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Optimal Control of a Variational Inequality
with Application to the Kirchhoff Plate
Having Small Flexural Rigidity

J. Lovisek

Abstract. This paper concerns an optimal control problem of elliptic singular perturbations
in-variational inequalities (with controls appearing in coefficients, right-hand sides and convex
sets of states as well). The existence of an optimal control is verified. The applications to the
optimal design of an elastic plate with a small rigidity and with inner (or moving) obstacle a
primal finite element model is applied and convergence result is obtained.
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0. Introduction

The aim of asymptotic methods in optimal control is to simplify the state inequality. The
most classical approach is the use of asymptotic expansion in terms of small parameter
that may enter the state inequality, i.e. the method of perturbations, in particular
the method of singular perturbations. Singular perturbations play a special role as
an adequate mathematical tool for describing several important physical phenomena,
such as propagation of waves in media in the presence of small energy dissipations or
dispersions, appearance of boundary or interior layers in fluid and gas dynamics, as
well as in the elasticity theory, semiclassical asymptotic approximations in quantum
mechanics, phenomena in the semi-conductor devices theory and so on. We shall deal
with singular perturbation of an optimal control problem for an elliptic variational
inequality appearing in coefficients, right-hand sides and convex sets of states as well.
For the sake of simplicity we confine ourselves to the cases of a linear operator on a
Hilbert space. We give first properties of the solutions. Moreover, we shall deal with
the discretization of an optimal control problem (P). The existence theorem (for the
_singular perturbed optimal control) will be applied to the perturbed optimal control
of a homogene isotropic plate with small coefficients of the bending rigidity tensor and
the membrane (the membrane approximation to the plate obstacle problem is a special
example of singular perturbations for elliptic variational inequalities). The numerical
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analysis will be restricted to the homogene isotropic plate with small rigidity and with
inner obstacle.

Singular perturbations in variational inequalities were considered by Huet [10], Lions
(15, 16}, Greenlee [8], Eckhaus and Moet [6], Frank [7], and Sanchez-Palencia (22] while
those of optimal control problems were considered by Khludnev and Sokolowski [14] and
Lions [15]. The main concern is the existence of solution with some weak convergence
theorems, but all of the above authors (within Lions, Khludnev and Sokolowski) ob-
tained weak convergence theorems for singular perturbations of variational inequalities.

Before touching the main topic we introduce the notation. Let H (£2) be a normed
linear space. Following Mosco [19], we introduce the convergence of sequence of subsets:

Definition 1. A sequence { Kn()}nen of subsets of a normal space H(§2) converges
toa set K(2) C H(Q) if K(Q) contains all weak limits of sequences {v,, }xen C Kn, (),
where {Kn, (2)}ken are arbitrary subsequences of {K,(9)}nen and every element v €
K(R) is the (strong) limit of some sequence {vn}nen, vn € Kn(R2). We shall write
K() = Limp—.oo Kn(2) in this situation.

1. An existence theorem

Let the control space U(f2) be a reflexive Banach space with norm || - lu¢ey, and
let Usg(2) C U(R) be a set of admissible controls in U(). Further, denote by
V(§2), W(Q) two real Hilbert spaces with inner products (-, v, (- )w(n) and norms
Il - llviay I - lw(ay, respectively. Let us denote by V*(2), W*(Q) their respective dual
spaces of and by || - [|v-(q), Il - [w+(a) their norms with respect to given duality pairings
(s )v@), (") w(a)- For a Banach space H we denote by L(H,H*) the space of all linear
continuous operators form H into H* endowed with the usual operator norm. For two
non-negative constants A, A we denote by £y (A, A) the set of all symmetric elements Q

of L(H,H*) for which the inequalities

Aol3 < Qo) and  [|Qullwe < Allollw (v € ) (L1)
hold. We assume that
(NO) V() = W(Q), V() dense in W(Q) and U,4(R2) C U() compact in UQ).

We introduce systems

{K(G’Q)}CGU.J(Q) and {0(619)}cEU«(9)

of convex closed subsets K(e, 2) C V() and O(e, Q) C W(Q), and families of symmetric
operators

{Ale, M}eevaa CLV(Q), V() and  {B(e,Q)}ecv., C L(W(Q), W*(RQ))
satisfying the assumptions
1° neGU.d(Q)K(e’ Q) #0 .
2° e, — e strongly in U(Q) = K(e,Q) = Limp—co K(en, Q)
(HO) ¢ 3° {A(e)}eev.s C Evn)(0, Ma)
4° e, — e strongly in U(2) = A(e,) — A(e) in L(V(2),V*(Q))
5 (A(e)v, v)v(a) + ”U”%V(Q) 2 aAl'"lﬁ/(n) (e € Uaa(R),v € V(Q))
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for some a4 > 0 and

1% cdK(e, Q) = O(e, Q) (closure of K(e, Q) in W(R)), e € Uaa()
(H1) 20 e, — e strongly in U(Q) = O(e, Q) = Limp—oo O(en, )

30 {B(e)}CGU“(Q) C gW(Q)(O’B,MB) with some ag > 0

4% e, — e strongly in U(Q) = B(e,) — B(e) in L(W (), W*(Q)).

Note that W*(2) — V*(Q) continuously, and one has the transposition formula
(Foo)viay) = (F,o)wy VveV(Q),Fe W (Q) (1.2)
Let f € W*(©2) and B : U(2) - W*(f) be a linear continuous operator. For every

ap 2 € > 0, and for every e € U,q4({2) there exists a unique state function u.(e) € K(e, )
such that

(eA(c)u,(e) + B(e)u.(e) — u,(e))v(m > <f + B(e),v — ue(e))w(n) (1.3)

for all v € K(e,?). Indeed, thanks to the general theory of variational inequalities (2,
13, 21] it is enough to prove that there is a constant c(g) > 0 such that

(eA(e)v, v)v (o) + (Ble)v, vIwiay 2 cle)livliyey (v € V(Q)), (1.4)

and this immediately follows from assumptions (H0)/3°%,5° and (H1)/3°.

Thanks to assumption (H1)/3°, for any e € Uaa(f) there exists u(e) € O(e, ) such
that

(B(e)u(e),v — u(e))w(n) > (f + B(e),v - u(e))w(n) (v € O(e, 2)). (1.5)

Let us consider a functional £ : U(R) x W(Q) - R* = {a € R : a > 0} for which the

condition

{Un}neN C V(Q),‘U € W(Q)
v, — v strongly in W(2)

10 } = L(e,vn) — L(e,v)

(E0) {vn}neN C W(Q),v € W(Q) and {en}neN C Uaa(2),€ € Usa(R)
90 e, — e strongly in U(Q)

= L(e,v) £ liminf L(en,vn)
{ v, — v weakly in W(Q) n—ee

holds. We introduce the functional J, by

Je(e) = L(e,uc(e)) (e € Uad(92)) (1.6)

where u.(e) is the uniquely determined solution of (1.3), e € Ua4(2).

We shall solve the following optimisation problem:

(P.) Find a control e} € U,4(R?) such that J.(e}) = inf J.(e).
e€Uaa(N)

We say that e is an optimal control of problem (P.).
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Theorem 1. Let assumptions (NO), (HO), (H1) and (EQ) be satisfied. Then there
ezists at least one solution to problem (Pe).

Proof. Due to the compactness of Uaq(§2) in U($2), there exists a sequence {e”} nen
C U,q(R2) such that

lim e} =e; in U(Q) }

e . 1.7)
(el) = f J . (

i Je(e) = inf o Jele)

Denoting u.(el') =: u? € K(e", ) we obtain the inequality
(eA(e?)ul + B(el)ul,v — u?)v(m >(f+Bel,v- u?)w(n) (1.8)
for all v € K(e7, Q). Inserting v = vo € Neey, ,(a)K(e, ) into (1.8), we obtain

(eA(e2)ud,ul)y gy + (Ble)ur,ul) gy (1.9)
S (A(e2)us Vo )y gy + (B(eD)UZ Vo) gy + (f + Bel,ul — Vo) w(a) ‘

for all n € N. From (1.9) and assumptions (H0)/3° — 5° and (H1)/3° — 4° it follows
luZllviay € C(e) (n€N) for fixed Jag > e > 0. (1.10)

It yields the existence of a subsequence {u”*};eN and of an element u; € V(Q) such
that

ult — u} weakly in V(). (1.11)
As u; € K(e, ), assumption (H0)/2° yields

u; € K(e;, Q). ‘ (1.12)
By virtue of assumptions (H0)/3%,(H1)/3° and (1.10) we obtain

FA(eZ* Jur* llve(a) < Cale)
IB(er* Juc* lv-(ay < Cs(e)

} (k € N). (1.13)

Conscquently, there exist subsequences {A(e. " Ju, " }iens {B(ed Yue* }ien and ele-
ments X4 € V*(R), Xg € W*(Q) such that

Alee™ Jue" = Xa weakly in V*(Q) } (1.14)

B(e." Yueti o Xg weakly in W*(Q).
By assumption (H0)/2° there exists a sequence {6;}jen C K:(e:kj,Q) such that ©; —
u; in V(§). Henceforth, we often use the implication

vn — v weakly in V()

wy, — w in V(Q) } = (vn, wn)V(Q) — (v,w)v(n),
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Inserting v = ©; into (1.8), we obtain

lim sup (eA(e:k’ Yue + Blee Yued  uett )

pitvin v(Q)

< limsup (e A(e  Juc ™, 9)v(a)
j—oo

+lim sup (Blec" ue™ ,0;) ooy (1.15)
. Ny Nk
+ ll;;ls;p (f +Bee"” jue’ — Gj)w(n)

= <€XA + XB, u:>v(n)’

using also (1.14) and the continuity of B.
Then due to the monotonicity of [E.A(e:h" )+B(e:u" )] (by assumptions (H0)/3° and
(H1)/3%), we have

<[€A(e?"j )+ Ble:" )]u:"i - [EA(e:"i )+ Blee" )]v,u:*j - v>V(9) >0 (1.16)

for all v € V(). From (1.11), (1.14) - (1.15) and assumptions (H0)/4°,(H1)/4° we
derive

(eXa + X — [eA(e;) + B(ed)]v,u; —v)V(n) >0 (1.17)
for all v € V(). In fact, on the basic of (1.16) we may write
im sup ([eA(e?™ ) + B(el™ o8 = v).q
< limsup ([eA(ec ) + B(e:* ))ue ti e ti )V(n)

Jj—oo

+ lim sup ( [eA(ec" ) + Blee" Yue —“)V(n)

J—o00

< (eXa +Xs,u) g + (XA + XB, =0) o)
and (1.17) follows from assumptions (H0)/4°,(H1)/4° and (1.11). Setting
v=u, +t{w—u}) (t €(0,1),w € V(Q))
we obtain

(ea+ Xo — [eA(el) + B(ed)] (ul +t(w — u2)),ug - v>vm> 2

for all w € V() and t € (0,1).

