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Abstract. This paper concerns an optimal control problem of elliptic singular perturbations 
in variational inequalities (with controls appearing in coefficients, right-hand sides and convex 
sets of states as well). The existence of an optimal control is verified. The applications to the 
optimal design of an elastic plate with a small rigidity and with inner (or moving) obstacle a 
primal finite element model is applied and convergence result is obtained. 
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0. Introduction 

The aim of asymptotic methods in optimal control is to simplify the state inequality. The 
most classical approach is the use of asymptotic expansion in terms of small parameter 
that may enter the state inequality, i.e. the method of perturbations, in particular 
the method of singular perturbations. Singular perturbations play a special role as 
an adequate mathematical tool for describing several important physical phenomena, 
such as propagation of waves in media in the presence of small energy dissipations or 
dispersions, appearance of boundary or interior layers in fluid and gas dynamics, as 
well as in the elasticity theory, semiclassical asymptotic approximations in quantum 
mechanics, phenomena in the semi-conductor devices theory and so on. We shall deal 
with singular perturbation of an optimal control problem for an elliptic variational 
inequality appearing in coefficients, right-hand sides and convex sets of states as well. 
For the sake of simplicity we confine ourselves to the cases of a linear operator on a 
Hubert space. We give first properties of the solutions. Moreover, we shall deal with 
the discretization of an optimal control problem (1'). The existence theorem (for the 
singular perturbed optimal control) will be applied to the perturbed optimal control 
of a homogene isotropic plate with small coefficients of the bending rigidity tensor and 
the membrane (the membrane approximation to the plate obstacle problem is a special 
example of singular perturbations for elliptic variational inequalities). The numerical 

J. Loviek: Slovak Techn. Univ., Fac. Civil Eng., Radlinskeho 11, 813 68 Bratislava, Slovak 
Republic 

ISSN 0232-2064 / $ 2.50 © Heldermann Verlag Berlin



896	J. Loviek 

analysis will be restricted to the homogene isotropic plate with small rigidity and with 
inner obstacle. 

Singular perturbations in variational inequalities were considered by Huet [10], Lions 

[15, 161, Greenlee [8], Eckhaus and Moet [6], Frank [7], and Sanchez-Palencia [22] while

those of optimal control problems were considered by Khludnev and Sokolowski [14] and 

Lions [15]. The main concern is the existence of solution with some weak convergence 

theorems, but all of the above authors (within Lions, Khludnev and Sokolowski) ob-




tained weak convergence theorems for singular perturbations of variational inequalities. 

Before touching the main topic we introduce the notation. Let H(fl) be a normed


linear space. Following Mosco [19], we introduce the convergence of sequence of subsets: 
Definition 1. A sequence {Kfl (Il)} flE N of subsets of a normal space H(l) converges 

to a set K(Q) C H(l) if K(Q) contains all weak limits of sequences {vfl k }kEN C K(!l), 
where {Kflk (ci)} kEN are arbitrary subsequences of {Kfl(Il)}fl E N and every element v E 
K(1l) is the (strong) limit of some sequence {vfl}flEN, vn E K(cl). We shall write 
K(Q)	 K(Q) in this situation. 

1. An existence theorem 

Let the control space U(Q) be a reflexive Banach space with norm IIu(1l), and 
let Uad(ci) C U(Q) be a set of admissible controls in U(ci). Further, denote by 
V(1l), W(1l) two real Hilbert spaces with inner products (, )vc, (, )w(n) and norms 

IIv(1Z), II IIw(cl), respectively. Let us denote by V*(ci),W*(cl) their respective dual 
spaces of and by II IIv(c1), 11 IIw•n their norms with respect to given duality pairings 
(., (, )w(cl) . For a Banach space fl we denote by L(?t, 71*) the space of all linear 
continuous operators form 71 into 71 endowed with the usual operator norm. For two 
non-negative constants .\, A we denote by &H (A, A) the set of all symmetric elements Q of L(71, 7-r) for which the inequalities 

A II v II < (Qv,-) .,j	and	IIQv IIn . < A II v II,	(v E 71)	(1.1)

hold. We assume that 
(NO) V(1l) - W(ci), V(1l) dense in W(Q) and Uod(ci) C U(1l) compact in U(cl). 
We introduce systems 

{ftC(e, 11)}eEUa(fl)	and	{O(e, f1)}eEu*d(0) 
of convex closed subsets AC(e, ci) C V(Q) and O(e, ci) C W(ci), and families of symmetric 
operators 

{A(e,Q)} eE u d( n ) C L(V(ci),V(ci)) and { 13 ( eJ2)}e€ua C L(l'V(ci), W*(ci)) 
satisfying the assumptions 

10 fl eE u ( ç ) XL(e, ci) 0 0 
20 e - e strongly in U(Q)	C(e,ci) = Limn....c,,AC(en,Q) 

(HO)	30 {A(e)} e u CEV()(0,MA) 
40 e - e strongly in U(Q) = A(e) -i A(e) in L(V(ci), V(ci)) 
50 (A(e)v,v)v(n) + II v IIw ( o ) >_ Q.4IItIIV(n) (e E Uad(ci),V E V(ci))
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for some aA > 0 and 

1 0 ci K(e, ) = O(e, ) (closure of AC(e, l) in W(Z)), e E Uad() 

H1	20 e - e strongly in U(l) = O(e,1) = Lim_.O(e,1l) 
1	30 {B(e)}Eu(0) C EW(jj)( aB, M8 ) with some a > 0 

e, - e strongly in U()	B(e) - 13(e) in L(W(),W'(1l)). 

Note that W()	V(1l) continuously, and one has the transposition formula 

(F,v)v ( n ) = (F,v)w()	V v € V(fZ),F E W().	 (1.2) 

Let I € W*(l) and B : U() -.* W*(l) be a linear continuous operator. For every 
cB ^! e > 0, and for every e € Uod(l) there exists a unique state function u(e) € ftC(e, ) 
such that

(eA(e)u e (e) + T3(e)u(e) - u f( e ))v(fl) ^: (1 + B(e),v - Ue(e))W(fl)	(1.3) 

for all v € K(e, 1). Indeed, thanks to the general theory of variational inequalities [2, 
13, 211 it is enough to prove that there is a constant c(e) > 0 such that 

(EA(e)v,v)v(0) + (8(e)v,v)w(0) ^!	 (v € V(cl)),	(1.4) 

and this immediately follows from assumptions (H0)/3 0 ,50 and (H1)13°. 
Thanks to assumption (H1)/3°, for any e E Uod() there exists u(e) € 0(e, Q) such 

that

(!3(e)u(e),v —u(e))w(n) ^: (f+B(e),v —u( e)) W()	(v € O(e,l)).	(1.5) 

Let us consider a functional £ : U(l) x W(Q)	{a € R : a > 01 for which the 
condition

{V}EN C V(),v E W(l) }

	
£(e,v,,) -p £(e,v) 1°

v - v strongly in W(Q) 

(E0)	{Vn}eN c W(),v € W(Q) and {efl}fl E N C Ua d (1),e € Uad() 

2°	e, - e strongly in 

v,, 	v weakly in W(1) J 
= £(e, v)	liminfL(e,v) I  

n - 

holds. We introduce the functional Je by 

J, (e) = £(e, u, (e))	(e € Uad(cl))
	

(1.6) 

where ue(e) is the uniquely determined solution of (1.3), e € Uad(cl). 

We shall solve the following optimisation problem: 

(Ps) Find a control e € Uad( cl ) such that Je(e) = inf J(e). 
E U a (fl) 

We say that e is an optimal control of problem (Pe).
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Theorem 1. Let assumptions (No), (Ho), (Hi) and (EO) be satisfied. Then there 
exists at least one solution to problem (P4. 

Proof. Due to the compactness of Uad(fl) in U(1), there exists a sequence {e}flEN 
C Uad( 1 ) such that

urn e — e in U(l) 
n co 

lirnJ(e)	inf J, (e).	 (1.7)


Denoting ue(e) =: u E (e, l) we obtain the inequality 

	

(eA(e)u + B(e)u,v — Ue) V(c) ^ (f + Be. — u )
 w()	(1.8) 

for all v E	Inserting v = v0 E flCEud()AC(e,) into (1 -8), we obtain 

(eA(e)u, u )v() + (B(e)u, U)W()
(1.9) 

(eA( e )u , vo) V(fl) + (8( e )u , vø) W(fl) + (f + B e,u — Vo)w() 

for all n E N. From (1.9) and assumptions (HO)13 0 - 50 and (Hi)13° — 40 it follows 

IkL IIV(0)	C(e) (n E N)	for fixed Ia B > e > 0.	 (1.10) 

Ityields the existence of a subsequence {u }kEN and of an element u E V() such 
that

u -	weakly in V(Q).	 (1.11)

As Un E *C(e, cl), assumption (HO)12° yields 

U; E K(el).	 (1.12)


By virtue of assumptions (H0)13°,(Hi)130 and (1.10) we obtain 

C() }

	
(k e N).	 (1.13) 

II B ( e )u IIv . ( o )	C8(e) 

Consequently, there exist subsequences {A(e' )u' }jEN, {8(e' )u LEN and ele-
ments XA e V*(Q),X8 E W* (Q) such that 

 flk 
A(e,n':')u ' —* X4 weakly in V() 1	(1.14) fl 
L3(ee 

k )u k
 - X8 weakly in W*(1). 

J 

By assumption (HO)12 0 there exists a sequence { ®j}jEN C C(,' ,) such that O - 
u in V(cl). Henceforth, we often use the implication 

v	v weakly in V()	
(V	n) 	(v,w)V(0).
w,, - w in VA j
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Inserting v G j into (1.8), we obtain 

k'	flk	 flk	flk	flkJ urn sup (A(e )u ' + t3(e ')e , Uc ) V(11) 
.7

flk	flk urn sup (eA(e ')u , 
.7 

+ urn sup (13(ee ' )u ' , e)W(0)	 (1.15) 
00 

+ urn sup (1 + Be' ,u' - O,)W(n) 

= (eX4 + 

using also (1.14) and the continuity of B. 

Then due to the monotonicity of [eA(e' ) + 8(e')] (by assumptions (H0)13° and 
(Hl)13°), we have

flk	71k

	

flk	71k.	\	>0	(1.16) 

	

([cA(e' ) + 13(e ')]u ' - [eA(e' ) + B(ee 2 )]v,u ' -	- 

for all v E V(Q). From (1.11), (1.14) - (1.15) and assumptions (H0)/4°,(H1)/4° we 
derive

	

(EXA + X8 - [EA(e) + 13(e)]v,u - v )v(fl) ^: 0	 (1.17) 

for all v E V(Q). In fact, on the basic of (1.16) we may write 

	

71 k 1	. 
e' ) + 

( ,n*,
)Iv,ue	- V) v(ç) limsup([eA(  

.7

71k-	flk < urn sup( [EA(e' ) + 8( e lkJ )] u ' , u	) V(fl) 

	

fl k	flk 
+ urn sup( [EA(,

,
 ) + 8(e )] U , 

j-00 

< (EXA + X8 , U e)V(Q) + (EXA + X8 , _V)v(n) 

and (1.17) follows from assumptions (H0)/4°,(H1)/4° and (1.11). Setting 

; +t(w—u)	(t E(0,1),w e V(f)) 

we obtain

	

(EXA + X8 - [EA(e) + 13(e)] (u + i(w - u)),u -	> 0 
/V(cz) 

for all w E V(l) and i E (0, 1). 
Because .4(e) and 8(e) are symmetric and continuous operators we arrive at (in-

serting again w = v) 

([EA(e) + (e)]u,u - V )v(n) !^ (eX + XB,u; - V )v(fl)	 (1.18)
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for all v E V(). Substituting v = u into (1.16), we obtain 
fl k-	fl 

({eA(e' ) + B(e	)]u ',ue ' — U:)V(n) 

	

^ ([eA(e' ) + 13(e' 
)j U,.,,

	- U)V(). 

