibility of obtaining estimates of the type Ay(A~ ' otrT) ~ k= (k € N) (equivalence

constants independent of k € N) for its eigenvalues, where w is an appropriate positive
number.

Let @ = {z = (z1,z2) € R? : 22 + 22 < 1} be the unit disc in the plane and let
01 be its boundary. In order to extend the theory of regular elliptic operators to more

general classes of operators, H. Triebel considered in [28] the semi-elliptic differential
operator

8%u(z) 8‘u(:1:) r

(Ar)(e) = =T+ T b rsu(@) (=(mm)e)  (19)

where r € R and 75 is a C*-function on the interval =1, 1] with n(¢) > 0 if |t| < 1 and

2O 10

1
ml—t t]-11+4¢ ’

and acorresponding boundary value problem A,u(z) = f(z)ifz € Q,u(y) = q:1(y) (y €
oQ) and 2= 3. (¥) = 92(y) (y € 0Q) where f, g, and g; are given functlons In [28] the au-
thor obt.a.med a—prlon estimates for the operator A, in the framework of the anisotropic
Besov spaces B,,’ 2’)(9 z%,z!) and the anisotropic Sobolev spaces W,S"z’)(ﬂ,:co,x‘)
where 1 < p < 0o. These two scales of spaces (our notation here is slightly different
from the original one in (28] where they were denoted BP;Z’)(Q) and W 2’)(Q)) were
considered in [29] taking into account the singular points z° = (—1,0) and z! = (1,0).
They are close to the anisotropic spaces on 2 but their elements show (roughly speaking)
a peculiar behaviour near the singular points z° and z!. A description of this theory
may be found also in [24: Section 4.8].

Spectral properties of A, acting as an unbounded operator defined in L,(f2) (1 <
p < o00) having domain of definition D(A,) = {u € W,Ez’q)(Q,J:o,z:’) r u|d =
a:, | 9Q = 0} (see the proof of Theorem 4.2 below for the precise definition of the
space W,EZ'“(Q, z%,z') if p = 2) were discussed by V. Shevchik in [25). In particular, he
proved that the asymptotic behaviour of the eigenvalues of A, is "intermediate” between
that one of the homogeneous boundary value problem for the Laplace operator on a do-
main (Ak(A) ~ k) and the same problem for the biharmonic operator (Ag(A?%) ~ k?),
namely Ax(A,) ~ k3.

Considering I' C Q a regular anisotropic d-set with respect to the anisotropy a =
(%,2) and tr" the trace operator in the interpretation (1.3), the main objective of
this work is to show that for sufficiently large r the operator A;! o tr’ is compact,
non-negative, self-adjoint in the anisotropic Sobolev space

W) = {u e w (@) won = 2 jon = o)
. 2

and that it is generated by the quadratic form fn f(M) g(v)du(y) in Wél’z)(ﬂ). More-
over, we prove that there exist constants ¢ > 0 and C > 0 such that its positive eigenval-
ues M\(A7! o trl), repeated according to multiplicity and ordered by their magnitude,
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can be estimated by -
ek < AU o trT) < CRTEEHD (ke N, (1.6)

The precise formulation of (1.6) is contained in Theorem 4.2.

To prove the second estimate in (1.6) we use mainly some mapping properties of the
operator A, which were proved by H. Triebel in [28], some recent results from (2, 3] of
O. V. Besov concerning interpolation of anisotropic function spaces and the inequality
of B. Carl between the eigenvalues and the entropy numbers of a compact operator. The
first estimate in (1.6) is proved using the atomic decomposition theorem in anisotropic
function spaces and some Hilbert space techniques, in particular the theorem which
states that for a compact, non-negative and self-adjoint operator acting in a Hilbert
space its eigenvalues coincide with its approximation numbers.

Briefly about the organizing of the manuscript. Regular anisotropic d-sets are pre-
sented in Section 2 whereas the L,-spaces on such fractals are presented in Section 3.
The main result is formulated in Section 4 and it is proved in Section 5. Our aim was
a self-contained work so that we included all necessary basic ingredients (entropy num-
bers, approximation numbers, atomic decompositions in anisotropic function spaces).
The notation is standard. For a normed or quasi-normed space X we denote by lz| X ||
the norm of the vector z. The embedding of the quasi-normed space X into the quasi-
normed space Y is denoted X — Y.

2. Regular anisotropic fractals in R?

Let A = {Ay,...,An} be a family of contractions of R2. It is well known (see [17) and
cf. [10, 11]) that there exists a unique (non-empty) compact set I in R? invariant with

respect to A, i.e. such that I' = Aj(T) U... U Ap(T). T is called the fractal associated
with the system A.