Because A(e) and B(e) are symmetric and continuous operators we arrive at (in-
serting again w = v) .

([eAle:) + B(e))]us,u; — v)v(m < (eXa + X, u; ~ v)V(n) (1.18)
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for all v € V(£2). Substituting v = u; into (1.16), we obtain

"k

([eA(e:k")+B(C:kj) Ue “:hj‘u.>V(n)

> ([eAlee™ ) + Blex™ ) ug,ue™ =4 vy
Assumptions (H0)/4°,(H1)/4° and (1. 11) imply that
hm <[€A(ee Y+ Bee )]u,,u:k’ - u;)v(m =0

so that
hmmf([eA(e, 7Y+ Bles )]u Jue u:>v(m > 0.

Combining this with the inequality
lim sup ( [E.A(C; Y+ B(es )]u, i u, u:>vm)
i—

< hmsup([&A(Ce ’)+ Be. ’)]u:kjv“:kj>V(9)
+ jll.rgo([eA(ee ) +B(€:kj) ":kiv'“»vm)

<0,
which is a consequence of (1.15) and (1.14), we are led to the equation

11m ([5A(e, Y+ B(ee ’)]u Jue —u;>v(n) =0. (1.19)

Given a v € K(e}, ), by assumption (H0)/2° there exits a sequence {v;}jen C K(ec"
Q) with v; — v strongly in V(Q). Inserting v; into (1. 8) we have

bl

jllrrgo([eA(c, )+ Bleeue ue —vj)y )
< ,lim (f+ Bcekjyu:kj - vi>w(n)

<f+Bec’ u, _U>W(Q)'

The limit on the left-hand side exists, and furthermore we can write

lun ([eA(ee )+ Ble, ’)]“e Lue _u:>vm)

+jlir&([5«4(8e ) Blee™ue ul vy q,

= <5XA + X, u; — vj)v(n)
> ([eA(e}) + Ble)]ut,uZ = v}y
where (1.19), (1.14) and (1.18) have been employed. Consequently,
(A2, 0 = Uty gy + (BN = u) ey 2+ Beduv = ) gy (1:20)

and as v € K(e}, ) is chosen arbitrary, we get

u; = uc(e}) and u.(e;*) = u.(e;) weakly in V(Q). (1.21)
Then assumption (E£0)/2° and (1.21) yield

L(e)° uc(el)) = liminf L(e™,u (el*)) = inf L(e,uc(e)). 1.

(ec” ue(er)) = liminf L(eg*, u.(el*)) sttt g, £lesuele)) (1.22)

Hence L(e;,u.(e;)) = inf{L(e,u.(€)) : € € Usa(R)} which completes the proof i
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Limit state function and limit cost function. We define the limit state function
ug(e) for any e € U,4() by the following variational inequality: Find uo(e) € O(e, )
such that

<B(e)u0(e))v - uo(e)>w(n) 2 <f + Be,v — u0(8)>w(n) (ve O(e, Q)) (1.23)
Further, we define the limit cost function Jy(e) by

Jo(e) = L(e,uo(e)). (1.24)

In this case one has the following limit control problem:
(Po) Find eg such that Jo(eg) = eelil?f(n)Jo(e)'

Theorem 2. Let assumptions (NO),(H1) and (EQ) be satisfied. Then there erists
at least one solution to problem (Pp).

Proof. The proof is analogous to that of Theorem 1 and hence it is omitted B

There arises a natural question concerning the type of relation between solution to
problems (Pg) and (P,) as € — 0. We prove the following theorem.

Theorem 3. Let assumptions (NO),(HO0),(H1) and (EQ) be satisfied. Let e; be
the solution to problem (P,,) and €, — 04+. Then there exzists o subsequence {€n, }keN
of {€n}neN and a solution e§ of problem (Py) such that

e;,, — €o strongly in U()

u,"k(e:"k) — ug(eg) weakly in W(Q) (1.25)
‘]an(eznk) - EU (Q) Eng(e) - JO(CO) - ll/?f(ﬂ) Jo(e).

Proof. Due to the compactness of Uyq(§2) there exists eg € U,4(§2) AND a subse-
quence of {e]_}neN C Uad(2) denoted again by {e; }nen such that e;  — eg strongly in
U(Q). Then the state function u,, (e; ) € K(e;_,) is a solution of the state variational
inequality

(endler, Juen(er,) + BleL Juen(el, 1w = vealel)) o (126
2> (f + Bc:,nv - utn(e:,.»w(n)
for any v € K(e;_,Q) and for given e; € Usy(2) with ¢, > 0 (n € N). Taking
v = vo € Neeu,,()K(e, ) fixed in inequality (1.26) we obtain

<€"'A(ez,. )uln(ee..) + B(czn )utn(ez,.) uln(een)>v(n)
<{f +Beg, ue(el,) v°>W(ﬂ) -
+ (end(er, Jue, (er,) + B(e, Jue, (€2,), V0 )y (qy-
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It follows that
en ((A(ez, uen(el, ) en(€2,)) vy
+ llen (o2 ey ) + (a8 = €n)lluen (2, )lycay
S(f + Be; ,uc,(e;,) - v')wm)
F(enAlel, Wen (€3, Dyiay + (Ble2, uen (65,0 -
Then we obtain by setting %as > €n > 0 and applying assumptions (H0) and (H1)

(enaa)lluea(e2 MY (ay + Fasllue,(e2 My
< ciflue,(e:,) = vollw(n)
+ c2€nllue, (e Mlviayllvellv(a)

+ aslluen (2 lwallvellwin)

where given constants ¢y, c2,c3 do not depend on €. From it we conclude that

uen (ec Mlwia) < ¢ } (1.27)
Venllue, (ez v < c.
We can therefore extract a subsequence {ue,, (e;“k )}xen such that
ue,, (e;, ) = w weakly in W(Q)
* . (k — o0). (1.28)
,/enkuhk(’e;"k) — 0 weakly in V(Q)

Since uenk(e:nh) € IC(e:nk ,§2) by assumption (H0)/2°, we have w € K(eg,Q) as well.
From this onc has w € O(eq,Q). For any z € V(Q) we have by assumption (H0)/4°
and by virtue of (1.28)

kli_ngQ (.A(e:"k,)\/é:,,,‘uznk(e:“t ), 2>V(Q) = klirr;o (A(e:” )z, ,/snku,"k(e:nk )>V(Q)
= <A(Co)z,0) V()
= (A(CO)O’Z>V(Q)

and therefore
Alez,, )VeEnite., (e;"k) — Ae)0 =0 weakly in V*(Q) (1.29)

as k — oo (note that |(cA(e)v,uc)y(q)l = O(vE)). On the other hand, by analogy of
(1.29) we obtain

kll‘n;o (B(e:n,t )u€n,, (C:"k )v z)w(g) = kILH;O (B(C;nk )27 uink (e:,‘k ))W(Q)

(B(eo)z, w>W(Q)'
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This means that
B(e;nk Jen, (e;“) — B(eo)w weakly in W* () (1.30)

as k — oo. Furthermore, in virtue of the monotonicity of B(e;“k) (due to assumption
(H1)/3%) we know that

(Blex, Ve, (€5, D tens (€50.) = @) ipgay = (BleL, 01 ten, (€5,) = ) sy
for all £ € N. Passing to the imit we get
2 lerr;o (B(e:"k Jw, ue,,, (e:"‘k )>W(0)
< likrr_l.ior;f (B(e:“]k )usn‘ (e:"‘ ), Ue,, (e:nk ))W(Q) + len;o (B(e:"‘k Jw, w)w(u).
This yields, together with (1.28), assumption (H1)/4° and (1.30),
liﬂi&l}f (.’.g(ez,:”lt Jue,, (e, ) tten, (€2, ))W(ﬂ) > (B(eo)w, w)w(m. (1.31)
Let v € K(eo, ) be an arbitrary clement and {vk}ren such a sequence that

vx — v strongly in V() } (1.32)

vk € IC(e:"k,Q), for given e;nk € Uad(),€n, >0 (k €N)
(the existence of such a sequence is ensured by assumption (H0)/2°). Then we have

(em ez, Juen, (€5, )+ Blel,, Yen, (€1, )08 vy
—(f + Be;, vk — ue, (€2, D wia

> (Bled, Yuen, (€5, )sems (€50 Dwian
From this inequality using (1.28), (1.31) and (1.32) we get
(B(eo)w,v = w) o) = (f + Beo,v — Wy 20 (v € K(eo, Q) (1.33)
and therefore we have also (1.33) for all v € O(eo, ) (by density). This yields w =

ug(eo) since the variational inequality (1.23) has a unique solution for € € Uaa().
Consequently, it may be supposed that

e;. — e strongly in U(Q) } (1.34)
* 1.