Assumptions (HO)/40 ,(H1)/40 and (1.11) imply that 

	

urn / [eA(e' ) + 13(e' )]u,u ' -	= 0


so that
fl& flk	 k	fl 

urn inf / [eA(ee ' ) + 13( e ' )J u ' , u ' - U)V(o) > O j—.00\ 

Combining this with the inequality
flk	7	flk lim sup ( [EA(e ' ) + 8(e ' )]u	, U	- U;)V(fl) 

.7

	

flk	flk	"k-k 

	

lim sup( [eA(e' ) + 8(e ' )]u	, ti ' 
.7 —00

nk	flk k + urn ([eA(e' ) + 13(ee j )]ue ' 
i—oo 

<0, 
which is a consequence of (1.15) and (1.14), we are led to the equation 

fl k	flk	k	 • 

	

e ')+B(ee ')Jue ',Ue ' _ U) V(1l)	0. lim([eA( 	 (1.19) 

Given a v E )C(e,cl), by assumption (H0)12° there exits a sequence {vJ }j E N C C(e  
Q) with v —+ v strongly in V(1). Inserting vj into (1.8), we have 

fl	flk- ki urn ( [eA(e' ) + B(e ' k- )]u ' ,UC — Vj)v() I

< lim (1 + Be ,u' — Vj)w(n) 3 

= (f+Be,u _V)w(). 
The limit on the left-hand side exists, and furthermore we can write 

fl•	flk-	k- eA(e' ) + 13(e ' )] ti	, U ' — u lirn ([  
00

+ urn ([eA(e ) + 8(e' )]u ,; — Vj)v(n) j 00

= (CXA + X8 ,u — vj)v() 

2 ([eA(e) + B(e)Ju,u — V)v(Q) 

where (1.19), (1.14) and (1.18) have been employed. Consequently, 
(EA(e)u,v — u:)V() + (8(e)u,v — U ) W() 2 (1 + Be,v — U )w( n ) ,	(1.20) 

and as v E (e, 1l) is chosen arbitrary, we get 
u	ue(e)	and	ue(e) —* u(e) weakly in V(cl).	(1.21) 

Then assumption (E0)/20 and (1.21) yield 

	

= liminfr(e,u(e)) =	ml	C(e,u(e)).	(1.22) 
k—.co	 cEU(1) 

Hence £(e,ue(e)) = inf{C(e,ue(e)) : e  Uad()} which completes the proof I
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Limit state function and limit cost function. We define the limit state function 
uo(e) for any e E Uad( ci ) by the following variational inequality: Find uo(e) E O(e, ci) 
such that 

(13(e)uo(e),v — uo(e)) W(0)	(1 + Be,v — uo( e )) W(fl)	(v e O(e,1l)).	(1.23) 

Further, we define the limit cost function Jo(e) by 

Jo(e) = £(e, u O (e)).	 (1.24) 

In this case one has the following limit control problem: 

(Ps) Find e such that Jo(e) =	inf Jo(e). 
cE U d (0) 

Theorem 2. Let assumptions (N0),(H1) and (ED) be satisfied. Then there exists 
at least one solution to problem (Po). 

Proof. The proof is analogous to that of Theorem 1 and hence it is omitted U 

There arises a natural question concerning the type of relation between solution to 
problems (Po) and (l'e) as E —i 0+. We prove the following theorem. 

Theorem 3. Let assumptions (NO), (HO), (Hi) and (ED) be satisfied. Let e; , be 
the solution to problem (P) and c,, — 0+. Then there exists a subsequence {eflk}kEN 

Of {c} EN and a solution e of problem (Po) such that 

e strongly in U(Q) ) 

ue,,(e:) —* uo(e) weakly in W(Q)	 (1.25) 

J(e) = inf J(e) - Jo(e) = inf J0 (e) 
EU d(fl)	

. 

J C	 eEUd(fl) 

Proof. Due to the compactness of Uod(ci) there exists Co E Uad(ci) AND a subse- 
quence of {e , }nEN C Uod( ci) denoted again by {e}fl E N such that e — e0 strongly in 
U(fZ). Then the state function ui,, (e) E K(e, ci) is a solution of the state variational 
inequality

(eA(C;,, )u(e) + 8(e )u(e ), v -
V(fl)	 (1.26) 

^: (1 + Be,v — ue,(e))W(fl) 

for any v e K(e,ci) and for given e E Uad( fZ ) with e > 0 (ii E N). Taking 
v = v0 E flcE u .d (n)AC(e, ci) fixed in inequality (1.26) we obtain 

(en A(e )u, (e) + J3(e )u, (s:)' -I n (e :n)) V(11) 

(1 
+ (eA(e ,, )u,(e) + !3(e )u (;), Vo)v(o).
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It follows that 

e ((A(e; )u (e), ue (; ))v() 

+ II U e (e )IIv() ) + (a8 - e )II u (e )u
2 
W(1I) 

(1 + Be,u(e) - V *) w() 

+ (en A(e )u (e ), v	+ (13(e ;, )u,. (e), v*)w(o). 

Then we obtain by setting	e > 0 and applying assumptions (HO) and (HI) 

(e fl aA )IIu C (e)II/(I) + 2 c811U1n(e;)11/(fl) 
< Ci flu,,(e ) - VoIIw(n) 

• c2 e n lju ( e;n)II V ( Q ) Il voll V(0) 

• c3IIue(e)IIw()IIvOIIw(fl) 

where given constants c 1 ,c2 ,c3 do not depend one. From it we conclude that 

iIUen e	W(1l)
( * )II	<c


II uC( e )lIv ( )	c. 5	
(1.27)


We can therefore extract a subsequence {u (e )}kEN such that 

Ue, (a;) - w weakly in W(I) 

	

0 weakly in V() 5	
(k	no).	(1.28) 

Since UCOk (e ) E K(e,1) by assumption (HO)/2 0 , we have w E ftC(eo,cl) as well. 
From this one has w E O(eo,1l). For any z E V(l) we have by assumption (HO)/40 
and by virtue of (1.28) 

	

urn (A(e	)v' u Efl k ( e :,: ), Z) V(Q) - lim (A(e	)z, / u (e	)) V(Q)k—co k—oo 

= (A(eo)z,O)V() 

= (A(eo)O,z)V() 

and therefore

A(e )/Zuefl k (e) - A(eo)O 0	weakly in V()	(1.29) 

as k - no (note that I(e4(e)v,u C )v (0) I = O(/)). On the other hand, by analogy of 
(1.29) we obtain 

urn(8(e )u (e 

	

k oo	 ), z) W(0) = lim 

	

k oo 
(13(e	)z, u	(e	)) W(o) .-. —. 

= (B(eo)z,w)w(t).
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This means that

8(e	(e;,,, ) - 8(eo)w	weakly in W()	 (1.30) 

as k -	. Furthermore, in virtue of the monotonicity of 8(e) (due to assumption 
(H1)130 ) we know that 

(B(e	)u, (e	),	(e	) - w)w(o) 2(13(e: ,, )w, UCnk (e,' ,, ) - W)w(n) 

for all k E N. Passing to the limit we get 

2 urn (B(e )w,	(e  
k oo	 ))w() 

<liminf - k	
(8(e	)ue (e; ,, ), Uek (e;,,)) W(l) + lim (8(e	)w, w) W(i) 

k—oo 

This yields, together with (1.28), assumption (H1)/4° and (1.30), 

lim inf K B ( e	)u c k (e	),	(e	)) W(1l) 2 (B(eo)w, W) W(0)	 (1.31) 
k—c-o 

Let v e K(eojl) be an arbitrary clement and {vk}kEN such a sequence that 

Vk - v strongly in V() 

Vk E	 for given e; ,,, E Uad(),En, >0 (kEN) J	
(1.32) 

(the existence of such a sequence is ensured by assumption (H0)/2°). Then we have 

(en, A(e	)Ue n (e) + 13(e :,, )u,,. , (e% , ), vk)v() 

-(1 + Be , Vk - 12e (; ))w() 

2 (B(e	)u	(e	), u	(c	))w(0) 

From this inequality using (1.28), (1.31) and (1.32) we get 

( B ( eo)w , v - w )w(n) - ( f + Beo,v - W) W(0) 20	(v E IC(eo,1?))	(1.33) 

and therefore we have also (1.33) for all v E O(eo,Q) (by density). This yields w = 
uo(eo) since the variational inequality (1.23) has a unique solution for e E Uad(). 
Consequently, it may be supposed that 

e; ., - e0 strongly in U() 

uo(eo) weakly in W()	
(1.34) I  

for k - _- (efl k - 0).
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Now, let us consider regarding to (1.26) and (1.2) 

(eA(e )u (e) + 5(e )u (e), Ue (e:,)) 

< (A(e )u(e) + 8(e)u (c;.), t,-)V(0)	 (1.35) 

— (1 + Be;, , v n - u (e;,)) W(fl) 

where uf(e;. ), v E AC(e,1) and e;, E Uad(). We deduce from (1.35) that 

lim sup (8(e )u,1 (e ), u (e )) W() 

lim ((8(e;)ucfl(e;),vfl)W(fl) — (1 + Be,v,	
(1.36)

	oo - ue(e;))w(n)). k 

Hence by (1.32), (1.30), (1.34) and the continuity of B one has 
urn sup (13(e )ue(e ), u(e ))w()	

(1.37) k—.00

(B(eo)uo(eo),v)W() - (f + Beo,v — uo(eo))W() 

for all v e K(eo,Q) (by density one concludes (1.37) also for all v E O(eo,Q)) and 
therefore (by taking v = uo(eo) E O(eo,cl) in (1.37)) the inequality 

lim sup (B(e )u(e), u (e ))w(fl) < (8(eo)uo(eo), uo(eo)) W(fl)	(1.38)co n -. 

is verified. Using it we get via (1.31), (1.34) and (1.38) 

lim (8(e	(e ), u	))w() = (8(eo)uo(eo), uo(eo)) W(cl)	 (1.39) 
TI -. 

Moreover, the method of the proof shows that for e E Uad( 1l) the convergence 

	

u(e) —* uo(e)	strongly in W(l) when e —+ 0	 (1.40) 
holds. 

One has 
.AI = (8(e)(u,,(e) — uo(e)), u(e) — uo(e))w(fl) 

= (B(e)u,,(e) — uo(e))	— (8(e)u0(e),ue(e) - uo(e)) W()
(1.41) < (B(e)u(e), ucje))W() 

- (8(e)u (e), uo(e)) W(1l) — (1 + Be, u (e) — uo(e)) W(,,) 

with u ,, (e) E AC(e,Q) and uo(e) E O(e,1l). But 
(8(e)u e (e), u (e)) W(() 

(e..4(e)u (e) + B(e)ue (e), Uc (e))v(n) 

(enA(e)uefl(e),v)V()	
(1.42) 

+ (enA(e)uc(e) + 13(e)u(e) — V)v() + (L3(e)u(e), V)w(n) 

(en..4(e)uje), v)v(fl) 

+ (B(e)uefl(e),v)w() + ( 1 + Be,u(e) —
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for v fixed in AC(ej) C O(e,). From (1.41) and (1.42) one can find 

Nfl :5 (1 + Be, uo(c) - v)w(o)	
(1.43) 

+ (13(e)ue(e),v - u O( e ))w( cl ) + (efl_4(e)uefl(e),v)V(y 

On the other hand, we may write 

(enA(e)ue(e) + 8(e)uefl(e),ucfl(e))V(fl) 

(f + Be, u(e) - v) W(0) + (e fl A(e)ueje),v) V(fl) + (B(e)uCfl(e),v)W(0) 

and this yields due to assumption (H0)15° 

ETIaA II U en( C )Il/ ( çl ) +	IIUen(C)IIW(0) 

< cflu (e) - v IIw ( o ) + e fl cbII ue(e )Ilv(cI) + cCIIu(e)IIw() 

where C,, Cb, Cc are some constants with respect ton. 
Thus one can finds IIuC(e)IIw(n) < c and /lI u ( e )lIv(cl) < c. So there exists 

u , ,,, (e) - w weakly in W() and ./?u(e) — 0 weakly in V() for k -	(e 
0). Supposing nk = n, we have 

lim (A(e)/u (e), z) V() = urn (A(c)z, v/ u (e)) V(11) n — 00	 II 

= (A(e)z,0)V(fl) 

=0 

= (A(e)0,z)V(). 