Let us assume that the contractions of the system A are affinities, i.e. each A; has
the form Ai(z) = Ciz + h; where C; € GL{2,R) and h; € R%. Let I' be the fractal
associated with A. The real number d = d;(T') uniquely defined by

N d
S |detCilf =1 (2.1)
i=1

is called the affine dimension of T (see [32: Definition 4.12]). We want to remark
that in the case of diagonal affinitics the number da(T') was already considered by B.
Mandelbrot in [19] under the name gap dimension.

A particular case of affinities A, is of interest. Let n; > 2 and n, > 2 be integers
and let F be the subset of R? given by

thh 1y .
F={(n—,n—)l ti,t, integers, 0 < ¢, < n, a.ndOStg<n2}.
1 2
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Suppose that every element A; of the system A is of the form A;(z) = Cz + hi where
the translation vectors h; are in F’ and

L0
C= (’8 N > .
n2
Thus each A; maps the unit square @ = [0,1] x {0,1] onto a rectangle contained in
Q. The fractal associated with A is a generalisation of the Cantor set in the plane
and is called general Sierpinski carpet in [20]. The Hausdorff dimension for this type
of fractals was computed in [20] (see also [11: Example 9.11]). The definition of a a

regular anisotropic fractal in [32: Subsection 4.18] is slightly more general. We present
it below. Assume that every A; is of the form A;(z) = Ciz + h; where

c,-=(§ ;) ' (2.2)

(the signs depend on i and indicate a possible reflection) and the vectors k; still have
as components integer multiples of n’—‘ and ;’; and are chosen such that A;(Q) is still
contained in @ and A;(Q) is disjoint from A;(Q) if ¢ # j. The fractal generated by the
affinities A; specified above is called a regular anisotropic fractal. In [32) the matrices
C; are written in the form

27" 0
e (B ) @)
with 21 21 1
ogn og Ny
a = ————, a = ————, £k = - log(nyng). 2.4
'™ log(nina) 27 log(ning) 2 g(manz) (2:4)

In particular, a = (a;, az) is a so-called two-dimensional anisotropy, that is 0 < az,a; <
oo and a; + a2 = 2 (cf. the next section).

If j € Ny and N; € Ny, we deal with sets of open rectangles {Rj;: [ =1,...,N;} in
R? having sides parallel to the axes; the side length of the rectangle R;; with respect
to the z;-axis is denoted by rf'l where 1 = 1,2. We will always assume that the side
lengths of the rectangles R;; are ordered in the same way, for example rf’l < r%" for any
j € No and any l= 1,...,Nj.

Theorem 2.1 [13: Theorem 3.1]. Let I be the fractal generated by the system A
of affinities specified by (2.2) — (2.4), having affine dimension d = da(T') according to
(2.1). There ezist numbers ¢;,ca > 0 such that for any j € No: there ezists a natural
number N; with '

a2 <N;j <2 if jEN, No=1,

and there ezists a finite sequence of open rectangles {Rj; : | = 1,...,N;} having sides
parallel to the azes, Roy = Q, satisfying the following conditions:

(i) There ezists a constant 0.< co < 1 such that for allj € Ny'and alll =1, ..., N;

(027 <ri <270 (i=1,2).
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(ii) If I ?é Il, then R)[ N lel = 0

(iii) For any rectangle Ry, there is a rectangle Rji,l = I(k), such that Rj4 4 C
R,’(.

(iv) For any j € Ng and any [ = 1,.., N, (volRﬂ)% = ZR,“,.‘CR,-.("OIRJ‘HJ‘)%'
N. —
(v)T= n?f—.o Uiz Ri-

Taking into account Theorem 2.1 and the terminology from [32: Subsection 4.18] the
fractal I' is called a regular anisotropic d-set with respect to the anisotropy a = (a1, az)
(see [13]).

As remarked in [32: Subsections 4.14 and 4.22], if the anisotropy a = (a;,a,) is
non-trivial, that means a = (a;,a;) # (1,1), then the number d from (2.1) and the
Hausdorff dimension dimyT" of the fractal T, are completely unrelated. Furthermore, it

can happen that the regular anisotropic d-set I' is also an isotropic d'-set with d # d
(see [32: Subsection 4.21]).

For a detailed discussion concerning dimension problems for self-affine fractals the
reader is referred to the recent work [1].

Theorem 2.2 [32: Theorems 5.5 and 4.15]. Let T be a regular anisotropic d-set
with respect to the anisotropy a = (a;,az) and let {Rjt : j € Ng, I =1,..,N;} be
the rectangles from Theorem 2.1. Then there ezists a Radon measure u in R2 uniquely
determined with suppu =T and

#(CNRj) = (vol Ry)*  forall j €Ny andl=1,...,N;. (2.5)

As it was remarked by M. Bricchi (cf. [5]), following the proofs in [32: Theorems 5.5
and 4.15] and [17] it is not difficult to see that the measure y from Theorem 2.2 coincides
with the unique Borel regular (outer) measure p constructed in {17], with suppu =T
and of total mass 1 which is invariant with respect to A, that is '

N .
W(E) = %Zy(A:‘(E)) for all E C R2.