Ue,, (e;"k) — up(eo) weakly in W(§2)

for k — co (€n, — 0).
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Now, let us consider regarding to (1.26) and (1.2)
(n e, Juen (€5, + BleL, Yo (€2, ), ten(e5,) yia
< (enA(€l, Yuen (€3,) + BES, Jen (€5, ), 0y
= (f+Be;,,vn - ue, (e, ))wm)

where u,, (€7 ),vn € K(e; ,9) and €} € Uad(2). We deduce from (1.35) that

lim sup (B(e, Juen (€2, )s tea (€2,)) ()

< Jim ((B(e2, Juen (€2, vn)yway = (f + BeL,,on = tenel, ) wimy)-
Hence by (1.32), (1.30), (1.34) and the continuity of B one has
Jim sup (B(e?, Yuea (€3, )rtten (€2, upiy

< (Bleo)uo(e0), v)yy(q) = f + Beo, v = o(e0)) yq)

(1.35)

(1.36)

(1.37)

for all v € K(eo,) (by density one concludes (1.37) also for all v € O(eo,R)) and

therefore (by taking v = uo(eo) € O(eo, ) in (1.37)) the inequality
Jim_sup (B(e;, Juea (€2, ) ten(€X, ) wia) < (Bleo)uo(en), uo(ea)) yqy
is verified. Using it we get via (1.31), (1.34) and (1.38)
Jim (B(eg, Juea(e:, ) ten(€2,)) iq) = (3(60)1‘0(60%u0(60)>w(m-
Moreover, the method of the proof shows that for e € Uaq(2) the convergence
u,, (e) — uo(e) strongly in W(2) when €, — 04

holds.
One has

N = (B(e) (tten(€) — w0(e)), ey (6) = u0(e))
= (B(een (€) — us()) 0 — (Bleuo(e), e () = ua(e)) ey
< (BleYten(€),en (D) iy
= (B(eYuen (€),1o(6)) ) — (F + Be, e, (6) = 0(€) ey
with u,_(e) € K(e,R2) and uo(e) € O(e, ). But
(B uen (€1, (€))
< (enA(E)uen (€) + B(e)ten (€),1eu (€))y g
< (e,,.A(e)u,"(e),v)V(n)
+ (enA(€)ue, (e) + B(e)u,, (e) — U)V(Q) + (B(e)ue, (e), v>w(m
< (enAle)ue, () )y oy
+ (B(e)ue,(€),v) wey (f + Be,u,,(e) — v)w(m

(1.38)

(1.39)

(1.40)

(1.41)

(1.42)
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for v fixed in K(e, Q) C O(e, ). From (1.41) and (1.42) one can find

N, < (f + Be,uo(e) — v)w(n)

1.43
+ (B(e)u,,.(e),v - uo(C))W(m + (e,,.A(e)u,"(e), v)v(n)' ( )

On the other hand, we may write

(e,.A(e)uen(e) + B(e)u,n(e),u,n(e))vm)
< (f + Be,u,, (e) — v)w(m + (e,,A(e)u,n(e),v>V(m + (B(e)u;,,(e),v)w(m

and this yields due to assumption (H0)/5°

5naA||uen(e)||vm) + 28 ||uen(€)||wm)
< callue,(e) - vllwm) + encollue, (€)llvin) + ccliue.(e)llwin)

where c,, cp, ¢ are some constants with respect to n.

Thus one can finds |[u.,(e)llwn) < ¢ and Eallue,(e)|lvia) < ¢ So there exists
ue,, (€) = w weakly in W(Q) and \/En,u,, (e) — 0 weakly in V(Q) for k — oo (€n, —
0). Supposing nx = n, we have

hm <A(e)\/au¢“(e) z)v(m = hm (A(e)z VEnue, (€ )>V(Q)
= (A(e)z,O)V(m
=0
= (A(e)O, Z>V(n)‘

Thus one has

A(e)/enu,,(e) = A(e)0 =0 weakly in V*(Q). (1.44)

We have also

hm (B(e)u," e), Z>W(n) (B(e)w, Z>W(ﬂ)

which means

B(e)ue, (e) = B(e)w weakly in W*(Q). (1.45)
Now by (1.43) - (1.45) we see that

nan;gN,. < (f + Be,uo(e) — v)w(m + (B(e)w,v — uo(e)) wiay T0 (1.46)

for each v € K(e,Q). By density this inequality holds true for v € O(e,§) and by
replacing v = ug(e) one finds limsup AV, = 0. Thus one has

limsup ag|u.,(e) - uo(e)”";vm) =0,

n—oo

which means that u,, (e) — wo(e) strongly in W(Q).
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From (1.40), from the fact that J., (e} ) < J.,(e) for all e € Usq(Q) and from
assumption (£0)/1° we get

limsup Je, (e;, ) < Jo(e) }
k—o0

= limsupJ, (e; ) < inf Jo(e) = Jo(eg). (1.47)
for all e € U,q4(82) e€Uqa(R)

k—o00

Furthermore, we observe that assumption (E0)/2° and (1.34) imply
hkm mf Jgnk (C:NA ) Z C(Co, uo(eo)) = Jo(eo). (148)

Comparing this result with (1.47) we have Jo(eo) < Jo(eg). Thus we see that necessarily
eo = ey and (1.47) and (1.48) give (1.25);. Theorem 3 is proved B

2. Approximation of the optimal control problem
by discretization

Let us assume that U,4(2) C U(f2) is compact. We describe the discretization of prob-
lem (P.) and we prove the convergence of the sequence of finite-dimensional solutions
as h, the discretization parameter, tends to zero. Let K(e, Q) and O(e, ) be two closed
convex sets in the spaces V() and W (), respectively, for all e € U,4(R2). With any
h € (0,1) we associate

1° finite-dimensional subspaces V4(2) C V() and U*(Q2) C U(Q)

2° closed convex subsets Kx(ex, ) C V4(2) (approximations of K(e,f))

3° closed convex subsets U, () C U*(Q) (approximations of Uaa(2))

4° bilinear forms ax(es,-) (= (Ax(en)-, W) : Va() x Va(2) - R
en € U2/ (92), together with the operators Ax(es) : Va(2) — V()
(approximation of a(e,-,-))

5° Ly : UM) x Va(Q) — R convex lower semicontinuous proper functionals
(approximations of the cost functional £).

Analogously, with any h € (0,1) we associate

1° finite-dimensional subspaces Wx() C W () and V4() C Wi(2)

2% closed convex subsets Ox(ex, Q) C Wi(2) (approximations of O(e, )

3° bilinear forms bu(en,-,-) (= (Ba(es)-, Iwa(ay) : Wa() x Wi(Q) — R,
en € UM (Q),Bi(en) : Wa(Q) — Wy (2) (approximation of b(e, -, -))

4°  fr € Wi(Q), By € L(UY(Q),W; () (approximations of f and B).

The families {Ka, (en,,?)}nen and {O4,(en,,2)}nen are supposed to satisfy the con-
dition ‘
(1° hn — 04,e4, — e strongly in Uh~(Q) such that e;, € U:‘;‘(Q)
for any n € N = for any bounded sequence {va, }nen such that
Uk, € K, (en,,R) all its weak cluster points belong to K(e, )
(LO).4, 2%  There are Ax(e,0) CV(Q),clAxe n) = K(e, ), such that
for any h, — 04 and es, — e strongly in Uh~(Q) there is
Ren,e : Axe,) = K, (en,,) such that for all v € Ax(e,)
we have lim, o R, v = v strongly in Vi ()
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or the condition

1 h, — 04,en, — e strongly in U"~(9) such that
en, € U:; () for any n € N = for any bounded sequence
{vhn}nEN in Whn(Q) such that vp, € Oh,.(eh,.,Q),

(LO)s all its weak cluster points belong to O(e, )

b 2°  There are Age,0) CW(R),cl Ag(e ) = O(e, Q) such that
for any h, — 04 and e, — e strongly in Uk» () there is
Ven.e i Aoe,0) = On,(en,, ) such that for all v € Ag(e,n)
we have limp g Ve, eve = v strongly in Wj_(Q2).

Let us note that we do not necessarily have Ky(en, ) C K(e,Q), On(en, ) C
O(e, ) or U(R) C Uaa(R). If, however, this is true for any k € (0, 1), we say that we
have an internal approzimation of K(e,Q), O(e, ) or Uad(N2), respectively.

The approximation of the state inequality (1.3) is now defined by means of the Ritz-
Galerkin procedure. This method will perform well if € > h, but if € < h, then this
method may produce an oscillating solution which is not close to the exact solution (see
an example 9.1 in {12] or in [24]). However, if the exact solution happens to be smooth,
then the standard Ritz-Galerkin method will produce good results even if € < h. The
approximation of (1.3) reads as follows:

Find
u,;.(ch) € Kh(ehy Q)

such that
(eAn(en)uen(en) + Bnlen)uen(en),va — uenlen))y, ) (2.1)
> (fa + Bhen,vn — ueh(e"»Wh(ﬂ) |

for any vy € Kn(en,f2) and ey, € U:d(ﬂ) and

uon(en) € On(en, Q)
(Bn(en)uon(en),vn — UOh(Ch)>Wh(Q) > (fa + Ben,vn — Uohgﬁh))wh(m (2.2)
for any vy € Ox(en, ) and e, € UM(Q).
For a set M and a function H : M — R we denote by Argmin,, H the set of
minimizers of H on M. Thus, the discrete versions of problems (P,) and (Pp) read as

(Pen) Find el, € Argmin Lu(en,ucn(en)) = Argmin Jen(en)
en €U () en €U, (D)

with u.s(es) as above and

(Por) Find ej, € Argmin Lr(en,uon(en)) = Argmin Joa(en)
enCUL () en€UM (D)

with ugs(en) as above, and the control problems (P,) and (Po) reads as

(Pe) Find e} € Arginf L(e,uc(e)) = Arginf Je(e) -
e€Ua4(N02) e€Uaqa(N)

with u,(e) as above and
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(Po) Find e € Arginf L(e,uo(e)) = Arginf Jo(e)

c€U.q(0) e€Uaq(02)

with uo(e) as above.