Thus one has

	

A(e)fu(e) — A(e)0 = 0	weakly in V(1).	(1.44) 

We have also
lim (8(e)u (e), Z) W(fl) = (8(e)w, Z) W(11) fl co 

which means
13(e)u(e) — 8(e)w	weakly in W(cZ).	 (1.45) 

Now by (1.43) - (1.45) we see that 

urn Mn (1 + Be,uo(e) — V ) w() + (13(e)w,v — uo( e))w(fl) + 0	(1.46) 
fl —c 

for each v E (c,cl). By density this inequality holds true for v € O(e,Q) and by 
replacing v = uo(c) one finds lirnsupN = 0. Thus one has 

tim sup c 8IItL ( e ) — uo(e)lI/() = 0, 
n —00 

which means that uje) —' uo(e) strongly in W(1).
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From (1.40), from the fact that J(e) < J(e) for all e E Uad(fl) and from 
assumption (E0)11° we get 

lim sup Jeje) Jo(c) 
k .-

 

}
<  1imsupJ(e)	inf Jo(e) = Jo(e).	(1.47) 

for all e E uad(cl)	k—.00	 € U a(l) 

Furthermore, we observe that assumption (E0)/20 and (1.34) imply 

liminfJe fl k ( e 	£(eo,uo(eo)) = Jo(eo).	 (1.48) k-oo 

Comparing this result with (1.47) we have Jo(eo) Jo(e). Thus we see that necessarily 
eo = e and (1.47) and (1.48) give (1.25) 3 . Theorem 3 is proved I 

2. Approximation of the optimal control problem 
by discretization 

Let us assume that Uod( Q) C U(1Z) is compact. We describe the discretization of prob-
lem (Pe) and we prove the convergence of the sequence of finite-dimensional solutions 
as h, the discretization parameter, tends to zero. Let C(e, 1) and O(e, ) be two closed 
convex sets in the spaces V(fl) and W(cl), respectively, for all e E Uad( Q ) . With any 
h e (0,1) we associate 

1 0 finite-dimensional subspaces Vh (cI) C V(Z) and Uh(1Z) C U(l) 
20 closed convex subsets Kh(eh, l) C Vh(cl) (approximations of *C(e, Il)) 
3 0 closed convex subsets U d (Q) C U z (l) (approximations of Uad(1l)) 
40 bilinear forms ah( eh,) ( (Ah(eh) . , )Vh(fl)) : Vh() x Vh(cl) — JR 

C h E Ud(1), together with the operators ..4h(eh) Vh(l) —* 
(approximation of a(e,.,.)) 

50 £h U h () x Vh(Q) —* JR convex lower semicontinuous proper functionals 
(approximations of the cost functional £). 

Analogously, with any h E (0, 1) we associate 
1 0 finite-dimensional subspaces Wh() C W(Q) and Vh(1Z) C Wh(Z) 
2 0 closed convex subsets Oh(eh,cl) C W,(1) (approximations of O(e,1l)) 
3° bilinear forms bh(eh,.,.) (n (l3h(eh).,.)w(0)) : Wh( Z) x Wh(l) —' IR, 

C/ e U d(), L3h(eh) Wh() —* W,(Q) (approximation of b(e,.,.)) 
40 fh E W(1), Bh e L(u h (cz) , W(1l)) (approximations of f and B). 

The families {h( eh,l)}fl€N and { Oh ( C h ,cl)} fl €N are supposed to satisfy the con-
dition

10 h — 0+, Ch, — e strongly in U h.(c) such that e h E U7(Q) 
for any n E N =. for any bounded sequence {vh }n€N such that 
Vh E Khj eh,) all its weak cluster points belong to (e,cl) 

(L0)Ah	20 There are A ( e, O) C V(), cl A K(e,O) = K(c, ), such that 
for any h — 0+ and eh —* e strongly in U"(l) there is 

— Kh,(e h ,cl) such that for all v E A(ec) 
we have limfl_oR.e h, cv = v strongly in Vh()
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or the condition 

10 h - 0+, eh, - e strongly in U'"() such that 
eh E U () for any n E N = for any bounded sequence 
{ Vh n }flEN in Wh() such that Vh 

'LOx	all its weak cluster points belong to O(e, ) 
2° There are Ao(,ç ) C W(1l),clA0( n ) = O(e,) such that 

for any h — 0 and e, —* e strongly in U's " () there is 
: A0 ç — Oh(ehM) such that for all v E A0(,n) 

we have lim—o Ve h eve = v strongly in Wh0(cl). 

Let us note that we do not necessarily have aCh(eh,l) C K(e,), Oh(ehM) c 
O(e, ) or U d( cl ) c U0d(cl). If, however, this is true for any h E (0, 1), we say that we 
have an internal approximation of )C(e, ), O(e, l) or Uaa(Q), respectively. 

The approximation of the state inequality (1.3) is now defined by means of the Ritz-
Galerkin procedure. This method will perform well if c > h, but if E << h, then this 
method may produce an oscillating solution which is not close to the exact solution (see 
an example 9.1 in [12] or in [24]). However, if the exact solution happens to be smooth, 
then the standard Ritz-Galerkin method will produce good results even if e < h. The 
approximation of (1.3) reads as follows: 

Find
ueh(eh) E )Ch(eh,) 

such that
(Ah(eh)uh(eh) + Bh(eh)u h( eh), Vh — ueh(eh))v(ç.)

(2.1) 
^: (f + Bh eh, Vh - Ueh(Ch))W(Q) 

for any Vh e Kh(eh,cl) and eh E U d() and

uoh(eh) E Oh(eh,cl) 

(5h(eh)uOh(eh),vh - uoh( e h))W() ^! (f + Be t, Vh - uoh(eh)) W(0)	(2.2) 

for any vh E Oh( Ch,) and eh E Ud(). J 

For a set M and a function R : M — R we denote by Argminm 7-1 the set of 
minimizers of 7-1 on M. Thus, the discrete versions of problems (Pe) and (Ps) read as 

(Pch) Find C h E Argmin Ch(ch,uh(eh))	Argmin Jh(eh) 
ehEU d (Q)	 chEUd(0) 

with uh(eh) as above and 

(Poh) Find e o*h E Argmin £h(eh,uoh(eh))	Argmin Joh(eh) 
ehCU(fl)	 e,EUd(Q) 

with uoh( eh) as above, and the control problems (Ps) and (Po) reads as 

(Ps) Find e E Arginf £(e,u(e))	Arginf J(e) 
eEUa(1l)	 eEUa(0) 

with u(e) as above and
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(2° ) Find e E Arginf £(e,uo(e))	Arginf Jo(e) 
CEU.a(1)	 cEUa(tI) 

with uo(e) as above. 
In what follows, we shall study the relation between optimal pairs of problems (Ph) 

and (Pe)ash—+0+, for any fixed E>h. 
For the analysis of the relation between (1.3), (2.1) and the relation between (1.5), 

(2.2) we shall need the hypotheses concerning Ah (e,j: 

1 0 There is MA > 0 such that Ah(ehj E

for any h E (0,1) and any eh E 

20 (Ah (e h )vh 0 , Zh ) i (1) —4 (A(e)v, Z )V(n) if 
Ch^- e strongly in U(l), Vh - v weakly in Vâ(1) 

(H1 )A h	Zh —* z strongly in Vh() and h — 0. 
3° liminf,,.0 (Ahfl(ehivh,vhfl)v (fl) ^! (A(e)v,v)v(n) if 

— e strongly in U'" (I2), Vh — v weakly in Vh(). 
4° There is &A > 0 such that for all eh E U2(l) and Vh E Vh() 

(Ah(ehfl)vhfl) vhfl)v ( n ) + II t'hn11 2wh (12)? (-AIVhnhI(fl). 

Moreover, we suppose the following hypotheses concerning 8h (eh): 

(H1)Bb

1° There are &8 > 0,M8 so that 8h, ( eh.) E Ew,, (008, MB) 
li for any h E (0, 1) and any Ch € Uad (O 

2 0 (13h fl (ehjVh,zh fl ) (12) —4 (!3(e)v,z) 
eh, —4 C strongly in U"(f2),vh —4 v weakly in Wh(cl), 
z —4 z strongly in Wh,,(1l), h,, 	0+. 

3° liminf,,,..0 (8hfl(ehfl)vhfl,vhfl)W (12) ^: (8 ( e )v , v ) W(11) if 
e strongly in U'(cl), Vh —+ v weakly in Wh(l), h — 0+. 

40 There is c >0 with J jfhIIw: ( 12 ) <C Vhn € (0, 1 ),fh E W,(). 
50 There is c > 0 with II Bh ehIIw(w) c for any h E (0, 1), 

C,., € U d (I ) with I ehIIu() <C. 

60 Vh,, € Vh(Il),vh - v weakly in Wh(1?), 
eh, —4 C strongly in U"(cl) and h - 0+, 
(fh + Bhflehfl,vhfl)w (12) 

4 (1 + Be,v)W(0). 
Next we assume that 

10 v E Vh(cl) and v —4 Vh strongly in Vh(1l) 
= C,,(e,,,v,,)	limfl..O,.Ch(eh,vh). 

(E0)h	20 e E U'd(), e —4 eh strongly in uk(cz), 
v E Vh( 1 ),vh —4 Vh strongly in Vh() 

C,,(e,,,v,,) < liminffl.,,rh(e,v). 

For every h > 0, a	e > h, eh € U d ( cZ ) there exists a unique solution U eh( Ch) € 
h( eh,) of the variational inequality 

(eAh(eh)u C h(eh) + 5h(eh)ueh(eh),vh — ueh(eh))V(12)	
(2.3) 2 (f +B,e,,,v,, —tzEh(eh))W(12)
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for all Vh E K h( eh, Z ) . Indeed, due to assumptions (H1)Ah /4° and (H1) B ,,/1° there 
exits a constant cA8(e) > 0 such that 

(eAh( eh)vh, vh) V () + (13 h(eh)vh,vh) Wh(fl)	c 48( E )II vhII/h(0 )	(2.4)


for any Vh E Vh(Q), ej E U d(fl) and for any E with &B E > h. 

	

Lemma 1. For every h > 0 and for every e with &B	> h there exists at least

one optimal pair [e h, u Ch( e h)I for problem (Ph). 

Proof. It is quite analogous to that of Theorem 1 and hence it is omitted I 

Lemma 2. Under the above hypotheses ( LO)A,, (Hl )A,, and (H1) 13k , let eh n E 
U d (cl) be such that en,, —* e strongly in U'(cl) as h — 0+. Then ueh(eeh) —* u(e) 
strongly in VhjIl), for any fixed c with l aB ^! e > h. 

Proof. We take an arbitrary o E K(e, l) and by assumption ( LO)A, /20 a sequence 
{R h co} flEN E HflENKhjeh, IZ ) such that Re h e0 — o. Putting Vh =	hnC0 in

(2.1), adding

(eAh (eh )7eh eo, u	(eh) — R.ch eO)vh(o) 

	

+ (l3hjeh 0 )1.eh e°, Ue h ( eh) — 7eh	 Wh.  

to its both sides, and multiplying the resulting inequality by minus one, we obtain 

(e(Ah(eh 0 )Uhjeh) — Ah,j eh )7 eh e O ), u 4,( ch) — 1 eh e0 IVh(1Z) 

+ ( r3h (eh )ueh (eh) — t3h (Ch, )1 eh O, ueh(eh) — ep eo)	(1) 

< (eA,(e, )1 eh e°, 7 c e O — uh(eh ))vh()	
(2.5) 

+ (13h(eh	O, 1Ch, O — ueh(eh ))Wh(ç) 

+ (fh + Bheh,, ueh(e h) — 7Chfle0)Wh(fl) 

for all n E N. Then due to assumptions (Hl)A,,, (H1) 8h and (2.5) we arrive at the 
estimate

IIuhfl(ehfl)lIvh(c) < c(e)	(n E N) 

valid for e > 0, with positive c(e) independent of n E N. Thus there exists a subsequence 
{ up (e h., )}kEN of {ueh (eh )}nEN and an element u E V() such that Ueh (eh) 
Ue weakly in Vh( l ) for k —* eo, for any fixed e > 0. Moreover, we have ue E 
C(e,l) due to assumption (L0) Ah /1°. On the other hand, by virtue of assumption 
(LO)A,, /20 , for some a E A K( e,cm) we obtain the existence of a sequence {R.e	a} LEN E 
H kENKh nk (eh.,, l) such that limt....	a = a strongly in Vh (cl) as fhflk —+ e 

strongly in U tL k(cl) . Taking into account and inserting vh :=	 into (2.1), 
adding	 -	-	- 

(eAhflk (eh	ea + Bhflk (eh	 a, u,,,. ,, ( eh.,, ) —
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to its both sides, and multiplying the resulting by minus one, we obtain 

lim sup 
K (EAh ( e h flk ) + l3hk (eh )) (u 	( eh., ) — 1?.	ca), 

U c h (eh 

	

k	k —	
ea)

	

V,,	(51) 

< urn sup (EAh (ehfl )chk a, Ch ea — U e h (eh 

	

k—oo	 )) V(fl)	
(2.6) 

• urn sup (	(ehflk )7 ch	a,	ea — (eh )) 

	

k	k k — 

• urn sup (fh k + Bh Ch 'U'-" n, ( eh) —  
k -00	

,, ,, , a ) Wh (0) 

=0. 