We know that if T is an isotropic d-set with underlying measure p and if 0 < & < 1,
then

w(B(7,kr) NT) ~ u(B(7,r) NT) ~ r (26)

where the equivalence constants depend on & but not on 7Y€land 0<r < 1. Fora
regular anisotropic d-set I' we have (2.5) but no counterpart of (2.6). At least a weak
version of (2.6) will be needed. If 0 < x < 1, then kRj; denotes the rectangle concentric

with 12j; and with side lengths respectively Kr{‘l and K,T‘%'l.

(@1,a2) equipped with measure u according to Theorem 2.2 is called proper if there
exist two numbers 0 < <1 and 0 < ¢ <1 such that

Definition 2.3. A regular anisotropic d-set with respect to the anisotropy a =

w(TNeRy) > C(VO]RJ';)% (j € Ng, 1 = 1,..,N;) (2.7)
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where {Rj;: j € Ng and I =1, ..., N;} are the rectangles from Theorem 2.1.

This is a slightly different version of [32: Definition 5.11]. Since I is generated by
linear contractions, following the lines of the proof of [32: Proposition 5.13] it turns out
that if T N Q # O, then T is proper. Hence condition (2.7) is rather natural.

3. L,-spaces on regular anisotropic fractals

3.1 Some preliminaries on anisotropic function spaces. If1 < p < oo and (sy, s2)
is a pair of natural numbers, then the classical anisotropic Sobolev space W,S""’)(le)

is the collection of all tempered distributions f € S'(R?) such that
63
oz}

as

IF 1w (R = 1f | Ly(R?)]| + e

|L (Rl +

IL (R?)

is finite. In contrast to the usual (isotropic) Sobolev space (sl = s2) the smoothness
properties of an element from W,,’l ”)(RQ) depend on the chosen direction in R2. The

number s defined by
1 1/1 1
P (; + ;) (3.1)

is usually called the "mean smoothness” and a = (a1,az2), where a; = ﬁ and a; = :—2,
characterises the anisotropy. Sometimes we will use the notation W;’“(Rz) for these

spaces.

We recall now the definition of anisotropic Besov spaces on R2. First we fix some
notation. A pair ¢ = (aj,a2) with 0 < a;,a; < 00 and @) + a; = 2 is called an
anisotropy. If a = (1,1), then we speak about the "isotropic case”. The action of
t € [0,00) on z = (z1,z2) € R? is defined by the formula

%z = (% 2),t%%x,).
Fort > 0 and s € R let ¢**z = (t*)®z. In particular, t7%z = (t7!)°z and 277%z =

(277)°z.

For £ = (z,,z2) € R? and z # 0 let |z|, be the unique positive number ¢ such that

2 2
I Z2
1 42
t2¢l| t?aq

and let |0, = 0. By M. Yamazaki [34: Theorem 1.4/3,8], | |a is an anisotropic distance
function in C°°(R?\{0}). Remark that in the isotropic case |z, is the Euclidean distance
of z to the origin.

and ¢;(z) = @o(277%z) — po(2(~7*Vez) if j € N. Then Y ieowi(z) =1if z € R? and
(¢;)jeN, 1s a smooth anisotropic dyadic resolution of unity (cf. {24: Section 4.2)).

Let wo a C* function on R?, @o(z).= 1if |z|s < 1, supppo C {z € R? : |z|s < 2}
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Let 0 < p < 00,0 < g < ooands € R. The anisotropic Besov space B;;]“(R2)
consists of all tempered distributions f € $'(R?) for which the quasi-norm

If 1B (R*)]| = (Z 2°|(p; £)" | Lp(Rz)II")

=0

(with usual modification if ¢ = 00) is finite. Here fand g" denote the Fourier transform
of f respectively the inverse Fourier transform of g. These are quasi-Banach spaces
(Banach spaces if p > 1 and ¢ > 1) which are independent of the choice of (¢5)jeN,-
The space H;**(R?) = B3y*(R?) is the anisotropic fractional Sobolev space. In particular,

ifsy=_-ands; = 2, are natural numbers, then Byy'(R?) = W,'*(R?).
Directly from the definition we have

By+o*(R?) — By2(R?)  if €>0 (3.2)
for any s € R, any 0 < p < o0, and any 0 < gp,q; < oo (see [27: Proposition 2.3.2/2)).
Anisotropic function spaces of Fp’a"(Rz) type, 0 < p < o0, are defined changing the roles
of the spaces L,(R?) and /; in the above definition but we do not stress this point here.
The above spaces are denoted B;Q(R2) in the isotropic case. A systematic treatment
of the theory of isotropic B;q(R"’) and F;q(Rz) spaces may be found in the books of H.
Triebel [27, 30].