In what follows, we shall study the relation between optimal pairs of problems (P,4)
and (P,.) as h — 0., for any fixed € > k.

For the analysis of the relation between (1.3), (2.1) and the relation between (1.5),
(2.2) we shall need the hypotheses concerning Ay, (es, ):

(Hl)Ah J

Moreover,

(Hl)Bh

10

20

30

40

\

10

20

30

40
50

60

\

There is Ma > 0 such that Ax,(en,) € Ev, (a)(0,Ma)

for any h, € (0,1) and any es, € Ukr(Q).

(An,(en, )vhn’zh'I)Vh"(Q) - (A(e)”"">V(n) if

e, — e strongly in U(), vs, — v weakly in V,_(Q)

zp, — z strongly in V4 (Q) and h, — 0.

liminfy, o (As,(es, )v"n’v"n>v,."(n) > (A(e)v,v)v(m if

en, — € strongly in Uk (Q), vx, — v weakly in Vi ().

There is &4 > 0 such that for all e, € U:;(Q) and vy, € V4, (Q)
(‘Ahn(ehn Yhn s Uk, >V,."(ﬂ) + llva, ”%V,,"(n) 2 aallva, ”%/,."(Q)‘

we suppose the following hypotheses concerning By, (es,, ):

There are ag > 0, Mg so that By, (es,) € Ew, ., (a)(as, Mg)
for any h, € (0,1) and any e, € U:; ().

<B;.,_(c;,n )v""’z"">Wr.,,(Q) — (B(e)v,z)w(m if

en, — e strongly in U»(Q), vy, — v weakly in W, (),

zp, — 2 strongly in W, (), h, — 04..

lim infh,.—.o (B;."(e;,n )vh" ’v"">Wh,,(9) > (B(e)v, v>W(9) if

en, — e strongly in U~ (Q), vy, — v weakly in Wi, (), hn — 0.
There is ¢ > 0 with || fallws(a) < ¢ Vhn € (0,1), fa, € Wi ().
There is ¢ > 0 with || Bhep wz(w) < cfor any h € (0,1),

en € U:d(Q) with ”eh”U(Q) <ec.

v, € Vi, (Q),vs, — v weakly in W,_(Q),

en, — e strongly in U*~(Q) and h, — 05,

(fra + Bhnehmvhn>w,.“(n) - (f+ Be)”)W(n)'

Next we assume that

(E0)y

10

20

vy € Va(Q) and v} — vy strongly in Vi(R)
= Lu(en,va) = limy oo Ch(eh,v,':).

er € UM(Q), e} — ey strongly in UR(Q),
vy € Va(),vp — vy strongly in V4(92)

= Lp(en,vn) < liminf, oo Ch(e;,‘,v,',‘).

For every h > 0, Gg > ¢ > h, e) € U ,(Q) there exists a unique solution ucn(en) €
Kr(en, Q) of the variational inequality

(eAn(en)uen(en) + Bh(en)uen(en), vn — uen(en))
2 (fn + Bhen,vs — uen(en))

Va(9) (2.3)

Wi ()
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for all v4 € Ka(es, ). Indeed, due to assumptions (H1)4,/4° and (H1)g, /1° there
exits a constant c4g(¢) > 0 such that

<€Ah(8h)’vh, vh)Vh(Q) + (Bh(eh)v’l)vh)wh(n) 2 CAB(E)"vh "’{’h(ﬂ) (24)

for any vy € Va(), exn € U(Q) and for any € with ag > € > h.
Lemma 1. For every h > 0 and for every € with ,1—,&5 > € > h there ezists at least
one optimal pair (e}, ,u.n(e,)] for problem (Pen).
Proof. It is quite analogous to that of Theorem 1 and hence it is omitted il
Lemma 2. Under the above hypotheses (L0)a,, (H1)a, and (H1)g,, let ex, €

Uh, () be such that en, — e strongly in U~ (Q) as hy — 04. Then ucn,(€en,) — ue(e)
strongly in V4 (Q), for any fized € with ,1—,673 >e> hy.

Proof. We take an arbitrary o € K(e,§2) and by assumption (L0)., /2° a sequence
{Res, cOtneN € MnenKn,(en,,R) such that R, .o — o. Putting va, = R, 0 in
(2.1), adding

(EAh.. (enn)Ren, eOsUey, (enn) — Re, co)y,."(m
+ <Bh,.(€h,, )Re,."eO, Ue,.,,(eh..) - Ren,.e‘))w,,”(n)

to its both sides, and multiplying the resulting inequality by minus one, we obtain

(£(Ah (enn uena(en,) = An,(en,JRer, c0), ek (ehs) = Resye0)
An

+ <Bh,.(6'." Yueh,(€n,) = Bh,(enn)Res, 05 ten,(€h, ) — R‘“"‘°>w,."(n)

< (eAn,(en,)Re,, e0, Rey, O — Uch,(€h, ) Vi, () (29)
+ (Bh, (e, )Ren,eO, Rey, O — Uch, (e, ))w,."(n)'
+ (fh,. + Bh,eh, Uen,(€n,) — Rtn.‘eo)W,.,‘(Q)

for all n € N. Then due to assumptions (H1)4,, (H1)g, and (2.5) we arrive at the
estimate

Nuen,(en)lvi, 2y Scle)  (n€N)

valid for € > 0, with positive c(¢) independent of n € N. Thus there exists a subsequence
{uen,, (en., ) xen of {ten,(er, )} nen and an element u, € V(Q) such that ucn,, (en,, ) —
u, weakly in Vi, () for k — oo, for any fixed ¢ > 0. Moreover, we have u, €
K(e,Q) due to assumption (L0)4,/1°. On the other hand, by virtue of assumption
(L0)., /2°, for some a € Ax(e,q) We obtain the existence of a sequence {R.,, ca}iren €
MkenKn,, (eha, ,§2) such that limg—oo ’Re,‘"hea = a strongly in Vi, () asen,, — ¢
strongly in U (Q). Taking into account and inserting vy := Rey,, @ into (2.1),
adding

<€Ah"k (eh"t )Rc,.". ea+ Bhn, (filx..t )Ren,., ey Uey (Ch.,k )= Reh.., ¢a> Vi, ()
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to its both sides, and multiplying the resulting by minus one, we obtain

lim sup <(5A;,,,k (€nn, ) + Ba,, (en,,)) (u,,w (enn,) = Ren,, @),

k=00

u e -R a
u..k( hnk) Chn, € >Vn,.k(ﬂ)

< limsup <5Ah,.k (enn, )’Rchnkea, Ren,, @ = Ue,, (eh,, Ny
k—oo0 hn

L)

(2.6)
g [(Bho, (eha R, 0, R, e = i, (e, Dwi,, |

+ ]iin sup ‘(fhn,‘ + B, Chny 1 Uen,, (ehn, ) - Rw.,.g“)
—o0

Wha, ()
=0.

The last equality follows from (1.2) and from the facts
en, — e strongly in U*"(Q) and v, — v strongly in Vi, () )
= [[An, (ennJon, — Ae)vllv; (o) < Mallon, = vllw,(a) (2.7)
+||An, (en, v — A(c)vllvhon(m forn — oo |

and
en, — e strongly in U**() and 24, — 2z strongly in W,_(Q) )

= [1Bha(enn)zn, — B(e)zllw; () < Msllza, — 2llw,, @) § (2.8)

+1Bn.(en,)z = Be)zllw;_(a) — 0 for n — o |

which are consequences of assumptions (H1)4,/1°,2° and (H1)g, /1°,2°, respcctively.
So by the uniform monotonicity of [eAh., (en,, )+Bh.,, (en,, )] weobtain the convergence

Uchns(€hn, ) = Ue strongly in Vi, (Q) (2.9)
for k — co. Moreover, (2.9) together with (2.7) and (2.8) yields

A eh, n‘_"Ae e strongly in Vy©  (Q
h"k(eh"k Yuen k(eh t) (e)u ngly in hn,,( ) } (k = ). (2.10)

Bh,, (en,, Jueh,, (en,,) — B(e)u, strongly in W,:“k ()

Next, in view of assumption (L0) 4, /2° for a given element v € Ax(e,q), there exists
a sequence {RCAn,, eV}keN C Kh,, (en,, Q) such that Rennk v — v strongly in V,, (Q).
Then after passing to the limit in (2.1) with vs, = 'Re,.nkcv as k — oo we obtain, due
to (2.9), (2.10) and assumption (H1)g, /6°,

(eA(e)ue,v — v,)v(m + (B(e)ue,v —bu5>w(m > (f+ Be,v — u‘>W(Q) (2.11)

for any v € Ax(e,0)-

On the other hand, by the density of Ax(e,n), (2.11) holds for any v € K(e, Q). This
means, as v € K(e, Q) is chosen arbitrarily, we get u, = u.(e) for any fixed €, with
%ae > € > hy. This proves the lemma i
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In order to study the relation of optimal pairs to problems (P,s) and (P, ), we need
the additional assumptions

19 The family {U",(Q)}re(o,1) is compact in the following sense:
for any sequence {ex, }neN C Uk2 () with h, € (0,1) and
h, — 04 there is a subsequence h,, — 04 and e € Uaa(§2) such
that e, — e strongly in Uhne ().