The last equality follows from (1.2) and from the facts 

e strongly in U hn
	and Vh — v strongly in Vhn 

	

II A,( e iv, — A ( e )vj lv . (51) < MAII Vh — V JI vh(Q )	 (2.7) 

+II Ah( e hjv — A( e )v IIv . (51) for n —* oo 

and
eh — e strongly in UF&(cl) and Zhn — z strongly in Wh(cl) 

	

= II 8h( ehizh — B(e)zIIw . (51) < M II zh, — Z IIWh(51)	(2.8)


+II8h (C h jZ — B( e)zIIw; (0) — 0 for n .' 00 

which are consequences of assumptions (H1)Ah/1°,2° and (H1)Bh/1°,2°, respectively. 
So by the uniform monotonicit.y of [eA hfl k ( e hfl k )+ 8h k ( c hfl k )] we obtain the convergence 

U eh nk ( eh) —+ U I	strongly in V, ()	 (2.9)


for k —i oo. Moreover, (2.9) together with (2.7) and (2.8) yields 

A hn k (eh, )U ehfl k ( e h flk ) — A(e)u, strongly in V, () • 

8	(eh, )Ue	(ehflk)	8(e)u, strongly in w	() j (k	).	(2.10)


Next, in view of assumption (L0)A h /20 for a given element v E AK(51), there exists 
a sequence { 7 eh Cv}kEN C k h n,, ( e h,, , Il) such that	eV — v strongly in Vh nk (cl). 
Then after passing to the limit in (2.1) with VI, =	eV as k —+ _: we obtain, due

to (2.9), (2.10) and assumption (H1)5h /60, 

	

cA(e)u,v — v,))V(0) + (8(e)u,v - U )w(0) 2 (1 + Be,v — Ue)W(0)	(2.11) 

for any v E AK(e,51). 
On the other hand, by the density of A(n) , (2.11) holds for any v E IC(e, ). This 

means, as v E K(e,1) is chosen arbitrarily, we get u u, (e) for any fixed e, with 
^ a13 e > h,. This proves the lemma I
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In order to study the relation of optimal pairs to problems (Ph) and (Pe), we need 
the additional assumptions 

10 The family {Ud(1)}hE(0,I) is compact in the following sense: 

for any sequence {eh}EN C U,(l) with h € ( 0,1) and 
h — 0+ there is a subsequence hn k —* 0+ and e E Uad(I) such 
that	—* e strongly in U''k (1). 

(H2)h

	

	
20 For any e € Uod() and any sequence {h}eN C R, h. —p 0,


there exists {e h }fl E N,eh fl E U;(), such that Ch — e 
strongly in U(cl). 

30 h,, —i O+, eh € U(1),eh — e strongly in Uk(), ad 
Vh E Vh(Z),vh — v strongly in Vh,,() 
= C,(ei, , vh,) — C(e, v). 

Theorem 4. Let assumptions ((H1) Ah ,(H1) Bh ) and ((L0)A,(H2)8h) be satisfied. 
Further, let [e h , Ueh ( e h ) be an optimal pair of problem (Pe h ,) with e;h. € U (a ), ad 
h € (0, 1) and h —* 0+, &8 > e > h. Then there , exists a sequence hfl k — 0 and 
a pair of subsequences 

[{C;h }kEN,	(eh )}kEN] of [{e h , }nEN, {u(h(eh)}flEN] 

and a pair of elements
[e,u(e)] € Uad( IZ ) X 

of problem (Pa) such that 

[e h	U h,, ( e h )] kEN —+[e * , u(e)] in [Uh' () X Vh Al ,	( 2.12) 

as hfl k — 0+, for a fixed positive number	E > h. 

Proof. Assumption ((H2)h, 1 0 ) yields the existence of a sequence {e h }kcN C 
{e h }flEN and e € Uod(l) such that e h — e strongly in U(). By virtue of 
Lemma 2 we get u hfl k ( e h ) — u(e) strongly in Vh flk ( l ) . Then, due to assumption 
(L0)Ah /2° we have u, (e;) € K(e,1l). The definition of problem (P h ) yields 

£,,, (e h	(eh )) < £,,, (eh, ,	(eh ))	(2.13) 

for arbitrary ej	€ Uk (a). Let F, € Uad( IZ ) be given. One can find sequencesad 
—* 0+ and JFrh n , }kEN C U, (1) such that	strongly in U"k (fl) due to


assumption (H2)h/2°. We have again ueh nk (eeh nk ) —i e() strongly in Vhfl k ( cl ), and 
using (2.13) and assumption (H2)h/3° we get Ch, (e, u(e))	£h, (, ue(c)) for

any F, € Uad( f2 ) and 16, 5 > e > 0 and the proof is finished I 

Problem (Po) can be treated quite analogously and an appropriate variant of Lemma 
2 and Theorem 4 for this case (E = 0) is the following.
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Theorem 5. Let assumptions (HI)s,, and ((H2)h,e = 0) be satisfied. Further, 
let [e h , Uoh ( e h )InEN be an optimal pair of problem (Pohj, e h E u;' (Il), h E 
(0,1) (n e N) and h — 0+. Then there exists a pair of subsequences 

[{e h }kEN, {uoh(e h )}kEN] of [{e h }nEN, { U 0h(c h )}nENJ 

and a pair of a elements

[e,u(e)] E Uad( l ) X 

such that 

[ e h , Uoh, ( e h )]	—p [es, uo(e)]	in Uht () x Wh n,, ()	(2.14)


as hfl k : 0+. 

We have shown that the sequence of an optimal pairs of approximate singular per-
turbations problems ( Peh) converges to the solution of problem (Ps), as h — 0+ for 
a fixed positive number E > h (by virtue of (2.7)). On the other hand, the sequence of 
optimal pairs of approximate limit problems (Po,,) converges to the solution of problem 
(Po) as h — 0. 

However, the above results do not indicate that the sequence { [e /, ,	(eh )II-EN

converges uniformly in e to the optimal pair [e,uo(e)] of problem (Po) as h —* 0+. 

3. Non-coercive limit problem 

We make the basic assumptions 

11° {iC(C,1l)} eEUd ( fl) satisfies assumptions (H0)/1°,2° 
(H2)A	20 {A(e)} E u 4(Il) C EV(cl)(OA,MA) 

1( 30 e —* e strongly in U(1) = A(e) —p .4(e) in L(V(), V*(cZ)) 

and

11° {Q( e ,)}e E u d (fl) satisfies assumptions (H1)/1°,2° 
(H2) 5	2° {B(e)} fE u d(fl) C EW(I)(0,M8) 

1( 
30 e —* e strongly in U(1) = B(e) — 13(e) in L(W(cl), W'(1)). 

We set

	

W(Q) = {v E W(1l): (B ( e )v , v ) W() = 0 for all e E Uad(1 )} .	(3.1) 

By virtue of assumption (H2) 6 /20 , it is easy to see that W() is a closed subspace of 
W(cl). We denote by W(Z)/W(1l) the factor (or quotient) space of classes 

f' = {v+p:vEW(cl) and pEw(cl)}
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endowed with the norm

ilVilW(0)/W(c)	inf li v + p iIw() .	 (3.2) 
PEW(0) 

Let W(Q) = W(l) be the orthogonal decomposition of W(l) by means of the 
scalar product (, )wrz . Clearly, for W(l)/W(1) (being the space of the equivalence 
classes obtained from W(l) by indentifying all the elements of W()) 

lit)11 W((l)/W(f?) = inf lit11 W(j1) =	inf	(il q liv ( cl ) + IIPIIW ( o ) ) = lIPllv ( t) )	(3.3) 
v pE/i(fl),qEW(fl) 

holds and thus W(Q)/W(Q) is a Hubert space. We define a bilinear form on W(Q)/W(Q) 
by means of the relation 

W(0)/VV(0) = (8(e)v, Z) W( n) (v E i', z E i, e E Uad(fZ)).	(3.4) 

Moreover, we suppose that there is c > 0 such that 

(H2)n (8(e)v,z)W(0) + li fl W v ilW ( fl ) ^ £8IIVil(ç) 

for any v E W(1?) and e E Uod(Q), where Hw is the projection of W() onto W(). 
Simultaneously, the symmetry and bilinearity of (8(e) . , )w(n) yield 

(8(e)v,z)W() = (8(e)(l1v + flwv),Hgz + flwz)w()	
(3.5) 

= (8(e)fl..rv, fl.(z)() 

since the remaining terms are zero. This follows from (3.1) and from the Schwarz 
inequality

I(8(e)v, z) W( 0 )	((8(e)v, v) W(11) ) ((8(e)z, Z) W(fj)) . 

Furthermore, assumption (H2)ri yields in virtue of (3.3) - (3.5) 

= (8(e)llWv,HArv)W() - 	8livliw() 

and therefore the bilinear form (B(e).,.)W()/W(fl) is coercive on W()/W(l). 
Now, we set 

M(e,) := cl{i E W(Q)/W(Q) : there exists v E I,v E O(e,c)} 

for all e E Uod(cl) . We proceed now to set the following assumption: 

(1° e,, - e strongly in U(l) =. Lim _M(e,) = 
{Cfl}flEN E Uad( 1 )	 'I

=	 ^	 3). (H2)M 

f 
20 

e	
£(e, ) liminfr(e,


e E Uod() strongly in U() I 
E W(Q)/W(Q) (n E N) 

weakly in W(Q)/W(Q)	J
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Moreover, we introduce the annihilator W1 (Q) of W(1) as 

W1 (fl) := { g E W*(): (g,v)w ( n ) = 0 for all v E W(cl)}. 

Thus W1 (Q) C W(Q) is the set of all continuous linear functionals on W([) that van-
ish identically on W(1). The elements of W'() generate in an obvious way continuous 
linear functionals on W(Q)/W(cl). 

In the following, we suppose that the function £	X W( f2 )/W(Q) 
with £(e,3) = £(e,flgv) fulfils assumption (H2)M/20. 

Perturbated state operator and perturbated cost function. For every e > 0 
and for every e E Uad(1), there exists a unique u(e) E X(e, Q) such that 

(eA(e)u(e) + 13(e)u(e),v - u ( e)v( n ) ^: (1 + Be,v - U e( c))W()	(37) 

for all v E K(?) (as we obtain estimate (1.4) from assumptions (H2)A /20 and (H2)8/20). 
Here we assume (f + Be) E W(l) with e E Uad(1l). Moreover, we assume that the 
cost function J, (e) = £(e,u € (e)) satisfies hypotheses (E0). 

Now, we define the perturbed optimization problem 

(Ps). Find a control e E Uad( 1l ) such that 

	

Je(e) = infje(e)	(e E Uad( l )) .	 (3.8) 

Limit state operator and limit cost function. The limit optimization problem 
will have the form 
(P) Find a couple [e,üo(e)] E Uad(l) x M(e,Z) such that 

	

Jo(e) < j(e)	Ve E 

with
= £(e,i20(e)) = £(e,uoN(e))	 (3.9) 

where io(e) E M(e,cl) such that 

((e)üo(e), - üo(e))w()/w() ^! (1 + B(e), - o(e))w(n),w(o)	(3.10) 

for any i' E M(e,) and uo(e) = uog(e) + uoW(e) with uoN(e) e A1(cl) and uow(e) E 
W(l). Here we suppose that 

(f + Be) E W(Q)	V e E Uad( cl)	 (3.11) 

and for the sake of simplicity we write (1 + Be, i ) W() ,W(0) for any E W(1l)/W(Z) 
and e E Uad(1). 

The following two theorems are valid.
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Theorem 6. Let assumptions (H2)A and (H2) 5 be satisfied. Then there exists at 
least one solution to problem (P)0. 

Proof. The proof is analogous to that of Theorem 1 and hence it is omitted I 
Theorem 7. Let assumptions (H2)4 , (H2) 5 , ( H2)n, (H2)M and (3.11) be satis-

fied. Then there exists at least one solution to problem (Po),. 

Proof. If we rewrite all the situation to the factor-space terms, then we can see 
that the proof is again analogous to that of Theorem 1 and hence it is omitted I 

Therefore, by virtue of Theorems 6 and 7, u,_(e) and uo(e) are well determined 
elements of V() and W(l)/W(çZ), respectively. The relation between the solutions to 
problems (Po) and (P). as Em — 0 then follows from the following theorem. 

Theorem 8. Let assumptions (E0),(H2)A,(H2)8,(H2)n,(H2)M and (3.11) be 
satisfied. Let be the solution of problem ) and e .—+ 0. Then there exists a 
subsequence { e ,, }kEN of {e }nEN and a solution e of problem (Po). such that 

0, e	— e strongly in U(Q) 

u c fl k ( e: ) — u 0 (e) weakly in W(l)/W(1)
(3.12)


	

Efl k (A(e	)u (e	), u (e ))v(n) < C 

(e) = inf	(e) =	j(e) = infjj (e), e E Uod(fZ). 