Anisotropic function spaces have been studied in great detail by S. M. Nikol’skij
(see [23]) and by O. V. Besov, V. P. Il'in and S. M. Nikol’skij (see [4]). For a list of
contributions to the theory of anisotropic function spaces we refer to [12].

fseR,1<p<oo,1<q<o0,and ) C R?is a domain, then B *(Q) is the
restriction of B;,*(R?) to 2 normed by

I£ 1B (I = inflg | By* (R (3-3)

where the infimum is taken over all ¢ € B3:2(R?) with ¢|Q = f|Q (in the sense of
distributions on §2). Of course, this definition works for all (bounded or unbounded)
domains {2 but we will be interested later only on the unit disc. Let us recall that

W) = B3y () if s>0. (3.4)
Fors € R,1 < p < oo,and 1< q < oo we will use the (non-standard) notation
93,0 s,a af
Bp;,(Q)={fEB,,;,(Q):ﬂaQ:%IaQ:O}. (3.5)

3.2 Embeddings of L,(I') in anisotropic Besov spaces. Let I' be a regular
anisotropic d-set with respect to the given anisotropy a = (a1,a2). The L,-spaces
on I' (0 < p < ) are intfoduced in the usual way with respect to the underlying
Radon measure y on T according to Theorem 2.2. If 1 < p < ocoany fr € Ly(T") will be
interpreted as a tempered distribution f € S'(R?) given by

f(e) = /P M @D dutr) (o € SRY), (3.6)

where ¢|T" is the restriction of ¢ to T.
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Theorem 3.1. Let 0 < d < 2 and let T be a regular amsotropic d-set in R? with

respect to the anisotropy a = (a;,az). If1 < p < oo and & + =1, then (in the sense
of (3.6)) .
L) = { £ € B (R J(0) =0 o o € S®) and dr=o}. @1

The above theorem was proved in [13: Theorem 3.6] and it is the anisotropic coun-
terpart of [33: Theorem 2] (see also [32: Theorem 18.2)).

3.3 Traces of anisotropic Besov spaces on fractals. Assume that T is a regular
anisotropic d-set in R? with respect to the a.nisotropy a = (ay,az). If p € S(R?), then
trr = |’ makes sense pointwise. If 0 < p,q¢ < oo and s € R, then the embedding
trr B3:*(R?) — L,(T') must be understood as follows: there exists a positive number
c> 0 such that, for any ¢ € S(R?), ||trre | Lp(T)|l < clle| BaA(R?)||. Since S(R?) is
dense in By, "(Rz) for 0 < p,q < oo this inequality can be extended by completion to
any f € B;:*(R?) and the resulting function is denoted trrf. In addition, the equality
trrByy "(]R?) = Ly(I') means that any fr € L,(T') is the trace of a suitable g € B;*(R?)
on T and e[ Lp(D)]| ~ inf{llg| B;y*(R?)]| : trrg = fr}.

Theorem 3.2. Let 0 < d < 2 and let ' be a regular anisotropic d-set in R? with
respect to the anisotropy a = (a;,az). If% < p< oo and 0 < ¢ < min(l,p), then

treBpd (R?) = Ly(T). (3.8)

The above theorem was proved in [13: Theorem 3.7] and it is the anisotropic coun-
terpart of [33: Theorem 3] (see also [32: Theorem 18.6)).

4. The main result

Let Q = {z = (z1,22) € R?: 22 + 22 < 1} be the unit disc in the plane and let 9 be
its boundary. In what follows we will consider I' C Q a regular anisotropic d-set with
respect to the anisotropy a = (%, %) One can take, for example, ny, = 16 and n, = 4
in (2.4) and (2.2). In the sequel we shall not distinguish between fr as an element of
some L,(I") and as the distribution belonging to some B, 5%(2) according to (3.7).

To avoid any misunderstanding we emphasise that the trace operator has two dif-
ferent meanings which we distinguish by t¢rr and trl if extra clarity is desirable. If
1 < p < o0, then by (3.8)

: Byr Q) — Ly(D), (4.1)
and if one applies in addition (3.7)
r =d —3d .,
tr: B,Y () = By (). _ _ (4.2)

The latter can be rephrased asking for an optimal extension of ¢r’ considered as a

mapping from D(R?) into D'(£2) given by (1.3) (cf. [32: Subsection 28.1)).
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We consider the anisotropic Sobolev space

, 0
witd Q) = {u € 5'(Q) : llu| LAl + 6_:1 |L2(Q)H t

0%u
322 | L2(R2)

'<oo}.

Clearly (see (3.1)), the mean smoothness is s = § and a = (},2) characterises the
anisotropy. Using the notation from the previous section we have
3. 1,2
Wy (@) = Wi P(Q). (4.3)

Remark 4.1. Let
2

and let A, be the operator defined in (1.5). We know from [28: Propos:ltion 1] that
1 °

there exists an ro € R such that for any r > r¢ the operator A? maps Wél'z)(Q)

isomorphically onto L2(f); consequently, we may fix the norm on Wz(l’z)(Q) by

2.(1,2 i
e | W3 (@I = [l 47| L)
and a corresponding scalar product.
We are able now to present our main result.