(H2)n 20 For any e € Upa(2) and any sequence {Rn}neN C R hn — 04,
there exists {en, Jnen, €, € U,7(£), such that ex, — ¢
strongly in Uk (Q).

3% h, > 04,es, € U:; (Q),en, — € strongly in Uhne (Q),
vh, € Vi (Q),va, — v strongly in Vi ()

© = Lh,(en,,vn,) — L(e,v).

Theorem 4. Let assumptions ((H1)a,,(H1)s,) and ((L0)a,,(H2)s, ) be satisfied.
Further, let (€}, ,uca, (e}, )] be an optimal pair of problem (Pen,) with ey, € Ukl (Q),
h, € (0,1) and hp, — 04, %65 > ¢ > h,. Then there ezists a sequence h,, — 04 and
a pair of subsequences

[{eih,, Yrens {uenn, (en,, Nken]  of [{ein, tnen: {ena(eh, )} nen]
and a pair of elements
ez, ue(er)] € Uaa(2) x K(eZ, Q)
of problem (P.) such that

[e:h,,,t yUehy,, (e:h,,‘t )] kEN - [e:’ul(e:)] in [Uh"k (Q) X Vh” (Q)] ’ (2'12)

as hn, — 04, for a fized positive number %&3 >e> ha.

Proof. Assumption ((H2)s,1°) yields the existence of a sequence {e;hnk }ken C
{ein, tnen and e € Uad(2) such that c;h” — €2 strongly in U(R2). By virtue of
Lemma 2 we get ueh”(e:hnk) — u.(e;) strongly in Vi, (). Then, due to assumption
(L0) 4, /2° we have u.(e]) € K(e},). The definition of problem (P,s) yields

Lh,, (€2h,, s Uehn, (€2h,,)) S Lhoy (Cehn, s tenn, (€enn,)) (2.13)

for arbitrary ecs,, € U:;" (). Let & € U,q(f2) be given. One can find sequences
hn, — 04 and {€,, }ken C U:;" () such that €, — €. strongly in Uh»e (Q) due to
assumption (H2)/2°. We have again uca,, (€eh,, ) —= ue(€) strongly in Vi, (), and
using (2.13) and assumption (H2)x/3° we get La,, (el,uc(er)) < La,, (€, uc(ee)) for
any €, € Uad(Q) and %&B > £ > 0 and the proof is finished 1

Problem (P) can be treated quite analogously and an appropriaté variant of Lemma
2 and Theorem 4 for this case (e = 0) is the following.
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Theorem 5. Let assumptions (H1)g, and ((H2)a,e = 0) be satisfied. Further,
let [e5, , uon, (g, )neN be an optimal pair of problem (Pon,), €oh, € U:;'(Q), hn €
(0,1) (n € N)-and hn — 04. Then there ezists a pair of subsequences

({ednn, Jeen. (uon,, (e5n, }een] of [{egn, tnen {uon.(egh, )}nen]

and a pair of a elements

[e(‘,,u(c(',)] € Uad(2) x O(eg,N)

such that

[€3hn, +uona, (€on,, N ken — €5, u0(€])]  in UM e (Q) x Wi, () (2.14)
as hp, — 04.

We have shown that the sequence of an optimal pairs of approximate singular per-
turbations problems (Pcx) converges to the solution of problem (P,), as k, — 0. for
a fixed positive number € > h (by virtue of (2.7)). On the other hand, the sequence of
optimal pairs of approximate limit problems (Py4) converges to the solution of problem

(Po) as h,, — 0+.
However, the above results do not indicate that the sequence {[e;h" ,Ueh, (e:h,, Y }HneN
converges uniformly in € to the optimal pair (e, uo(e3)} of problem (Po) as h,, — 0.

3. Non-coercive limit problem

We make the basic assumptions

2° {A(e)}ecu..(@) C Eviay(aa, Ma)

1% {K(e,2)}ccu..(n) satisfies assumptions (H0)/1°,2°
(H2)4
3% en — e strongly in U(2) = A(en) — A(e) in L(V(R), V*(Q))

and

20 {B(e)}eev,an) C Ew(a)(0, M)

1% {O(e, )} cev. (ny satisfies assﬁ}nptions (H1)/10,20
(H2)g
3° en — e strongly in U(Q) = B(en) — B(e) in L(W(Q), W*(Q)).

We set
W) = {v € W(Q) : (B(e)v,v) 0, = 0 for all e € Uaa()}. (3.1)

By virtue of assumption (H2)g/2°, it is easy to see that W(8) is a closed subspace of
W (). We denote by W(Q)/W(Q) the factor (or quotient) space of classes

6={v+p:v€W(Q)andp€W(Q)}
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endowed with the norm

0 = nf |v+ . - (3.2
151wy wis pew(mll Pllw (3.2)

Let W(Q) = N(Q) ® W(R) be the orthogonal decomposition of W(§2) by means of the
scalar product (-, -)w(gq). Clearly, for W(Q)/W() (being the space of the equivalence
classes obtained from W(2) by indentifying all the elements of W({2))

ol wiaywey = !1}611; lolye) = nf (laliweay + 2l iny) = lplliveey (3-3)
PEN (). qEW(Q)

holds and thus W (2)/W() is a Hilbert space. We define a bilinear form on W(Q2)/W(Q)

by means of the relation

<§(e)’ﬁ’§>wm)/wm) = (B(e)v,z)w(m (veEdze€ 2 e€ Ua(R)). (3.4)
Moreover, we suppose that there is ag > 0 such that
(H2)n (B(e)v, 2)w(a) + Mwolllyq) = asllvliy g,
for any v € W(Q) and e € U,a(Q), where Ilyy is the projection of W () onto W(Q).
Simultancously, the symmetry and bilinearity of (B(e)-, -)w(q) yield
(B(e)v, z)w(m = (B(e)(MIxv + Mwv), Mnz + HWZ)W(Q)

. 3.5
= (B(e)HNv,HNz)W(Q) (3:5)

since the remaining terms are zero. This follows from (3.1) and from the Schwarz
inequality

1 1
I(B(e)”’z>wm)| < ((B(e)”’v)wm))’((B(C)Z’Z>W(n))z-
Furthermore, assumption (H2)n yields in virtue of (3.3) - (3.5)

(B(€)8,2) wiay ey = (BTN, TIAv) o) 2 asliFllly(q)

and therefore the bilinear form (g(e)-, '>W(n)/W(n) is coercive on W(Q)/W(Q).

Now, we set
M(e, Q) := cl{f) € W(Q)/W(Q) : there exists v € 3,v € O(e,Q)}
for all e € U,a(§2). We proceed now to set the following assumption:

1° e, — e strongly in U(Q) = Limu—co M(€n, ) = M(e, Q).
{en}nEN € Uad(Q) '
(H2) m 00 en — €€ Uad(Q) strongly_ in U()
D,0, € W(Q)/W(Q) (n€N)
On — ¥ weakly in W(Q)/W(Q)

= L(e,3) < liminfL(e,, 0n).
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Moreover, we introduce the annihilator W(Q) of W(Q) as
WL(Q) := {g €W () : (9,v)wq) =0forall v e W(Q)}

Thus WH(Q) C W*(Q) is the set of all continuous linear functionals on W(Q) that van-
ish identically on W(Q). The elements of W(f2) generate in an obvious way continuous
linear functionals on W(Q)/W(Q).

In the following, we suppose that the function £ : U,q(Q) x W(Q)/W(Q) — R*
with L(e, ) = L(e, [Ixv) fulfils assumption (H2)4/2°.

Perturbated state operator and perturbated cost function. For every ¢ > 0
and for every e € Ujq(f2), there exists a unique u.(e) € K(e, ) such that
(e A(e)uc(e) + B(e)ue(e),v — ue(e)>v(m > (f+ Be,v - UC(C)>W(Q) 3.7

for all v € K(£2) (as we obtain estimate (1.4) from assumptions (H2) 4 /2° and (H2)8/2°).
Herc we assume (f 4+ Be) € W*(Q) with e € U,4(2). Moreover, we assume that the
cost function J.(e) = L(e, u.(e)) satisfies hypotheses (E0).

Now, we define the perturbed optimization problem

(Pe). Find a control e} € Uad(§2) such that

Je(el) = inf Je(e) (e € Uaa(R)). (3.8)

Limit state operator and limit cost function. The limit optimization problem
will have the form

(Po)s Find a couple [e], do(ed)] € Uaa(Q) x M(e, ) such that
Jo(e2) < Jole) Ve € Ua(®)

with
J(e) = L(e, To(e)) = L(e, uon(e)) (3.9)
where 1g(e) € M(e, ) such that

(B(e)iio(e), d — do(e)) way wim 2 {f + Ble), — do(e))q, W (3.10)

for any © € M(e, ) and uo(e) = uoar(e) + uow(e) with ugn(e) € MN(R) and uow(e) €
W(Q). Here we suppose that

(f +Be) e WHQ) Ve € Uai() (3.11)

and for the sake of simplicity we write (f + Be’ﬁ>W(n)/W(9) for any 4 € W(Q)/W(R)
and e € Uyq().

The following two theorems are valid.
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Theorem 6. Let assumptions (H2)4 and (H2)g be satisfied. Then there ezists at
least one solution to problem (P,)..
Proof. The proof is analogous to that of Theorem 1 and hence it is omitted B

Theorem 7. Let assumptions (H2)a, (H2)s, (H2)n, (H2)am and (3.11) be satis-
fied. Then there ezists at least one solution to problem (Py)..