Proof. The proof is analogous to that of Theorem 3. Analogously to estimates 
before (1.27) we have 

EflYAIUe(e 
)11V(n) + 8IIHgu(e )IIv()	M uII Huen(e )IIw ( n ) + M 

and from (3.3) 

E 4II U en( E )II/ ( f ) < M..	and	II u en( C )IIW()/W(fl )	Mw.	(3.13)


Therefore, we can extract sequences {eflk}kEN and { Ü eS k (C% ,' )}kEN such that 

0 and (e;,,, ) — Lo weakly in W(l)/W(cl). (3.14) 

By the compactness of Ua d (cl) one can suppose that e;.,, —+ e, eo E Uad() . More-
over, due to assumption (H2)/1 0 , for any element v E O(eo,) there exists a sequence 
{vk}k E N C ftC(e	, l) such that 

vk —* v strongly in W(Q).	 (3.15)


Thus, by virtue of (3.15) and assumption (H2)/2°, we obtain 

knk (.4(e	)Uenk (':n,) ' 'k ) V(f) I

I ' e,, ((A(e	)u	(e	) ' U ' ., ( e	)>v(0)) ((A(e	)vk, Vk/\ v(Q), z	(3.16) 

-0 
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and

(B(e	)u	(; ), V k) 0 = ((; )ie n (e	), Vk)w(),w(fl)	
(3.17) 

—4 

(1 + Be; ,	 (f + Beo, v)W(c)/W(fl),	 (3.18)


On the other hand, by comparison with (1.31) we can write 

urn inf ((e	)u	(e	),	(e	))w()/w() ^ (ff(eo)uo, U0)w(fl)/w(). (3.19) 
k 

Next, use the inequality 

(eflk A(e	)ue (C% , ), V — Ui,, (e .k )) V(1Z) 

+ ((e	)u	(e	)k)W(n)/W(0)	
(3.20) 

	

— (1 + Be	,	— Ü Efl k ( e ; flk ))w()/w(n) 

	

> ((e	)ü	(e	), ü, (e	)) W(c)/W(o) 

From it and due to (3.16) - (3.19) and the definition of M(eo, 1) we obtain 

	

W(eo)üo,

	

	°) W(cl)/wffl) > (1 + Beo,i3 Tu0)w(n)/w()	(3.21)


for any 3 E M(eo,Z). This yields üo = t2 0 (eo) and consequently, for k —* 

eo strongly inU() 

Ck (e% , ) üo(eo) weakly in W ( Q ) /W ( Q ) I (3.22) 

(since the variational inequality (3.10) has a unique solution for e E Uad( 1 )) . Moreover, 
due to the strong convergence v —* v, and regarding (3.4) - (3.5), (3.7) and (1.2) we 
deduce from (3.20) that 

	

lim sup (B(e	)üeflk ( e%'), ü	(e	))w(0),w() k

<iimsup [(ë(e; )u	(e	), Vk)w()/w()	
(323) k 

— (1 + Be; , V — ü (e ))w()/w()]



	

= ((eo)üo(eo),)	— (1 + Beo, — 

The last equality is a consequence of (3.14) - (3.15) and (3.17) - (3.18), and all relations 
in (3.23) hold for all ' E M(eo,Q). Therefore, taking = ü(eo) e M(eo,cl) in (3.23), 
we obtain

	

lim sup (I(e	)u	(e	
°k 

(e	))w()/w(o) 

	

k—co	 (3.24) 
< (ff(eo)üo(eo),üo(eo))W()/W().
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Thus, due to (3.19), (3.22) and (3.24), 

urn (8(e	)Ü e ( e flk ),	(eflk )) W(fZ)/W(l) k—.00
(3.25) 

= (ff(eo)üo(eo),üo(eo))w(Q)/w(n) 

holds. On the other hand, we set 

AII n 	((e)(üen(e) - üo(e)),tje) - 

(8(e)üeje),üe n (e) - üo(e))w(fl)/w()	 (3.26)


- (1 + B(e), ü (e) - u0(e)) W(uI)/W(1 

Then we obtain with the help of (3.20) 

((e )ü E, k (e), "Cn k (e))W(Q)/W() 

(c,1 A(e)-en, (e), UIn, (e)) V((1) + (ñ( e )üe, k (e), ,1 I . , (e)) W(n)/w(r) 
^ (1 +	 " In 	

- 

+ (E nk A( e )u k (e), V )v(fl) + (ff(e)üe (e), )w(i),w() 

for v fixed in X(e, Il). From it one has 

.IVcn k ( e) (f + B(e),t20(e) - 

+ (E nk A( e )ue k (e), V ) v() + KB(C)Uenk (e), t3 - 

which give due to (1.29), (3.14), (3.17) and (3.22) 

urn sup .Afen(e) 
k—oo	 (3.27) 

	

(1 + B(e),üo(e) -	 + ((e)üo(e),i3 - 

for any 3 E M(eoM) and e e Uad(cl ) . Note that (3.27) is also true for = u0 (e), hence 
lim supk,, A/ (e) 0 and from this estimate it follows that 

üe, (e) __"O(e)  strongly in W(12)/W() for all e E Uad() .	(3.28) 

We may write	(e) J (e) for all e E Uad(1l) (which derives from the definition

of e). This means that due to assumption (E0)110 

lirn sup J, ( e: n 5 .J(e) for all e E Uod() 
k-00

(3.29) 
limsupJ,, (e)	inf Jo(e) = 

k—.00	 eEUd(fl) 

On the other hand, due to assumption (H2)M /21 and (3.22) we get 

lim inf j (e	) 2 £(eo, üo(eo)) = Z(e0).	 (3.30) 

	

k—.00	k 

Finally, comparing (3.30) with (3.29) we obtain Jo(co) <	 Hence we see that 
necessarily co e and from (3.29) and (3.30) we also get (3.12)4 which ends the proof I
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4. Application. The membrane approximation to the plate 
with inner obstacle (a case with coercive limit problem) 

The plate model corresponds to a plate subjected to stretching forces in the (x, y)-
plane. In many practical applications, plates are in a state of initial membrane stress. 
When subsequently subjected to transverse pressure loads, their structural behaviour 
and response can be entirely different from plates which are free from such internal 
stresses. 

Let us consider a homogeneous isotropic Kirchhoff plate with small rigidity and with 
inner obstacle. The equilibrium position of the plate constrained to lie above an obstacle 
(rigid frictionless surface located at a distance S = S(x,y) under the middle plain of 
the plate). The plate has a constant thickness 2CHpiate . We assume that the midplane 
of the plate occupies a given bounded, convex and simply connected domain ci c R2 
with a piecewise smooth boundary. The material constant E (the Young modulus of 
elasticity) and a variable distributed load q(x, y) (externally applied pressure) and rigid 
frictionless obstacle S(x, y) may be viewed as a design variable. To simplify notation 
they are denoted as a design vector e = fE, q, 51T• 

We will consider physical situation in which the transverse displacement of the thin 
homogeneous isotropic plate is constrained by presence of a inner stiff punch (rigid 
frictionless inner obstacle). 

Let the plate be simply supported at the boundary ôci. Therefore we assume 
V(1l) H2 (ci)flH(ci) and W(Q) := H(Q). Here the set of kinematically admissible 
virtual displacements is defined as 

K ' (S, ci) { E V(ci) v S(x, y ) + EHpi ate on ci} (S E U d (ci)).	(4.la)


Moreover, in the space W(Q) we consider the convex and closed set 

v E W(Q) : v> S(x, y) + EHmem a.e. in ci ad 

	

0, (S ' ci) = {	 } (S E U(ci)).	(4.16)


Consider for the plate the design space U(Q) and the admissible design set Uod(1l) as 

U(Q) R x C(l) x H 2 (ci) and Uad(ci) = U (Q) 
X U d(ci) X Ud(ci) 

with

U(ci)={EER: CIE <E<c2E}

cy,J 

C19 

ax 

 q C29 a.e. in ci 

qdci=c3q
 } a1, 

- Mmax 5 S < Mmin 
= Is E H2(ci) 

II S IIH 2+(Q) Cs on ci,EHpl ate + S(Oci) < 0} ^ 

where C	 and c1 ,c, 71, Mmjn, Mmax1 c are given positive constants 
such that Ud(Q) is non-empty and (eHpiatc + (Mmin )) <0 on Q.
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Let F. and (Xa, ya) E n (a = 1, 2,. . . , M) be given constants and points, respec-
tively, and let q E L 1 (ci). Define the virtual work of external loads by the formula 

M 
(J(q),v)w(a) = > Fav(xa,ya)+ 

10,
qvdci	(v E V(ci)).	(4.2) 

a1  

It represents J(q) e W*(ci), because of the continuous embedding V(l) C C(). Let 
us consider the cost functional to the optimal control problem in the form 

£: [e, V] — in IV - zdj2dcl. 

(The cost functional corresponds with adjusting the deflection to a prescribed function 
zd) . We define on the open set ci the bilinear forms a(E,.,.) and b(E,.,.) by the relations 

(A(E)v, z) V(0) 
a(E, v, z)	 (4.3) 

f	[QA(E)] [A(1 (z), H(z),J1(z)] 

for all v,z E V(ci), A(E): V(Q) —* V* (Q), and 

(13(E)v,z)w(o) : b(E,v,z) 

J
[Q 0(E)] (\1(v)N1(z) + N(v)V(z)) dci	

(4.4) 

i 

for v,z E W(ci), 8(E) W(Q) - W*(ci) , where Q8 (E) > 0 is a constant depending on 
the elastic properties of the membrane (Q 5 (E) is a scalar factor proportional to E) and 

= 

	

11 ii	0 1 
[Q4(E)j =

	

	 pla te I v 1	0 I , v - Poisson ratio, > v > 0 3(1_v2) Lo o 

EHmem 
Q8(E) = 12(1 — ,2)

a2v 
A.. (v) =	, H (v) =	 ôx5y

 

av	3v 

This is the system of strain-displacement relations for the linear theory of plate (or 
membrane) such that the deformation operators belong to the spaces L(V(ci),L2(ci)) 
or L(W(ci), L2(fZ)). 

The subspace R(Q) C V(ci) is the set of rigid body motion of the plate 

{v E V(ci): (A(E)v,v)v(ci) = 0}.
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The properties of the matrix [QA( E )] imply, 

(A(E)v,z)v(-) = (A(E)z,v)v((7)	Vv,z E V(cl),E E 

and the existence of a constant c j such that 

(A(E)v, V) V(1l)

2	(4.5) 
> C4 [IIZZ v I,() + IINvY( v ) I 2() + II)Vzy(v )II2 ( fl ) + IIA(Yr(v)IIL2ffl)J. 

Let Pv(cl) be the subspace of all possible (virtual) rigid body displacements of the 
middle plane, i.e.

IIAuzz(v) 2 

Pv() := { e V(H I L 2 (tl) + IINyv(v)ll2ffl)+ 0 } 

IIN (v) 112 L2(f1) + II1Vz(v)II2 = 

Lemma 3. Let v E H 2 (1l) and 

II A/XZ( v )II 2 () + II Vvy( v )II2 () + IIN(v ) II
2

 L 2 (cl) + II.Nvz(v)II 
2
L 2 (o) = 0. 

Then Pv(cz) = { O}, i.e. P(Q) reduces to the zero element. 

Proof. The regularization of the displacement v gives an element vh e E() for 
which

= [Hx x (v)l h = 0" 
Hyy (v h ) = [g9()]h =0	 (4.6) 

= (Nzy(v)jh 0 J 

holds for every domain 2 such that Q C Q, provided that h is sufficiently small (h < 
dis(cl,oc)). Then from condition (4.6) we conclude that v h : v in L2 (l) as It -* 0 
and the finite-dimensional subspaces are closed in L 2(). We conclude that v' is a 
linear polynomial in every interior subdomain Q, l C Q and thus throughout in Q. The 
homogeneous Dirichlet boundary value condition ô1l,, however, yields v = 0. (The 
plate is fixed at ÔQ in such a manner that it cannot translate in the z-axis, and then 
it can only rotate.) On the other hand, the definition of 7(), inequality (4.5) and 
Lemma 3 imply that R(Q) = {0}. We have 

A(E) e EV(Q)( c A, MA) ) 
8(E) E EW(c)(aB, MB) 1	(E E 

(The systems of operators .4(E) and 8(E) (E E U(1)) satisfy assumptions (H0)130 
and (H1)13 0 ). The estimates 

(A(E)v - ..4(E)v,z)v(c)l < MAl E8 - El IIvIIv(c)hIzIIv(cl) 
(8(E8)v - 13 ( E )v , z)w(fl)I < M6 E8 - El II v IIw(o)II z IIw( n ) J 

are easy to obtain and assumptions (H0)/4° and (H1)/41 follow.
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Lemma 4. For any S E Ud( cl) the set K(S,cZ) is a closed and convex subset of 
V() and

S strongly C('i) for S, S, E	 = Lim e(SnM). 

Proof. The form of Ke(S, ) follows directly from its definition. If Vn E Ke(Sn, ), 
S, —* S in C() and Un —* v weakly in H2 (s), then v, —* v strongly in C() and the 
inequality for the limit remains valid. 