Theorem 4.2. Let 0 < d <2 and let Q be the unit disc in the plane. Let T C S be
a regular anisotropic d-set with respect to the anisotropy a = (g—, %) Let trT be the trace
operator in the interpretation (4.2) and (1.3) whereas trr stands for the trace operator
according to (4.1). Let A, be the operator from (1.5).

(1) There ezists ro € R such that for any r > ro the operator

T=A"otrl (4.4)
is compact, non-negative, self-adjoint in W:,(l’z)(Q) and has null space
N(T) = {f e W"P(Q): trrf =0} (4.5)

Furthermore, T 13 generated by the quadratic form in Vi’z(l'z)

/rf(*r)md#('r) =(Tf9wong  where fg€ W 2(Q) (4.6)

and p 13 the Radon measure according to Theorem 2.2.

(ii) Let r > rq. There ezists a constant C > 0 such that posi.tive eigenvalues
Ax(T) of T, repeated according to the multiplicity and ordered by their magnitude, can
be estimated by

M(T) < CEk~39+D (ke N). (4.7)
If, in addition, T 1s proper according to Definition 2.3, then there ezists a constantc > 0
such that .
ck™3W+) < A(T)  (keN).
The detailed proof is given in the next section.

Remark 4.3. The additional assumption on T' to be proper in the estimate (4.8)
excludes by the considerations after Definition 2.3 only pathological cases where the
whole fractal retreats in the boundary of the starting square.
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5. Proof of Theorem 4.2

Proof of Theorem 4. 2/(i) Let a = (3,2). Using the elementary embedding

wib Q) = W"’“(Q) o B.‘,2 '"(Q) (see (3.2)) and applying (3.8) there exists a con-
stant ¢ > 0 such that

Ntre 1 LoD < cllf |WS2(Q)  forany fe Wi (6)
Defining
o) = [ I dutr)  forany fig € W),

it is clear that g(-,-) is a non-negative quadratic form in WZ(I‘H(Q). By [31: page 91]
there exists a non-negative and self-adjoint operator T uniquely determined such that

.q(fag) = (Tf:g)w’(l-z)(n) fOI‘ any f)g € W2(1)2)(Q)

Furthermore,

lltre £ 1 Lo(D)Il = VT £ | WD (@) (52)
where VT = T% and this proves (4.5).

So it remains to prove that the above operator is the same as in (4.4). Let f €
W B(Q) and ¢ € D(Q). Then

JH R dutr) = (TF DDwgsnay = (TS Abhiaiar = (ATS )y (53)

the second equality i in (5.3) being justified by the fact that for r > ro we fixed the norm

in W(l 2)(Q) by ||Ar( )| L2(2)|| and a corresponding scalar product (see Remark 4.1).
Con51dered as a dual pairing in (D(R), D'()) we obtain A,Tf = tr! f and (4.6) follows
by the same arguments as in [32: Theorem 27.15/Step 1]. This completes the first part
of the proof of Theorem 4.2.

5.2 Proof of the estimate (4.7). Step 1: Basic facts on entropy numbers and their
relation to the eigenvalues. Let B; and B; two quasi-Banach spaces. The family of all
linear bounded operators U : By — B, is denoted by L(B;, B2) or L(B,) if By = B,.
We will assume that the reader is familiar with the definition of the entropy numbers
ex(U) (k € N) of a compact map U € L(B,, B;). This definition is given, for example,
in [8: Subsection 1.3.1) where one can find also comments and historical references. We
only want to mention here that if By, B;, B3 are quasi-Banach spaces, if X € L(B,, B;)
and R € L(B;, B;), then for all &£,! € N,

ek+1_,(RoX) S ek(R) eI(X) (54)

(see [8: Lemma 1.3.1/1}).

Let B be a complex quasi-Banach space and U € L(B) a compact map. We know
from [8: Theorem 1.2] that the spectrum of U, apart from the point 0, consists solely
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of eigenvalues of finite algebraic multiplicity: let {Ax(U) : k € N} be the sequence of all
non-zero eigenvalues of U, repeated according to algebraic multiplicity and ordered so
that :

M) 2 Ra(U)] 2 . 2 0. . (5.5)

If the operator U has only m (< oo) distinct eigenvalues and M is the sum of their
algebraic multiplicities, we put Ax(U) = 0 for £ > M. Due to B. Carl (see [6]) we know
the following connection between the eigenvalues of the operator U and its entropy

numbers: Let U and {M\¢(U) : k € N} as above. Then
Ae(U)] € V2ex(U). (5.6)

Step 2: Entropy numbers for traces on regular anisotropic d-sets.