Proof. If we rewrite all the situation to the factor-space terms, then we can see
that the proof is again analogous to that of Theorem 1 and hence it is omitted B

Therefore, by virtue of Theorems 6 and 7, u,,, (e) and to(e) are well determined
elements of V(Q) and W(Q)/W(Q), respectively. The relation between the solutions to
problems (Pp). and (P,,,). as €m — 0 then follows from the following theorem.

Theorem 8. Let assumptions (EOQ),(H2)4,(H2)s,(H2)n,(H2)m and (3.11) be
satisfied. Let e; be the solution of problem (P, ). and €, — 0. Then there ezists a
subsequence {e;, }ren of {€; }nen and a solution e of problem (Py). such that

En, — 0, e:” — ey strongly in U(R)

de,, (e;"t) — 1g(eg) weakly in W(Q)/W(Q)

Eny <A(e:,,k )uen,,(e:,‘k ):uenk(e;n, )>V(Q) <C

Tewy (€2,,) = inf To,, (€) = Jo(e3) = inf Jo(e), e € Uaa().

Proof. The proof is analogous to that of Theorem 3. Analogously to estimates
before (1.27) we have

(3.12)

enaallue,(e; )Y (a) + aslllnue, (e vy < MallTnue, (e wny + M
and from (3.3)
eaalluc,(e; MYy S Ma  and  luc, (e )llwiaywia) < Mw. (3.13)
Therefore, we can extract sequences {€n, }en and {ie,, (e;"k )}xen such that
€ny — 0 and i, (e, ) — to weakly in W(Q)/W(Q). (3.14)

By the compactness of U4(§2) one can suppose that €., — €0, € € Uad(f2). More-

over, due to assumption (H2)/1°, for any element v € O(eq, ) there exists a sequence
{vr}ken C IC(e;"‘t ,2) such that

vk — v strongly in W(Q). (3.15)
Thus, by virtue of (3.15) and assumption (H2)/2°%, we obtain
Ism (.A(e:” Y., (e;"k )vvk>v(n)I

. . - R 1 1 .
< eny ((A(€Z,, Juten, (€2, ) ten, (€2, ) yiay) * ((ALeZ,, Jorsvk) y(y)* (3.16)
=0
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and
(Blez,, Juen, (e2,, ) V%) wiay = (B(c:..,‘)ﬁe...(e:..k),ﬁﬂwm)/wm) (3.17)
- <B(60)f‘~{’>wm)/wm)

(f+Be:, 06 ) wiayma ~ f +Beo8)wia) mwiay (3.18)

On the other hand, by comparison with (1.31) we can write
likn_l’gf <B(e:,.k )'&en, (e:"k )’ﬁznk (e:n, )>W(Q)/W(ﬂ) 2 (B(CO Yo, ao)wm)/w(n)' (3.19)
Next, use the inequality

<5m A(c:"k )uen, (c:,.k )’ Vk — Ue,, (c:,.k )>V(ﬂ)

+ (Ble,, Yen, (2., ) 96D wiay iy

. . . (3.20)
= (£ +Beg, 0 ~den, (2, Dwiaywiny
2 (B(e;,,k ){‘Cnk (e;,.k )1 i‘-‘Enk (C:” ))W(Q)/w(n)'
From it and due to (3.16) - (3.19) and the definition of M(eq,2) we obtain

<B(60)ﬁ0, v — ﬁo)W(Q)/W(Q) Z <f + Beo,f) - ﬁo)W(ﬂ)/W(Q) (321)

for any © € M(eo,?). This yields g = to(eo) and consequently, for k¥ = oo,

e — eg strongly inU(Q)
i (3.22)
ie,, (e, ) — do(eo) weakly in W(Q)/W(Q)

(since the variational inequality (3.10) has a unique solution for e € U,q(f2)). Moreover,
due to the strong convergence v, — v, and regarding (3.4) - (3.5), (3.7) and (1.2) we
deduce from (3.20) that

limsup (B(e;,,, Jie., (€2, ), e, (€20, D wiay jwin)

. hfls;ip [(B(cw Ve, (€20, )2 9%) wiay wia) A ‘ (3.23)

-(f+ Be.,, ok —te, (e, )>wm)/wm)]
= <B(e°)ﬂo(eo)’ﬁ>W(Q)/W(ﬂ) - <f + Beg,v — ﬁ0(60)>w(0)/w(9).

The last equality is a consequence of (3.14) - (3.15) and (3.17) - (3.18), and all relations
in (3.23) hold for all 4 € M(eg, ). Therefore, taking o = ii(eg) € M(eo, ) in (3.23),
we obtain R
limsup (B(e,, )i, (€2, ): e, (€2, )) wiay wia (3.24)
S (B(Co){lo(eo), ﬁ0(60)>w(9)/w(9) .
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Thus, due to (3.19), (3.22) and (3.24),
Jim (B(eZ, Yite,, (€5n,)sien, (€2, ) wiaywia (3.25)
= (Bleo)io(eo), to(e0)) iy ey
holds. On the other hand, we set
Nea(€) = (B(e)(ie, () = iio(e)), e, (€) = G0(€)) ey ween
< (Be)ite, (), e (€) = %o(€)) iy e (3.26)
- (f + B(e), d.,(e) - ﬁO(e»w(n)/w(n)'
Then we obtain with the help of (3.20)
(B\(e)ﬂ,“k(e)., '2:..; (e)jv;(n)/w(n)
< (en Ale)ue,, (€), ten, (€)) y (q) + (Ble)ien, (), dcn, (€)) wiaywin
<A{f + Be,t,, () - 6>W(Q)/W(ﬂ)
+{enc Ale)uen, (€),) gy + (Bleliten, (), 9) oy wia
for v fixed in K(e, ). From it one has
New, (€) <(f + B(e), iio(€) = 9) yay sy
+ (ens Ale)ten, (€),0)y gy + (Ble)ien, (€), 5 — 0(2)) weay/wiay
which give due to (1.29), (3.14), (3.17) and (3.22)

limsup NV, (e)
k—oo R (3.27)
< <f + B(e), do(e) — ﬁ>W(ﬂ)/W(Q) + (B(e)ﬁo(e),ﬁ - ﬁo(e))w(m/w(n)

for any ¥ € M(eo, ) and e € U,q(R2). Note that (3.27) is also true for & = tig(e), hence
lim supy o, V. (€) < 0 and from this estimate it follows that

i, (e) = tdo(e) strongly in W(Q)/W(Q) for all e € U,4(R). (3.28)

We may write j,n_ (e;"‘t )< jen, (e) for all e € Uqa(82) (which derives from the definition
of e; ). This means that due to assumption (£0)/1°

lim sup je” (ez,,) < Jo(e) forall e € Uaa(9)
k—o0

o P (3.20)
= llzris:pjenk(eznk) < eelle.ldf(ﬂ) Jo(e) = Jo(eg)-

On the other hand, due to assumption (H2)¢/2° and (3.22) we get
ligior;fi”(e;”) > L(eo, tio(e0)) = Joleo). (3.30)

~ Finally, comparing (3.30) with (3.29) we obtain j;(e(',)' < jo(e(‘,). "Hence we see that
necessarily eg = e and from (3.29) and (3.30) we also get (3.12), which ends the proof i
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4. Application. The membrane approximation to the plate
with inner obstacle (a case with coercive limit problem)

The plate model corresponds to a plate subjected to stretching forces in the (z,y)-
plane. In many practical applications, plates are in a state of initial membrane stress.
When subsequently subjected to transverse pressure loads, their structural behaviour
and response can be entirely different from plates which are free from such internal
stresses.

Let us consider a homogeneous isotropic Kirchhoff plate with small rigidity and with
inner obstacle. The equilibrium position of the plate constrained to lie above an obstacle
(rigid frictionless surface located at a distance § = S(z,y) under the middle plain of
the plate). The plate has a constant thickness 2¢ Hpjaie. We assume that the midplane
of the plate occupies a given bounded, convex and simply connected domain  C R?
with a piecewise smooth boundary. The material constant E (the Young modulus of
elasticity) and a variable distributed load ¢(z, y) (externally applied pressure) and rigid
frictionless obstacle S(z,y) may be viewed as a design variable. To simplify notation
they are denoted as a design vector e = [E, q,S]T.

We will consider physical situation in which the transverse displacement of the thin
homogeneous isotropic plate is constrained by presence of a inner stiff punch (rigid
frictionless inner obstacle).

Let the plate be simply supported at the bounda.ry 0. Therefore we assume
V() := HY(Q)N H}(N) and W(Q) := H} (). Here the set of kmcmatlcally admissible
virtual displacements is defined as

K.(S,Q) = {v € V() : v > S(z,y) + eHpiare on Q} (S € US,(92)). (4.1,)
Moreover, in the space W(2) we consider the convex and closed set
0.(S,Q) = {v € W(Q): v 2> S(z,y) + eHmem ace. in Q} (Sevu ,,(Q)) (4.15)
Consider for the plate the design space U(f2) and the admissible design set U,4(Q) as
UQ)=RxC(Q) x H}(Q) and U.a(Q) = UE(Q) x UI(Q) x US,(Q)
with

UEH(Q) ={E€RY : ;g < E < 25}
1 Sg<cygae infd

‘8 6q|<cy,/qu—C3q

- Mmax S S S _Mmln
ISl #24+0(q) < ¢s on Q,eHplate + S(ON) < 0

Ul,()=<LqeWL(Q
aa(f) q () q‘<c,,

US(Q) = {s € H**(Q)

where ¢1 g, c2E, C1q,C2¢, €3¢ and ¢z, ¢y, 17, Mmin, Mmax,Cs are given positive constants
such that Usq(f2) is non-empty and (e Hpiate + (=Mmin)) <0on Q.
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Let F, and (z,,%.) € Q (a = 1,2,..., M) be given constants and points, respec-
tively, and let ¢ € L, (). Define the virtual work of external loads by the formula

(T(9),v)wa) = ZF v(za,ya)+/ qudQ (v e V(Q)). (4.2)

It represents J(q) € W*(2), because of the continuous embedding V(2) C C(?). Let
us consider the cost functional to the optimal control problem in the form

L:le,v]— /n[v - 24)%dQ2.