For any v E Ke(S,cl) there exits a sequence {Vn}nEN such that v, E V(), vn E 

e (Sn,Q) for n sufficiently great, and v, — v strongly in V(), as n —* oo. Indeed, 
let us define 9 = V — (S + &Hp i ate) so that 9 E C(), 9 ? 0 in n and 19 n = (S + 
5) — 9 = S — V + EHpiate,	= {[x,yj E Q : 19(x,y)	}, where the constant Q 
is (cHpiate + (Mmin)) < 0, due to the definition of Ud(l). There exists an open set 

0 C 0 C 9 such that
On C 0	(n e N).	 (4.7) 

To see this, we realise that
19n = EHp iate + Sn Q 

on the boundary ÔQ. The continuity Of and the constraints	-I c 1 and	cay 

imply that U=1 On C Q and (4.7) follows. Obviously, there exists a function E 
C°°() such that e(x,y) = 1 for any [x, y] E 0 and e(x,y) = 0 for	E ac, 
0 e(x,y) 1 for [x,yJ E ft Let us set Vn = V + 11 5n — S IIL0,(1)e Then v,, E V() 
and li v — vnhlv(fl) = li Sa - SI1L(o)lI11H 2 (o) — 0 as n —oo. We can show that there 
exists no > 0 such that for ii > no 

Vn > EHpiate + S,, in	Vn E Ce(S,). 

Indeed, if [x , yi E 0, then one has 

vn = V + ll5n — 5llL 0,(l) > V + (Sn - 5) ^! EHplate + Sn. 

On the other hand, if [x, ] E U \ 0, then we can write 

vn > EHpiate + S + 9 + iS — s.	 (4.8) 

Since [x, y] 0, [x, y] On for any n and 19 n < con5t so that 

and	— COflSt+(1	)9 o+ iS—si.	(4.9) (Sn5)9< 2 

Inserting (4.9) into (4.8) we obtain v,, eHpiate + S + -I , where c^ = — 9 + (1 — 
)9. The function is continuous and attains a positive minimum M = ^(Ex , y. ]) = 

min \5 >0 in the compact set n \ 0. Indeed, let (x., y.) = 0. Then [x., y.) E aQ 
and ^(x.,y.) = 9(x., y) = —(EHp i ate +S(x.,y.)) —const >0. Ife(x,y.) >0, then 
one has £(x.,y.)^ _9!t(x.,y.) > 0. There exists no(M) such that, for n > rio(M), 

ll Sn — SllLci M. This means that %x,y) ^ (x * , y* ) ^!llSn —S IiL,(o) ^! (Sn5) 
so that vn(X,Y) ^! EHpiatc + 5n(X,y),fl > no(M). Thus the proof of Lemma 4 is 
completed U
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Lemma 5. For any S E U d (ci) the set O(S,ci) is a closed and convex subset of 
W(ci) and 

S, — S in C(i) for S, Sn E U(Q) = 0,(S, Q) = Lim Oe(Sn,ci). 

Proof. The closedness follows from the Lebesgue Theorem. The convexity is im-




mediate. Let S, E U d ( ci ) with S, —.+ S strongly in C(ci). There exists a 0 E Co(?!)

such that 0 <0 < 1 in Q. For any v E 0,(S, Q) we construct a sequence Vn = V+9flS —


Then In E W(Q) and V > S + EHmem + (S —5) = Sn + CHmem holds for a.e. 
[x,yJ E ci, so that In E Oe(Sn,ci). Moreover, ll vn— v iiw(o) = li Sn —S llc ( i) li 0 iiw() 0. 
Next, let v,. E Q(S,ci), with v —* v weakly in W(ci). Then due to the Rellich theo-
rem, we have In —+ v strongly in L2 (ci), since In —* v weakly in H' (Q) for a.e. [x, y] E ci 
and In ^? 5n + EHmem a.e. in Q. From the Lebesgue theorem, V S + CHmem follows 
a.e. in ci so that V E O(S, ci). Then the proof of Lemma 5 is completed I 

Lemma 6. For any S E U d( ci ) the set K(S, ci) fl C°°(i) is dense in K(S, ci). 
Proof. Let v E )C,(S, ci) be an arbitrary element and let Z E H(Q) be a function 

such that li Z iiH 2 (fl) = 1 and Z > 0 in Q. Define the function v<> as V(c) = v + eZ for 
e > 0. Obviously, one has 

il v<> — v ii V(tl) = E li Z iiH(c,) = C	and	v< > I. 

Since S E U 'd( ci ) which leads to the assumption EHpiate + S(Oci) < 0 we have V(e) > 
CHpiate + S in ci for any e > 0. From the definition of H2 (1l) it follows that there exist 
11(e) E C°°() such that 11 11(e) Ve(n)ilH 2() —i 0 for n —* oo. On the other hand, in 
view of the embedding theorem of V(Q) into C() we may write v> —i v uniformly 
inTi. Consequently, V(e)n > CHpiate + S in l for n large enough. Therefore one has 
11 (e) E )c, (s, ci) fl C°°(). This prove our lemma I 

Lemma 7. For any S E U(Q) the set O(S, ci) fl C(Q) is dense in O(S, ci). 
Proof. Let v E O(S,ci). In view of the definition of the space W(Q) (since 

O(S,ci) C W(ci)) we may write li on — viiw() — 0 for n — oo where the sequence 
I o n Jn belongs to the space C(ci). Let Vn := max [on, eHmem + 5] 50 that 

In = [(S+Hmem + O n)+iS + CHmem 0n1]. 

Then due to that v E 0,(S, Q) and since the map v —p lvi is continuous [13] we get 

lim v = [(S +EHmem + v)+ I S + CHmem — v i] = max [v,S +CHmem J = V n—.00	- 

strongly in W(ci). It should be noted that for any n E N the function In has a compact 
support in ci and v E 0, (S, ci). Taking into account the above assertion, the set 
{v E 0, (S, ci) fl Co(ci)} is dense in 0, (S, ci) (the function v has a compact support in 
ci). In the following we consider a domain Q. such that ci C ci a . We extend the function
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v E O(S, ci) fl C0() by assigning to it the value zero in the outer neighbourhood of 
Q. This means that the extension Ev of v is defined by 

- Iv(x,y) if(x,y)Eci Ev(x,y) - 0	if (X, Y) E ci \ ci	 (4.10) 

Let us regularize the extension Ev using the formula 

(Ml) RKJ(x,y) = AA' f 2 w([x,y] - 

where the mollifier WK is given by 

=
 {ex

IL,91I2_,2	for I[9,9]I

p	

I(,8]I2 

0	 for IE 9 , Oil > ic 

and A, .AC are positive constants, such that R,a = a if a is constant. Moreover, for 
the sequence of mollifiers we have WK,, E V(R 2), w ^: 0, fl,..1 supp(w) = {0} and 
{ supp(wx, )}nEN is a decreasing sequence. 

By virtue of (4.10) one has, EvE H'(R2 ). Then we get 

Riç, Eu E V(R2 ) and supp(RK Ev) C supp(v) + supp(w))
(4.11) 

limRK Ev = Ev strongly in H 1 (R ). j 

Next, in view of (4.11) one has 

supp(IREvI) C Eu	for n large enough.	 (4.12) 

On the other hand we may write (we recall that supp(Ev) is bounded) 

limRp,Ev = Ev	strongly in L(R2 ).	 (4.13) 

We now define the restriction of the function RKn Ev on the domain ci and we have 
v = RKEvlfl, which due to (4.11) - (4.13) gives 

V e C(Q)	and	limv = v strongly in W(fl) fl co(?!).	(4.14) 

It should by noted that, for any v E O(S,ci) fl Co(U) and S + CHmem < 0 in a 
neighbourhood of ôci, there exists a e > 0 such that 

v=0 
S+eHmem<0 oncio} 

(4.15) 

where 1l = {Ex , yI E ci: d([x,y,ôci) < O) and d([x,y],aci) is the distance from [x, y] 
to ôci. Then, by taking (4.13) and (4.15), for any e > 0 there exists an n = n.(e) such 
that for n > n(e) one has 

f v(x, y) - eHmem <v(x, y) v(x, y) + effmem for [x, YJ E ci \ ci012 
1, vn(X,y) = v(x,y)	 for [x, y] E 0/2
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We observe that P \ cio I ] is a compact subset of ci. Thus, there exists a function t9
 such that 

t9 e Co—(Q), t9 20 in ci, 9(,, y) = 1 for any Ix , Y] e \ ci012 .	(4.17) 

This means that by (4.14), (4.16) and (4.17) we get for the sequence {Q()}flEN defined 
by Q() = v, + ev the relation Q(e)n e C(ci), lime...o,n_. Q() = v strongly in 
W(ci), for n	n.(E), Q () (x,y) 2 v(x,y) 2 S(x,y) + CHmem , for any [x, Y] E Q. 
Consequently, for every v E OE (S, ci) fl C0 (), there exists a sequence {vk} kEN such 
that vk E O(S, ci) fl C000(ci) for any k and lim,_, vk = v strongly in W(ci). This 
proves the lemma I 

In the following we show that 0,(S, Q) is the closure of K(S,ci) in W(Q) (every 
element v E O(S,ci) can be approximated by a sequence {Vfl}fl EN C Ke(S,ci) such 
that v,, - v strongly in W(ci), as n - oo). 

Lemma 8. For any fixed element $ E U(Q) one has O(S, ci) is the closure of 
K(S,ci) in W(ci). 

Proof. We consider a domain Q. such that C ci.. We extend an element v € 
Oe(S, ci) fl Hd( ci ) assuming for its value zero in an outer neighbourhood of ci (H(ci) 
is the space of functions, having first derivatives integrable with the power p > 2 and 
vanishing on the boundary ôci. Note hat these functions are continuous in ci). As well 
we extend the obstacle function Sepiate in theirs neighbourhood. In the following we 
use the continuity of v in n. Let us regularise the extension [Ev] and [ESe,pi ate] using 
formula (Ml). 

For every ii we take IC n such that 

R,çEv(x,y) + 1 2 - RES,pi ate(X,y) + - Se,piate(x,y)	(4.18) n	
1 

2 n 

in ci, where [Ev, ES,p i ate] are the above extensions, Se,piate = S+eHpiate and Se,mem = 
$ + EHmem . Let us consider in (ci. \ ci) the sequence { o }eN whereo n = RjcEv + . 
On the other hand, for sufficiently large n the functions Rx. Ev are equal to zero when 
dis([x,y],aci.) > K,,. Thus we may write 

O flhIH l ( n\cz) - 0	as n - oo.	 (4.19) 

Let us choose a domain 0 with 0 C ci, and extend the functions O n in ci assuming 
they vanish in 0. Then for the extension Eo we may write the estimate 

Eo IIn(n.\o) M II o fl1IH I (n\1) . (4.20) 

Further, assume that Se plate < 19 < ( Hpiate + (Mmjn )) < 0 and v > f in some 
neighbourhood cio of the boundary 3l, 0 = ci \ . Next, due to estimate (4.20) one 
has

IEon1IH1(\0)	M* II o flhlH I (.\l- ) .	 (4.21)
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Moreover, by virtue of (4.19), the right-hand side of this inequality converges to zero as 
n —	. From the continuity of Ev it follows that 

IlRKn Ev llc ( i ) — 0	for n —+ 00.	 (4.22) 

But for the extension Eo we may assume that the estimate 

ll Eo Il	M0o' C(O\fl)	 IC(fL\O) 

holds uniformly with respect to n. We can deduce from (4.22) that the right-hand side 
converges to zero for n — 00. Thus we have for the extensions the assertions 

Eo(x,y) = R,c Ev (x , y) = — ([x,y] E ôl)	
(4.23) 

II Eo n11H 1 (010)	0 and llEonhlc() —4 0. 5 

By virtue of (4.18) we have

Ry ,,Ev(x,y) +	2 Se,piate	 (4.24) 
n 

for all [x, yJ E Q. But the right-hand side of (4.24) is bounded from above in Q. by a 
negative constant i9, whilst the left-hand side converges to v uniformly with respect to 
[x, y] in the same neighbourhood (where v> in Q). This gives the estimate (due to 
(4.23))

1 
R,cEv(x,y) + — — Eo(x,y) 2 Se,piate( X , y ) > Se,mem(Hpia te > Hmem)	(4.24) 

Ti 

for all Ix, y] E Q. Then the sequence v,, =	Ev + — Eo belongs to the convex 
set ftC(Sj) and v, —4 V strongly in Hol  v E 0,(S, Q) fl Note that 
for v E O(S, ) there exists a sequence v E Q(S, l) fl H() such that v 9 V 
strongly in H (). On the other hand, we may choose a sequence from ACe(S, l) strongly 
converging to v in H (l). Thus the proof of the lemma is complete I 

Since £(e, v) is weakly lower semicontinuous on L2(l) we have 

liminfC(e n ,vn ) = liminf(llv — Zdll (fl) 2 liv — zdllL(t- ) flc 

for v,, E V() and V E W(l) with V —9 V strongly in U(Q). Consequently, condition 
(E0) is verified. From the above arguments it follows that all the assumptions of The-
orems 1 — 3 are satisfied. Hence there exists at least one solution of the optimization 
problems (Ps) and (Po), respectively. 