Theorem 5.1. Let 0 < d < 2 and let T’ be a regular anisotropic d-set in R? with
respect to the anisotropy a = (a1,a2). Let 0 < p; < 00, 0 < ps < 00,0 < g < 00 and
s € R such that

1 1
6+=s—d(~—-—) > 0. (5.7)
) 41 P2 +
Then the trace operator
24,
trr: By (R?) = Lyy(T) (5.8)

is compact and there ezists a constant C > 0 such that, for all k € N,

2-d , Y
ex(trr: Bpy™ “(R?) — L,,(I) <Ck%.

The above theorem was proved in {13: Theorem 6.1] and it is the anisotropic coun-
terpart of (32: Theorem 20.6] (cf. also [32: Theorem 22.2]). If, in addition, I is proper
according to Definition 2.3, then there exists a constant ¢ > 0 such that, for all k € N,

s+

. =4 a
ck™3 < e (trr 2 Bpg®t’ (R2) — L,z(r‘)). o

But the last estimate will not be used later. We want to remark also that assumption
(5.7) is crucial for the compactness of the operator in (5.8) and that this assumption
cannot be weakened by 64 = 0 (see [32: Subsection 20.7}).

Step 3: Let @ = (%, 2) and let, according to (4.3), WQ?_"G(Q) = Wél’”(ﬂ). Let also
r > rp and recall the notation (3.5). We prove now that the operator T = A7! o trT
can be factorised by '

T=id20A:'oidlotrp

where

trr: WHN(Q) — Ly(T)
()

08 _2-4d ,
200 (Q) - B2aoo : (Q)
idy: B3S0Q) - Wie(@).

2—-d

idy 1 L(T) — B,.?
2-d

AZl.B T "

r

(5.9)
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The boundedness of trr in the first line of (5.9) was discussed in the previous section
(see (5.1)). According to (3.3) the embedding id, is (3.7) whereas the embedding id; is
a simple consequence of the inequality g - 3—;—" > % and of the elementary embedding
(3.2) between anisotropic function spaces.

So it remains only to justify the boundedness of A;! as indicated in the third
line of (5.9). Let us denote z° = (—1,0) and z! = (1,0) and let WZ%‘G(Q,IO,II) =
W2(2'4)(Q,IO,I]) be the collection of all f € W;'a(Q) such that

oramy o gy
3o oz ° ) T aarigaye

(see [28: Formula (17)]). Let also

3
(2:1):0 if 2m1+m2+§<4

Wie(Q,2° ) = {f e Wi (Q,2° ') £]0Q = %‘-‘aa - o}. (5.10)
2 o
Recall that there exists a number r¢9 € R such that for any r > ro the operator

A, maps WQ%'G(Q,IO,J:I) isomorphically onto L,() (5.11)

(this was proved by H. Triebel in (28: Theorem 4]; see also [25: Theorem 2.1]). Fur-
thermore, by [28: Proposition 2 and Remark 6] the operator

A, maps Vi’;’a(Q) isomorphically onto B;ﬁ’q(ﬂ). (5.12)
Let
_3e-dq)
===
Then, clearly, we have 0 < § < 1 and (1—-6)-0+86- —45) = —-2'2'—“. Since the unit disc
is a domain in R? having the so-called C™ flexible (%, %) horn condition for any m € N2
(see [2: Definition 1.2]), by [3] with the above 8 we have the interpolation result

6 (5.13)

(a2, B3 (), = Broa” "(®). (5.14)
From (5.11), (5.12) and (5.14) it follows that for r > r¢ sufficiently large the operator '
A" maps Bj,* (@) boundedinto (W;*(@,2°,2"), W,%-“(Q))om. (5.15)
Since

3.0 0 .1 i of
feWwW: (27,2 )+ W2 () : f|6Q=b—1—IaQ=0
2 : .
is a complemented subspace of Wz‘g"a(Q,zo,zl) + }W;}’a(Q) with the same projection
operator, we may use [26: Theorem 1.17.1/1] and have

(Whe(0,20,2), Wi @), o _ )
e of N (5.16)
={fe (w2 (Q,2°,2"), W, (Q))om: f|80=a—x2|6ﬂ=0}.
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On the other hand, using (3.4), by [2: Theorem 4.2/a} we have

8_2—-4d
53— .0

(W@ wi@) =Bz @ (5.17)

8,00

where 6 is again the number defined in (5.13). It follows from (5.15) - (5.17) and
elementary properties of real interpolation that

~d

2 o8_2-d o
A7 maps B,_7 "“(Q) bounded into Bil T *(Q)

and this completes the proof of the boundedness from the third line of (5.9).