(The cost functional corresponds with adjusting the deflection to a prescribed function
z4). We define on the open set Q2 the bilinear forms a( E, -, -) and b(E, -, -) by the relations

(.A(E)'U, Z) v(Q)
= a(E,v,2)

(4-3)
= /Q [Vez(0), Nyy(0), Ny ()] [QU(E)] [Na2(2), Nyy(2), Ny (2)] T d2
for all v,z € V(Q), A(E): V(Q2) — V*(Q), and
(B(E), z)w(a) := b(E,v,2)
(4.4)

= /Q [Q6(E)] (Vx(0)N:(2) + Ny(v)N, (2)) 42

for v,z € W(R), B(E) : W(Q) —» W*(2), where @Qg(E) > 0 is a constant depending on
the elastic properties of the membrane (Qg(FE) is a scalar factor proportional to E') and

( 2EH3 1 v 0 1
[Qa(E)) = et 1, 1 0 ,v — Poisson ratio, = > v > 0
3(1 - v?) 0 0 = 2
2
Hmem
QB(E) 12(1 UQ)

2

Iz(v) a a2 yy(v) a FWR Z!I( ) azay

New) = 2 Ny = 2

\

This is the system of strain-displacement relations for the linear theory of plate (or
membrane) such that the deformation operators belong to the spaces L(V(2), L2(£2))
or L(W (), L2(2)).

The subspace R(2) C V() is the set of rigid body motion of the plate

R(Q) := {v € V(Q): (A(E)v,v)v(q) = o}.
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The properties of the matrix [Q4(F)] imply,
(AEY, vy = (AB)z,v)vay Yo,z € V(R),E € UE@)
and the existence of a constant c4 such that
(A(E)v, v)v(a)

4.5
>ca [llNu(v)"i,(m + Ny ()12 500y + N2y (0F ) + ||Nyz(v)“i,(n)]- (4.5)

Let Py(2) be the subspace of all possible (virtual) rigid body displacements of the
middle plane, i.e.

Py(Q) := {v € V(Q)

Wez (@)%, 00) + [Vyy (1,00 + }
V(1 c0) + 1Mz (@)1} 40) = 0

Lemma 3. Let v € H*(Q) and

||Nu(v)||3,,(n) + ||Nyy(v)||'i,(n) + ||Nzy(v)||2L,(Q) + ”Nyx(v)”i,(n) =0.

Then Py(§2) = {0}, i.e. Py(R) reduces to the zero element.

Proof. The regularization of the displacement v givés an element v* € £(Q) for

which
Nez(v*) = Wez(v)]* = 0
Nyy(vh) = [Nyy(”)]h =0 (4.6)
Ney(v") = [Ny (0))* = 0

holds for every domain € such that Q C Q, provided that h is sufficiently small (h <

dis(ﬁ,aﬂ)). Then from condition (4.6) we conclude that v* — v in Ly(f2) as h — 0
and the finite-dimensional subspaces are closed in Ly(2). We conclude that vh is a

linear polynomial in every interior subdomain ﬁ, Q C Q and thus throughout in Q. The
homogeneous Dirichlet boundary value condition 89,, however, yields v = 0. (The
plate is fixed at 99 in such a manner that it cannot translate in the z-axis, and then
it can only rotate.) On the other hand, the definition of R(f), inequality (4.5) and
Lemma 3 imply that R(2) = {0}. We have

A(E) € Evay(aa, M4)

E
B(E) € Ew(a)(as, Ms) } (E € Uag())-

(The systems of operators A(E) and B(E) (E € UE(Q)) satisfy assumptions (H0)/3°
and (H1)/3%). The estimates

[{A(En)v — A(E)v, 2)y ()| < MalEn — E|lvllveayllzllvin
[(B(En)v — B(E)v, 2)w(a)| < M5|En — E| [vllwayl|zllway

are easy to obtain and assumptions (H0)/4° and (H1)/4° follow.
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Lemma 4. For any S € US,() the set K (S,Q) is a closed and convez subset of
V(Q) and

Sn — S strongly C(Q) for $,S. €U S(Q) = K.(5,9) = }_i}&lC,(S..,Q).

Proof. The form of K.(S, Q) follows directly from its definition. If v, € K¢(Sn, ),
Sn — S in C(Q) and v, — v weakly in H*(Q2), then v, — v strongly in C(9) and the
inequality for the limit remains valid.

For any v € K,(S,§) there exits a sequence {v,}neN such that v, € V(8), v
K¢(Sn,Q) for n sufficiently great, and v, — v strongly in V(Q2), as n — oo. Indeed
let us define § = v — (S + erme) so that 8 € C(), 8 > 0in Q and I = (Sa +
S)~ 80 = Sn — v+ eHplate, On = {[z,9] € Q: In(z,y) 2 £}, where the constant Q
is (€Hpiate + (—Mmin)) < 0, due to the definition of de(Q) There exists an open set
O c O C Q such that _

0, CO (n € N). (4.7)
To see this, we realise that
19n = €leale +Sn < Q

on the boundary 9. The continuity of 9, and the constraints |%‘5}1| < ¢z and Ia—as;"'l < ¢y

imply that {Joo, On C Q and (4.7) follows. Obviously, there exists a function { €
C=(Q) such that &(z,y) = 1 for any [z,y] € O and &(z,y) = O for [z,y] € O,
0 < &(z,y) <1 for [z,y] € N. Let us set vp = v+ ||Sp — Sl (@€ Then v, € V(Q)
and ||v — vallveay = [|Sn = SllLe@lléll#2() = 0 as n — co. We can show that there
exists ng > 0 such that for n > ng

Un > €Hplate + Sn in @ = vy € K(S,9).
Indeed, if [z,y] € O, then one has
Up =V 4+ ||Sn = SllLe(@) 2 v+ (Sn —8) 2 eHplate + Sn.
On the other hand, if [z,y] € €\ O, then we can write
vn 2 €Hplate + S + 0+ |Sn — SIE. (4.8)
Since [z,y] ¢ 0, (z,y) ¢ O, for any n and 9, < corst so that
(Sa—8)—6 <<t and —%£+(i—§)950+|$n—5|§. (4.9)

Inserting (4.9) into (4.8) we obtain vn, > €Hplare + S + S, where S = —comste + (1 -

{)9 The function S is continuous and attains a positive minimum M = %([I.,y.]) =

53 > 0 in the compact set 0\ O. Indeed, let £(z.,y.) = 0. Then [z.,y.] € 8Q
and S‘(x.,y.) = 6(z.,y.) = —(eHplate + S(z+,y.)) 2 —const > 0. If {(z.,y.) > 0, then
one has $(z.,y.) > —2%£(z,,y,) > 0. There exists no(M) such that, for n > no(M),
Sn = SllL.ci) <M. This means that S(z,y) > S(z.,y.) 2 [Sn S"Lo‘,(ﬂ) > (Sn—S)
so that va(z,y) > €Hpiate + Sn(z,y),n > no(M). Thus the proof of Lemma 4 is
completed B A
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Lemma 5. For any S € UJ/() the set O(S,Q) is a closed and convez subset of
W(Q) and

Sn = S in C(Q) for $,8, € US(Q) = O.(S,9) = Lim O.(Sa, Q).

Proof. The closedness follows from the Lebesgue Theorem. The convexity is im-
mediate. Let S, € US,(Q) with S, — S strongly in C(R). There exists a § € Co(Q)
such that 0 <6 < 1in Q. For any v € O,(S, Q) we construct a sequence v, = v+6||Sn—
8"0(5)' Then vn, € W(R) and vn > S + ¢ Hmem + (Sn — S) = Sp + eHpem holds for a.e.
(z,y] € ©, so that v, € Oc(Sn,N). Moreover, lva—v|lwigy = ||S,,—S||C(ﬁ)||0||w(9) — 0.
Next, let v, € 0,(S,,9), with v, — v weakly in W(Q2). Then due to the Rellich theo-
rem, we have v, — v strongly in L(Q), since v, — v weakly in H(Q) for a.e. [z,y] €
and v, > Sp + eHmem a.e. in Q. From the Lebesgue theorem, v > S + ¢ Hmem follows
a.e. in () so that v € O,(S,Q). Then the proof of Lemma 5 is completed B

Lemma 6. For any S € U3/(Q) the set K.(S,Q) N C(R) is dense in K (S, Q).

Proof. Let v € K,(S,Q2) be an arbitrary element and let Z € HZ(§2) be a function
such that || 2] y2(q) = 1 and Z > 0 in Q. Define the function V(ey aS V() = v+ €Z for
€ > 0. Obviously, one has

||v<c) - ”||V(n) = E"Z”Hg(n) =€ and U(e) > V.

Since S € US,(Q) which leads to the assumption €Hplate + S(0Q) < 0 we have vy >
€Hplate + S in 2 for any € > 0. From the definition of H2(f) it follows that there exist
U(ey € C(R) such that |lv(ey & ve(nyllHziny — 0 for n — co0. On the other hand, in
view of the embedding theorem of V() into C(Q) we may write V(e) = Uy uniformly
in Q. Consequently, v(cyn > €Hplare + S in Q for n large enough. Therefore one has
vy € Ke(S,2) NC=(R). This prove our lemma il

Lemma 7. For any S € US/(Q) the set O.(S,02) N CX(N) is dense in 0.(S,9Q).