4.1 Approximation by finite elements. Standard Galerkin. We shall propose 
approximate solutions of the optimization problem for a thin plate by the finite element 
method. We restrict ourselves to particular domains, namely we suppose that ci is a 
parallelogram.
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Consider a classical quadrilateral mesh Th of ci, i.e. Th is a finite set of parallelograms 
G, by means of two systems of equidistant straight lines parallel with the sides fl. Then 
we may write

Gc Q for any GE7 
UGEI- C = ci 

C 1 flG2 =0 for any G 1 , G2 E Eh such that C 1 54 C2 
where 61 denotes the interior of C 1 . Moreover, for any G 1 ,G2 E Th with C 1 51 C27 
exactly one of the conditions 

l°G1nG2=O 
20 Ci and C2 have only a whole common vertex 
30 G 1 and C2 have only a whole common edge 

must hold. As usual h will be the length of the largest edge of the parallelograms in the 
quadrilateral mesh. Furthermore, we assume that Th is consistent with the partition of 
the boundary oil. Thus we may write Oil = A,_1 A3 where A3 is the vertex of G 
in Th. 

In what follows, we shall consider only families {7 } (h - 0) of such partitions, 
which refine the "original" partition T4 . We shall say that a family {Th} is regular, if 
there exists a constant c> 0 such that const for any G i E Uh 7, where p denotes 
the diameter of the maximal circle contained in C. We suppose that the condition 

T,,, CT,.	if h 1 >h2	 (4.25)

is satisfied. 

We introduce the spaces Qk(G) of bilinear (if k = 1) or bicubic (if k = 3) polynomials 
defined on the quadrilateral (see, e.g., [9, 12]). We denote 

Wh ={AE:Aisavertex GET} 
= {A E Wh : A oil) 

rh = {A	A E oil). 
The spaces V(ci), W(Q) and Uo d(ci) are approximated by the families of subspaces 
{ Vi (ci) } nEN, {	(il)} nEN and { U; ( Q)) ,,EN, respectively, where 

Vh(ci) = {v E V(il) : v/G E Q3 (G) for any C E Th) 
Wh( il ) = {v E W(il): v/GE Q 1 (G) for any CE 7} 

U"(ci) = {v E U(Q)	E/G E Q0 (G) for any G E 7} 
U(ci) = {v E U d ( ci ) : q/G E Q 1 (G) for any C E T} 
Uj(il) = {v E Ud(ci) SIG  Q3 (G) for any GE i}.

	

Clearly, such defined subspaces Vh(il), Wh( ci ), Uj"(ci), U(ci) us h	h 

	

L	a^ (Q) are finite- aa 
dimensional (see [121). It is then quite natural to approximate ftC(S, ci), O(S, ci) by 

Ke,h(Sh,ci) = {Vh E Vh(il) : vh(A) ^ Sh(A) +eHpiate VA E Wh,i.e. A E ci} 

Oe,h(Sh,ci) = {vh E Wh (ci) vh(A) Sh(A)+Hmem VA E Wh,i.e. A E ci}, 
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respectively. 

Let us consider the following discrete variants of a(E,v,z), b(E,v,z), (J(q),v)w(fl) 
for any eh E Ud(l): 

a(Eh,vh, zh) 

	

= f [ &cZ( Vh),HYY( Vh),&c Y (Vh)] [QA(Eh)] [HZx(zh),NyY(zh),NZy(zh)]Td	(4.26) 

for any Vh,Zh E Vh(f),

M 
(J(q),vh)w() = >FaVh(xa,ya)+ In

qvhdfZ	 (4.27) 
1=1 

for any va E Vh(cl), and 

b(Eh,vh,zh) = jo Qj3( Eh)(A(.( Vh)JV.( Zh) + Ary( Vh)Ar,( Zh)) dQ	(4.28) 

for any vh, zh E Wh(1l). On the other hand, the linear operators 

Ah(Eh) : Vh(1l) - V,(cz) 

13h(Eh) Wh(l) --i W,() 

define the discrete bilinear forms 

(Ah(Eh)vh,zh)v ( ç ) = ah(E4,vh,zh) 
(Bh(Eh)vh, zh)wh (n) = bh(Eh,vh,zh), 

respectively. In the following we assume that 

(Ah(Eh)vh,zh)vh (n)	(A(Eh)vh,zh)v(cz) 

(Jh(qh),vh)w() :E 
( 13 h( Eh)vh, zh)wh (z) : (B(Eh)vh,zh)w() 

:= 

This means that no numerical integration is used in the problem. The approximations 
Of ( Ph,) and (Pho) are obvious now. 

Due to the above made choice assumptions (H1)A/1°,4° and (H1)B h /1° are sat-


	

isfied for our problem. Assumptions (H1)8h /50 ,60 are satisfied too, as Bh	0 for 
h E (0, 1). Let us check assumptions (H1)Ah /2°, 3° and (Hl) B, /20 ,30 . If Eh -* E in 
R and q, -* q uniformly in n, S, -* S strongly in H2 (), Vh - v weakly in V(Q),
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- z strongly in V(1), then 

J
[r(v ), A((v ),	(v)] 

0 

X [QA( Ehj] [AI x (zh ),Jf(zh ),JtfZY(Zh 

= f [HXZ(Vh),HYY(vhj,(vh)] 

< [Q(E, - E)] [&cZzhi,J.rYYzhj,JvZY(zhj]Tdcz	 (4.29) 

+1 [XZ(vhj,NyY(va),H(vh)] 

X [QA (E)] [A(.. ( Zh ), A1yy (Z ),ftfzv(zhi] Td 

f	y(v)] [QA(E)] [H11(z),AI(z),H1(z)J 

and

liminfJ 
[AcZ(Vhj,HYy(Vh),Jv(Vh)J h -.0

X [QA(Ehj] 

> liminff [HXI(Vhj,Aç(Vhj,N1(Vh)] 

X [QA( E )] [Af(vh ),AIy(vh ),A1z(vh )]T dQ	 (4.30) 

+ lim I [HZZ(vh),HYY(vhj,N(vh)] h-0 j 

X [QA(Eh - E)] [NZZ(vh),NVY(vh),JfZ(vh)]Tdc 

> j 
[AIrx(v), H ( v),N( v )] [QA(E)] [Nx1(v),Hy(v),H(v)J Tdft 

In fact, as the form a(E,.,.) is elliptic on V(l) for any E € U(), therefore it 
is weakly lower semicontinuous. Consequently, conditions (H1)Ah /20,30 are verified. 
Similarly, we can verify conditions (Hl) f;, /20 ,30 . Next, the Arzelá-Ascoli theorem and 
the definition of Uad(Q) yield assumption (H2)h/1°. 

The crucial point is to prove assumptions (H2)h/20 and ((L0)4 ), ((L0) 8j: Let 
q € U d (Il) and I,q € Uh(ç) be the Lagrange linear interpolate of q over 7. Since 
q € W(1), the interpolation theory yields 

II - Ih q IIL(D)	const• hIIqIIw1 (0) .	 (4.31) 

Obviously, Clg	15 C2q everywhere in ci. Finally, we have for PP+ 1 parallel with
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the x-axis (or y-axis)

P+I 

II - J_Iq(P,1)_q(P1) <

	

	
I iOq	 I


I -	 J 1—dx < M<>

P.	 I


P.+1 

= ---Iq(P+ i ) - q(P)I	1	1 I ôq I I 
ô!/	h	 y I	.-1dyM<>. 

P1 

Consider the parallelogram and use the skew coordinates [i , 7121 via the affine mapping 

Ex , y] = P(,i]): x = ^+rlcosa and  = 77sinc (4.32) 

which maps a rectangle K. onto K. Let v E Q, (K). Then v o  = I E Q 1 (K.). Let 
ci = P(ci.), ci. = (0, L.) x (O, L), h =	and h = .. Denote by F,, the grid 
points with coordinates = ih1 and t = jh (i = 1,2,... ,m and j = 1,2,... ,n), 

= [(i —1 ) h , ih 11 x [U - 1)h,jh], K13 = P(K) 

	

H = ((i - )h,(i +	x ((j - )h,(3 + )h) n ci., H,, = P(H) 

This means that H1, is a "neighbourhood" of the point P(F,). Let us set 

= mesj) 111i j Ih q(x,y)dci	(0 i m; 0 j n). 

We may write
4 

J
Ihqdci = 

1


	

K	
mesKj>Ihq(Fl 

, 
 

where .P, are vertices of the parallelogram K,,. 
Let S,, denote the union of all parallelograms K,,, which are adjacent to the node 

P(F,,). Then we have 

jl
h qdci 

=
Ihqdci 

= mes K,,	Ihq(P(F'fl) 
1=1 ,=I k=1 

Ihq(P(F1))mesSl 
1=0 j=0 

=
4mesH, JH,j 

q dci 

= fqdci 
J1
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since mesS13 = 4mesH,3 , U,j!i = Q. Let ue(e) E V(ci) be the solution of (1.3) (with 
respect to (4.2) - (4.4)) and u h( e) E Vh(ci) be the solution of (2.1) (with respect to 
(4.26) - (4.28)). Regarding the regularity of the state function ue(e) E K(S, ci) it is 
shown in [4] that q E L(Q) with p > 2 implies Ue E W 10 (ci). Taking into account 
(4.31), a standard estimate gives 

II ue( e) - U eh (Ih e)11 H 2 ( n ) < M (e )h II uC( e )11H 3 (fl) < M,(e)h. 
Therefore, as u(e) E C(S,ci) and u h(Ih e) € K,h(Sh,Il) for h sufficiently small (for 
every	e> h). This gives the verification of assumption (H2)h/20. 

Lemma 9. For any S E Ufd(ci) there exists a sequence {Sh,,}nEN with h - 0+ 
such that 5h,, € Uf(ci) and

liM II Sh -	= 0.	 (4.33) 

Proof. Consider the parallelogram ci and use the skew coordinates [, i] via map-
ping (4.32). We have ci = P(Q), Q. = (0,L) x (0,L); h =	and h 
In the following we denote by F13 the grid points with coordinates	= ih and

77= jh, (i = 0,1,2,. .. , m; j = 0,1,2,... ,n): 

= [(i - 1)h,ih 1] x [(j - 1)h,jh], Q, = P(Q) 

Oij = ((i - )h,(i + )h) x ((j - )h,(j + )h) flci, O = P(0).ij 
This means O, is a "neighbourhood" of the point P(F13 ). Let us set 

Sh(P(FIj)) = mesO	S(x,y)dxdy	(0< i m; 0 j <n).	(4.34) 

Next, we shall show that interpolating the nodal values (4.34) by functions from Qi(Q,), 
we obtain 5h € U(ci). We may write 

JS,dxdy = mesQ 13	Sh(F) 

where F, are vertices of the parallelogram Q,. Let S, denote the union of all paral-
lelograms Q,, which are adjacent to the node P(F1 ). Then we have 

JS,dxdy=
l=i 3=1 

=mes Q, > Sh(P(F,)) 
1=1 j=1	k=1 

=
1=0 j=0 

171	fl
mesS. =	 Sdxdy. 4 mes 0,, 

i=0 j=0	0i1 

= f Sdxdy 
Jo 

= M5
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since mesS13 = 4mesO,3 , U,O, = 
We now introduce the functions S = S o P and	=	o P. Then (4.34) can


be transformed into the formula 

S.(h)(Fj) = mesO. f S.dedi,.	 (4.35) 

Moreover, as far as we identify the system [, ijj with a skew coordinate system, parallel 
with the edges of Q, we easily verify that 

as as. as as. 35h - as., ash - as.<>


	

i9C- a ' aq - a7l '	a - a	'	877 

holds at the corresponding points. Let us extend S. onto a rectangle 

( - h 1 , L + h1) x (-	L + h) 

so that the extension So = S in Q. and 5o is symmetric with respect to the sides, namely 
So (L. + a,i) = 50 (L 1 - a,77) for any 77 E (—h,L + h) and any a E (0, h 1 ), and 
similarly along the other sides of aci.. This means that we may write 

S. (h) (Fij) = 
1 

hh	(o) J	
S0 ded	(0 < i <m; 0 <j <n)	(4.36) 

instead of (4.35) where	denotes the (complete) rectangle with the center F13 and

the lengths of sides h and h. We have 

- 

- 1	
Sodedr1_J7Soded11 ^ I - h2h 

X (0) 

=
(4.37) 1 J	1 

1  
;c M0mes R,(o) 

- 
= M. 

making use of the fact that I I M. holds almost everywhere. Due to the fact that ac 
E Q(Q) in	the derivative	attains its maximum at the boundaryac 
Then by virtue of (4.37), we obtain the estimate	 M. for any Ix, y] E ci.ac 13.