Step 4: Let f € WZ(]‘Z)(Q) be an eigenfunction of T'. Then it follows from (5.9) that
f belongs also to
o8 _3-d o
B (9)
and so it is an eigenfunction of the operator T restricted to this space. Obviously,

the converse is also true. Hence the root systems considered in VOVQ(I’Q)(Q) and in
2-4

o8 _

B3 7 "*(Q) coincide. Then the eigenvalues of T considered in these spaces also coin-
cide, inclusively their multiplicities. Using the multiplicity property (5.4) for entropy
numbers and using (5.9) there exists a constant ¢ > 0 such that, for all k € N,

2-d

°§_ua o 8 __ a °!—ﬂa
ee(T: Bio ™ ()~ Bi, T (Q)) Scek(trr: B ’(Q)—>L2(I‘)). (5.18)

Inserting in Theorem 5.1 a = (3,3), m =pr =2, g=ocand s + 54 = § — 224 we
have from (5.18)

o8 _2-d , o8 _2-d o
ex(T: BiZ TN — BEZT (Q)) < ck—#@+d), (5.19)
Estimate (4.7) is now a simple consequence of (5.19) using Carl’s inequality (5.6).

5.3 Proof of estimate (4.8). Step 1: Atomic decompositions in anisotropic Besov
spaces. Let a = (a;, az) be a given two-dimensional anisotropy and let Z? be the lattice
of all points in R? with integer-valued components. If v € Ny and m = (m1,m;) € 22,
we denote Q},, the rectangle in R? centred at 27%*m = (27¥%'m;,2"¥%2m,) which has
sides parallel to the axes and side lengths respectively 27¥*' and 2722, Remark that
Qom is a square with side length 1. If Q2 . is such a rectangle in R? and ¢ > 0, then
cQ}m is the rectangle in R? concentric with Q2 and with side lengths respectively

c27¥% and c2—ve2,
If 8 =(8,8) € Ng, the derivatives D? have the usual meaning, and if z =

(z1,22) € R?, then 2f = If' zf’. The scalar product between the anisotropy a = (a;, az)
and f is af = a,6) + a2,.
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Definition 5.2. Let s >0,1 < p< oo, K € Randc > 1. A function p: R? - C
for which there exist all derivatives D?p if af < K (continuous if K < 0) is called an
anisotropic (s,p)x -atom or simply (s, p)-atom, if

suppp C cQm for some v € Nand m € Z? (5.20)
|DPp(z)| < 270~3)2%*8  if af < K. (5.21)

If conditions (5.20) and (5.21) are satisfied for v = 0, then p : R? — C is called an
anisotropic 1k -atom.

If the atom p is located at Q%,, (that means supp pS,, C cQ%,, with v € N, m € z?
and ¢ > 1), then we will write it pg, ..

We give some technical explanations. The value of the number ¢ > 1 in (5.20) is
unimportant. It simply makes clear that at the level v some controlled overlappmg of
the supports of p2_ must be allowed. If K < 0, then (5.21) is |p(z)] < 27 v(s=3) The
reason for the normalising factor in (5.21) is that there exists a constant ¢ > 0 such
that for all these atoms we have ||p|B,(,f,’°)(lR2)|| < ¢. Hence, as in the isotropic case,
atoms are normalised building blocks. This construction genecralizes isotropic atoms as
they are in the works of M. Frazier and B. Jawerth (see {15, 16]).

If 0 < p,g < oo, then by, is the collection of all sequences A = {A,m e€eC:ve
Ny and m € Z?} such that

oo £\«
1A bpgll = Z(Z If\»ml”>

v=0 \meZ?

(with the usual modification if p = 0o and/or ¢ = o) is finite. Clearly byq is a quasi-
Banach space.

Theorem 5.3. Let a = (a;1,a2) a given anisotropy with a; < a,. Let s > 0,
1<p<oo0,0<q< oo, andlet K € R such that K > a, +s. Theng € S'(R?) belongs
to B;;;‘(IW) if and only if it can be represented as

oo
g= 2 Z AomPom (convergence being in S'(R?)) (5.22)
v=0 meZ?

where p%,. are anisotropic 1k -atoms (v = 0) or anisotropic (s,p)k -atoms (v € N) and
X € by, where A = {Aym : v € Ng and m € Z?}. Furthermore, inf ||A| byoll where the
infimum is taken over all admissible representations (5.22) is an equivalent quasi-norm
in B3.*(R?).

This is a weak version of {12: Theorem 3.3] which will be needed below. We will refer
to the above theorem as to the atomic decomposition theorem in anisotropic function
spaces since it generalises to the anisotropic case the well known results of M. Frazier
and B. Jawerth from (15, 16).

Step 2: Approximation numbers and eigenvalues of operators acting in Hilbert
spaces. We recall the definition of the approximation numbers. Let B; and B, be
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two quasi-Banach spaces and let U € L(B,,B;). Then given any k € N, the k-th
approximation number ax(U) of U is defined by

ak(U) = inf {||U —L||: L € I(By, By) and rank L < k}

where rank L is the dimension of the range of L. Usually the approximation numbers
are denoted ax(U). The above notation is used only to avoid any possible confusion
between these numbers and the anisotropy a = (a,, az). We do not want to discuss here
properties of approximation numbers, this is done in [8: Lemma 1.3.1 /2 and Remark
1.3.1/6} and {7: Section I1.2.3]. We only want to mention that approximation numbers
have important connections with eigenvalues, the picture being clearest in a Hilbert
space setting.