On the other hand, the upper bound M for	can be derived in a parallel way. 
Observe that the maximum S.(h) in	in attained at some vertex of Q. Thus due to 
(4.35) we easily verify that Mmax 15 Sh(X,y)	Mmjn for any [x, Y] E ci. This means

that 5h E U(ci).
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It remains to prove the convergence (4.33). We consider an arbitrary point [x, y] E l 
and write for [e,] E P'(x,y) E 

Sh(x , y) - S(x, y) I =E Sh()(FI)ok(, ) - > S(,	) 

where 0k are the shape functions of Q1(Q,) (i.e. ok(FT) = i5km holds at the vertices). 
By virtue of (4.35), we obtain 

Sh (x,y) — S(x,y) 
4

S(F) — 
k=1 

4 =	14 " So(o,o)dodo
(4.38) k=I  

Jf	S,77)dodook(e,1) 

4

hh ILk	so(oz,oy)—s*(e,ri)Idoxdoy 
k=1 Z !' 

where jZk	denotes the rectangle with the center at F, mes1 3 < 0> =	On the

other hand, we have 

S0 (01 ,0) — S.(e,ii)I = I so( 0 , 0y) —

	

+ So(,o)—So(,r)1	(4.39) 

Finally, by virtue of (4.39) and (4.38) one has 

Sh( X ,y) - S(x,y)I 12h max [M0,Mj 

which gives (4.33)1 

Let us verify conditions (LO)A, and (LO)s,. 

Lemma 10. For every fixed v e AK(SO) = )e(S,1) fl C°°() there exists a se-
quence {vh}eN C ftC ,h (Sh M) such that for n — co assumptions (LO)A, are satis-
fied.

Proof. Let Se,h,pIate _4 S,piate strongly if H 2 () and vh,, —* v weakly in V(l) 
for n — . It will be sufficient to prove v 8e,plate in ci. As 6(x, Y) E H 2 (cl) (Dirac 
function, concentrated at [x, y] E 1) is linear continuous functional on V(), we have 
vh (x,y) —* v(x,y) for all Ix, Y] E n. Let us suppose that there exists [x, y] E	such

that

v(x, y.) < Se,piate( X ., y. ) .	 ( 4.40)
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Moreover, since the element v and S belong to the space C(i), estimate (4.40) holds 
in some neighbourhood U([x.,y],e)fl	( > 0) where U(Ix , y ), e ) = {[x,y] E E2 
p([x , y], [x., y.]) < e}. Further, diamG < h for any G, E Th and h - 0. This 
means there exists A,h 0 E Wh 0 such that A ,h 0 E U([x.,y,],e) fl ft Then by virtue 
of assumption (4.25) one has A1,h 0 E Wh for any h $ h0. On the other hand, as 
Vh( A I,h 0 ) ^! Sc,h,plate( Ai,ho) for any h < h0 , it must be v(A ,h0 ) = limh...o. vh(A,h0) 
S ,plate( Ai,ho), which is a contradiction with previous considerations. 

Consider an element v E K(S,1). Then due to Lemma 6 a sequence {Vo}flEN E 
A K(s ,) exist such that Ik'0 - v 1111 2 (n) = 0. Let vh E V,(?) be such element, 
the restriction of which in G 1 E Th is the Hermite bicubic interpolates of v. Then by 
definition one has VhIG,	ehflelGV and ekCIG e Q3 (G,) is determined from the 

conditions

__v(Ag)) - Ov(A1) I 
1 e h eta V ( A t) = v(A1),	

Ox	 Ox 
v(A1))	 Ov(A)	O(7eh eIG v(A1))	 52v(A1)

Oy	 Oy '	OxOy 	OxOy  

where [A] 1 are vertices of G. 
Denote by 0h = lC h v0 the Vh(l)-interpolate of v0 over the partition 7. 

Then 0h E )Ch(Sh,Q) holds, since the nodal parameters involve all values v0(A1). 
Furthermore, 

11 7 h0n - VoIIH 2 () < Mh II voIIH 4 (cz) . (= O(h) for h - 0+) 

holds for any regular family {Th } and therefore limh,,...o IIoh - v IIH 2() = 0. Conse-
quently, condition (LO)A,, is verified I 

Moreover, it remains to verify condition (LO)I;,. 
Lemma 11. For every fixed v E A0.(s,n) = Oe(S,cl) n C(l) there exists a se-

quence {vh }nEN C Oe,h,(Sh n , ) such that for n - = assumptions (LO) B, are satis-
fied.

Proof. We consider any Q E C°°() with Q ^! 0 and define Qh = >cc Q(OG)XG, 
where XG is the characteristic function of the set G and OG is the centroid of G. Then 
we have

tim I(vh - Se,hn,mem)Qhn dcl = 
in

(v -Se,rnern)Q dcl,	(4.41) 
hn—.O+  

since Vh - v weakly in Hd(cl) and Q, — Q,	 5e,mem strongly in L2 (Q)

and taking into account the Rellich theorem. On the other hand, one has 

is, 
(Vh^ - Se,hn,mem)Qh dcl =	Q(oG)J(vh — ,hn,mem) dQ.	(4.42)


GCO 

Then due to Simpson's integral formula and the definition of Oe,h(Sh, cl), we obtain 

4 

5e,h n ,mem)dcl = (measG)(vh	Se,h,,,me 
ill	

m)(Ai) ^! 0	(4.43) 
1=1
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where A 1 E Wh . Thus by virtue of (4.42) and (4.43), we arrive at 

fn (
Vhn - Se,h n ,mcm)Qh n dIl 2 0. 

Then (4.41) implies ft(v —Sc,mem )Qdcl 20 which in turn implies v 2 S+Hmem a.e. 
in Q, i.e. v E 0(S,). 

Let v E A., (S,n ) . There exists a Se,mem E H 2 () such that Se,mem = 0 on 
Then we have

V - Se,mem = GE O.(1) = {w E H,' (Q) : w 20 a.e. in cl}. 
Let us employ a regularization operator R, with the kernel Aexp[((x,y) - 
A a constant. Let RESemem and RpEO denote the regularization applied to a proper 
extension of the functions Sc,mem and 9 to a larger domain Q. D , so that R,E9 2 0. 
We define 

Vh = E (RKESememRKE9 

+ (II R tc EScmem Se,memII C() + II Se,mem _SehflmemIIC())t9) 

where E1,,, : C() -* Wh(1) denotes the Lagrange quadratic interpolation and 19 E 
C'°(Bp(xo,yo)) a non-negative function with [xo,yo] E S(w) {(w,y] E 1 : w(x,y) > 
Se,mem(X,y)} and B(xo,yo) C 5(w) a ball. Consequently, v,, E Wh,j), and for any 
node A E Wh we have 

Vh(A ) 2 RESe,mcm(A) 
+ IS mem (A) - RESe,mem(A) + Se,h,mem( A) - Sc,mem(A) 

2 Se,t&,mem(A) 
so that vh E Oh(Sh,,,cl). Furthermore, we may write 

I	- VIHI(fl) 

= Eh,,(RESc,mem) - Se,mem + Eh. ( RK EO) _9 

X (II RKESe,mem - Sc,memIIc ( i) + I lSe,mem - Se,hn,memIIC())Eht9 

<Eh ( RK EScmem) - RKESe,rneml	+ RE9 91 
H'(fl)	 IH'(Q) 

• Eh,JRK EG) - RxE9 H I (Q) + RKESe,mem - 8e,mern 

• (II Ric ESe,mem - SememIIc() 

• II Se,mem - H' (Il) 
—40 

as PC - 0+ and h - 0+. Here we have used the facts that Sc,mem E H 2() and 
IIRKES,mem - Se,memIIC() const II RESemem - Se,memIIH 2 (fl)	0 

as PC -* 0+ (the seminorm in H'(l) be denoted by I ,qiç). This means that the 
assumptions of (LO)j3,, are fulfilled I
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Let tzo(eo) E W() be the solution of (1.23) and Uoh ( e h) E W, (Q) that of (2.2). 
Taking into account (4.31) and Lemma 9 a standard estimate gives 

II uo( e ) - uOh( cQhj IIHi(o) < Mh flhI uo( e )IIH 2 (0) < 

Therefore, as uo(e0 ) E Q(S,),uo hjeo h ) E	 for h sufficiently small. 

4.2 Transition from a plate to a membrane. From the above mentioned arguments 
and due to Lemmas 4 - 8 all assumptions of Theorems 1 - 3 are satisfied. This means 
that there exists at least one solution e = [E,q,Se ) E Uod(cl), the solution for (Pe) 
for every (& 5 12) > e > h and e = (E,q,S] E Uaa() the solution for problem (Po) 
for the cost functional:

£(e,u(e)) = in lu,(e) - za]2dft 

Particularly, there is a sequence {e, }kEN, e, - 0, for which 

E - E in R 

q , - q strongly in C()
(4.44) 

s; - S strongly in H2() 

Ucnk

 

(e% , ) - uo(e) weakly in W(Q). 

If the limit state function u 0 (c) is such that uo(e) E K(S, Q) and —IIJ(q ) - 
J(q )IIL 2 (n) — 0 for e, - 0, then one has 

II U e,. (e) - uo( e )IIw(fl) = O(,/)	for e	—* 0	(4.45) 

where IjVIIw(fl) := I V IIffi() for v € W(1) and 

u,. , (e; ,.  -4 uo(e)	strongly in V()	 (4.46) 

where II v IIv() := 114H2 0-n for v E V(1). Indeed, taking v = uo(e) in the variational 
inequality

(e A(E )u (e; ,, ) + B(E )u (e ), v — u (e )) 

	

^: (J(q;fl ), V - U	(e;,,,)) W(1) 

v € AC e(S k , Q), and v =	(e;,,, ) in the variational inequality 

(8(E)u0(e),v — uo( e ))W(fl)	(J(q),v — uo(e))W()	(v € Oe(S,)) 

we obtain
* 

A u,,.k (e	) - uo(c)II,,()	
en* + — Ik	(ee) — uo(e)I

2 
W(fl) k 

	

< (A(E )uo(e), uo(e) —	(e	)) V(fl)	 (4.47) 
1 

+ - IJ(qe , , ) — j(q )II L2(tI)	) - uo(e )II W(fl) 
Enk
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which yields the first estimate 

- uo(e)IIV() 
1 

—(A(E)uo(e)IV.(fl)	C)Mflk - T(q)IIL2())	
(4.48) 

and afterwards the estimate 

Iue(e) - uo(e)lIW()
1 

+ — J(q) - J(qjL2()).	
(449) 

- as M	 En,, 

Hence (4.45) holds and one has u ,, ( 'In^ - uo(e) weakly in V(1l), by virtue of (4.48) 
and (4.49). Then using this fact in (4.47), one concludes the strong convergence from 
the inequality

* 2 lim sup a,j Itz,, (e) - uo(eo)I V(1l) —o 
< lim (A(E)uo(e), Ue (e) - uo(e))V() -

+ urn ---J(q ) -J(qo)IIL2(fl)uefl,, (e ) - uo( e ) W() —.0 En,	
nk

=0. 

Remark. One can also consider the case of the partially clamped plate by consid-
ering the non-empty, closed convex subset 

ACc,c iam(S,) = {v E V() tr(v) > 0 on ac} 

of
V() = {v E H 2 (1) tr(v) = 0 and ôtr(v)

= o on ac} 
on 

instead of ACe(S,cl) defined by (4.1a). Clearly, 0 C ,ctam(S,)C AC(S,). Under the 
definition of Uad( 1 ), if u(e) denotes the unique solution to the obstacle problem for the 
partially clamped plate, one can apply Theorem 3 in order to conclude u(e) -, u(e) 
strongly in W() (= {v E H 1 (1) tr(v) = 0 on OL. }) (note that one still has 
clKciam(S,) = 0,(S, Q) with closure taken in W(1)), where 0(S,) is defined by 
(4.1b) and u(e) is the corresponding solution for the membrane. Since, however, in 
general u(e) V(l) one cannot expect to improve that we have convergence in H2(Q). 
In this case a boundary layer arises [15, 16]. 

Finally, by virtue of Theorem 4 (under the above conditions and Lemmas 9 - 11), 
for any regular family of partitions {7}, refining Th 0 , relations (2.12) and (2.14) for 
the membrane approximation to the plate with inner obstacle hold. 

Acknowledgement. The author is deeply grateful to Prof. Panagiotopoulos for 
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