Theorem 5.4. Let H be a Hilbert space and let U € L(H) be a compact, non-
negative and self-adjoint operator. Then the approzimation numbers ai(U) of U coin-
cide with its eigenvalues (ordered as in (5.5)).

A proof can be found in [7: Section I1.5.10] (see also [8: page 21)).

v Step 3: If one applies Theorem 5.4, then estimate (4.8) is a simple consequence of
the next proposition.

Proposition 5.5. Let Q and d as above, let T be proper and let T be the compact,
non-negative, self-adjoint operator in WQ(I'Q)(Q) defined in (4.4). There ezists a constant
¢ > 0 such that the approzimation numbers ar(VT) of VT = T can be estimated by

ar(VT) > k3543 (ke N). (5.23)

Step 4: Proof of Proposition 5.5. Let z/'! be the centre of the rectangle R;; of side
lengths rl'l and ré’l, and let N; ~ 2/ having the same meaning as in Theorem 2.1. Since
I C 9, it is clear that there exists a jo € Ny such that for any j > jo the rectangles
Rji (I=1,..,N;) are contained in Q. Let ¢ a non-negative C® function on R? with
support in {z € R?: |z;| < 1 and |z2| < 1}. We may assume lo(z)l 26> 0if |z;| < &
and [z2| < & where 0 < k < 1 is the number from Definition 2.3 of a proper set. If

il g
oale) = o (2(“ ) e )),

gl ’ gl
rll r2’

then supp ;i C Rj;. Furthermore, there exist two constants ¢1,¢2 > 0 such that

1
F . 2
N;

N;j : N; '
—54d -4
ca 275 | S el | <1 el La(D)|| < cp 2774 d leal?) o (5.24)
=1 =1

=1

for any complex numbers ¢jt and for any j > jg and [ = 1,...,N;. Indeed, using (2.7)
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we have

N; 2

N;
Senpenl @ =3 [ leuPleatnPaut
1=1 YTNR;

=1

N;
>3 lej?8u(T N kRy)
=1

N;
>c277¢ Z lejil?
=1

and this is the first inequality in (5.24). The second part of (5.24) is a simple consequence
of (2.5).
Remark now that if j > jo is fixed and ! € {1,..., N;}, then 2_j%<pj1 is an anisotropic
1,2) atom in Wz(l’z)(Q). Hence, using (4.3) and the atomic decomposition theorem in
anisotropic Besov spaces with s = 45 and p = ¢ = 2 we have

N; 7
llg; W3 " 2(@)]] < c273 (Z lesil? (5.25)
=1
for any function g; of the type
N; N;
" a
9i =) cipn =25 cu(27395), (5.26)

=1 1=1
the constant ¢ > 0 in (5.25) being independent of j, I and of the complex numbers c;;.
By (5.2), (5.24) and (5.25) we find a constant ¢ such that
1
N; 2
. i d . :
IVTg; W5 D@l ~ 2778 [ 3 feil* | 2 eo 27+ g, | (@) (5.2)
=1
There exists an operator L = L(N;) in Wz(]_'z)(ﬂ) with rank L < N; such that
an,(VT) 2 VT - L|| - Lep277(5+8)

where ¢ is the number from the last line in (5.27). We may assume that the dimension ‘
of the span of the admitted functions g; in (5.26) is larger than N; ~ 2/¢. Then we find

a function g; of type (5.26) in Wz(l’z)(ﬂ) such that ||gj|W2(l'2)(Q)|| =1land Lg; =0. It
follows

an;(VT) 2 IVTg; — Lg; | W5 ()| - Jeo277(5+8) > ¢ 277549 (5.28)

where cp > 0isindependent of j. Using elementary properties of approximation numbers
it is easy to see that (5.28) implies (5.23) and this completes the proof of the theorem B
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A final remark. Probably the most important result stated in Theorem 4.2 is
estimate (4.7). We want to point out that in the proof of (4.7) the key role is played
by the mapping property in the third line of (5.9), more precisely by the fact that

2-4d
for sufficiently large r the operator A;! maps the anisotropic Besov space B,.7 ()
bounded into

BET Q) = {f e BEZ5 () flon = (%ﬁag = o}.
2

This was obtained as’a consequence of the results from [28] using some interpolation
results from (2, 3].

We think this remark paves the way to further investigations. One can try to replace
the model operator A, by a more general (semi-elliptic) operator, the space V°V2(1’2)(Q)
by another anisotropic function space but the considered anisotropic fractal should be
chosen having the same anisotropy as the differential operator. Some steps in this
direction were done in [13] were the surrounding domain of the fractal was the whole

R2.
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