Proof. Let v € O,(5,2). In view of the definition of the space W(Q) (since
O(S,Q) C W(Q)) we may write ||o, — v|lwea) — 0 for n — oo where the sequence
{on}nen belongs to the space C(R). Let v, := max([0p,eHpem + S] so that

Un = %[(s + eHmem + on) + |S + eHmem — Onl].
Then due to that v € O.(S, ) and since the map v — |v] is continuous [13] we get
"li_.ngov" = %[(s +5Hmem + v) + |'S + EHmcm - Ul] = max [‘U,S +5Hmem] =v

strongly in W(). It should be noted that for any n € N the function v, has a compact
support in  and v, € O.(S,Q). Taking into account the above assertion, the set
{v € 0.(S,92) N Co(N)} is dense in O,(S,N) (the function v has a compact support in
{2). In the following we consider a domain {2, such that © C Q°*. We extend the function
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v € O(S,2) N Co(N) by assigning to it the value zero in the outer neighbourhood of
2. This means that the extension Ev of v is defined by

= o=y if(z,y) e
Ev(z,y) = {o if (z,9) € Q°\ Q. (4.10)
Let us regularize the extension Ev using the formula

(M1) RxJ(z,y) = AK™! o, wi(lz,y] — [€,7])T (€,7) dédn

where the mollifier wx is given by

9,8 2
wx(19,6]) = {3"" A for [[9,6]] <

for |[9,6])] > «

and A,K are positive constants, such that Rxa = a if a is constant. Moreover, for
the sequence of mollifiers we have wx, € D(R?), wx, > 0, Nox, supp(wk, ) = {0} and
{supp(wk, )}neN is a decreasing sequence.

By virtue of (4.10) one has, Ev € H'(R?). Then we get

Rk, Ev € D(R?) and supp(Rx, Ev) C supp(v) + supp(wk,, )
lim R, Ev = Ev strongly in H'(R?). (4.11)
n—00
Next, in view of (4.11) one has
supp(|Rx, Ev|) C Ev for n large enough. ' (4.12)

On the other hand we may write (we recall that supp(Ev) is bounded)

lim Rx Ev = FEv strongly in Loo(R?). (4.13)

n—oo

We now define the restriction of the function Rx, Ev on the domain 2 and we have
vn = Rx_ Ev|q, which due to (4.11) - (4.13) gives

vp € Co2(R) and lim v, = v strongly in W(Q2) N Co(D). (4.14)

n—o0

It should by noted that, for any v € O.(S,Q) N Co(_Q) and S + €eHpem < 0 in a
neighbourhood of 99, there exists a € > 0 such that

v=20
4.15
S+ eHpem <0 onQo} ( )

where Qo = {[z,y] € Q : d([z,y],89) < O} and d([z,y],09) is the distance from [z, y]
to Q. Then, by taking (4.13) and (4.15), for any € > 0 there exists an n, = n,(¢) such
that for n > n.(¢) one has

{'U(T, y) - EHmcm S vn(zy y) S ‘U(.’L‘, y) + EHmem for [xxy] € Q \ Q0/2

val(z,y) = v(z,y) for [z,y] € Qo/2. (4.16)
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We observe that [\ Qo/2] is a compact subset of Q. Thus, there exists a function 9
such that

9E€CE(R), 920inQ, Iz,y)=1forany [z,y] € T\ Qoys. (4.17)

This means that by (4.14), (4.16) and (4.17) we get for the sequence {Q(.)n}neN defined
by Q(yn = vn + €v the relation Q(y, € C§(R), lim,—p n—oo Q(eyn = v strongly in
W(Q), for n > n:(f), Q(e)n(xvy) 2 v(:c,y) 2 S(Ivy) + €Hmem, for any [:r:,y] € Q.
Consequently, for every v € O.(S,9) N Co(R), there exists a sequence {vk}ren such
that vy € 0.(S,Q) N C§°(Q) for any k and limi_oo vx = v strongly in W(R2). This

proves the lemma i

In the following we show that O(S, ) is the closure of K.(S,) in W(R) (every
element v € O(S,Q) can be approximated by a sequence {vn}nen C K(S,9) such
that v, — v strongly in W(Q), as n — 00).

Lemma 8. For any fized element S € US,(Q) one has O.(S,Q) is the closure of
K.(S5,Q) in W(RQ).

Proof. We consider a domain 2. such that § C Q.. We extend an element v €
O(S,2)N Hy ,(Q) assuming for its value zero in an outer neighbourhood of 0 (Hg ,(92)
is the space of functions, having first derivatives integrable with the power p > 2 and
vanishing on the boundary 6Q. Note hat these functions are continuous in ). As well
we extend the obstacle function Se plate 1n theirs neighbourhood. In the following we
use the continuity of v in . Let us regularise the extension [Ev] and [ES. plate] using
formula (M1).

For every n we take K, such that

1 1
RKZ.. E'U(l‘, y) + 7—1 Z RKZ,. Ese,plale(xvy) + ; Z Se,plate(z, y) (418)

in §2, where [Ev, ES, pla:e] are the above extensions, Seplate = S+ €Hplate and Se,mem =
S+ €Hmem- Let us consider in (§2, \ Q) the sequence {on}nen where 0, = Rx, Fv + %
On the other hand, for sufficiently large n the functions Rx_ Ev are equal to zero when
dis([z,y],00.) > K,.. Thus we may write

lonllnroney =0  asn — . (4.19)

Let us choose a domain O with O C , and extend the functions o, in § assuming
they vanish in O. Then for the extension Eo we may write the estimate

lEoll s (a.\0) £ Mllonllm1(n,\n)- (4.20)

Further, assume that S, plate < 9 < (eHplate + (—Mmin)) < 0 and v > % in some

neighbourhood Q¢ of the boundary 89, O = Q\ Q,. Next, due to estimate (4.20) one
has

HEonll 11 (nv0) £ Mullonllbi(a.\a)- (4.21)



Optimal Control of a Variational Inequality 925

Moreover, by virtue of (4.19), the right-hand side of this inequality converges to zero as
n — 00. From the continuity of Ev it follows that

[|Rx., Evllc(m) -0 for n — oo. : (4.22)
But for the extension Fo, we may assume that the estimate
”Eon"c(m) < Mo||°nllc(m)

holds uniformly with respect to n. We can deduce from (4.22) that the right-hand side
converges to zero for n — co. Thus we have for the extensions the assertions

1

Eo, z, =R ;.Ev z, = — z, € 0N
(z,y) = Rx, Ev(z,9) = — ([=,9) ) (4.23)

IEonll1r(n/0) — 0 and || Eon|l gy — O-

By virtue of (4.18) we have

1
R’Cn E‘U(I, y) + ; 2> se,plat.e (424)

for all [z,y] € Q. But the right-hand side of (4.24) is bounded from above in 25 by a
negative constant 9, whilst the left-hand side converges to v uniformly with respect to

[z,y] in the same neighbourhood (where v > % in £5). This gives the estimate (due to
(4.23))

1
Rk, Ev(z,y) + n Eo0,(z,y) 2 Se,plate(Z,Y) > Se,mem(Hplate > Hmem) (4.24)

for all (z,y] € Q. Then the sequence v, = Rx,Ev + 1 — Fo, belongs to the convex
set K(Sn,) and v, — v strongly in H}(Q), v € O(S,2) N Hj ,(Q). Note that
for v € O.(S,Q) there exists a sequence v}, € O,(S,2) N Hg ,(Q) such that v}, — v
strongly in H3 (). On the other hand, we may choose a sequence from X.(S, ) strongly
converging to v, in Hj(2). Thus the proof of the lemma is complete il

Since L(e,v) is weakly lower semicontinuous on L2(2) we have

liminf £(en, va) = lim inf{[jvn — zal| 7,00y 2 llv — zaliZ,q)
for v, € V() and v € W(Q) with v, — v strongly in U(2). Consequently, condition
(EO0) is verified. From the above arguments it follows that all the assumptions of The-
orems 1 - 3 are satisfied. Hence there exists at least one solution of the optimization
problems (P,) and (Py), respectively.

4.1 Approximation by finite elements. Standard Galerkin. We shall propose
approximate solutions of the optimization problem for a thin plate by the finite element
method. We restrict ourselves to particular domains, namely we suppose that  is a
parallelogram.
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Consider a classical quadrilateral mesh 7j, of Q, i.e. T} is a finite set of parallelograms
G, by means of two systems of equidistant straight lines parallel with the sides . Then
we may write

G,’Cﬁ foranijE'T;.
UgGeT, G=90
GiNG; =0 for any G,,G2 € T; such that Gy # G,

where G, denotes the interior of G:. Moreover, for any G,,G; € 7, with G, # G2,
exactly one of the conditions

10 G] n Gz = 0
20 G, and G, have only a whole common vertex
3% G} and G; have only a whole common edge

must hold. As usual h will be the length of the largest edge of the parallelograms in the
quadrilateral mesh. Furthermore, we assume that 7}, is consistent with the partition of

the boundary 92. Thus we may write 90 = U;‘i”l) Aj_1 Aj where A; is the vertex of G
in 7.

In what follows, we shall consider only families {74} (h — 0) of such partitions,
which refine the "original” partition 7,. We shall say that a family {7} is regular, if
there exists a constant ¢ > 0 such that % < const for any G; € | J, Ti, where p denotes
the diameter of the maximal circle contained in G. We suppose that the condition

Ty, C Ty, if hy > hy (4.25)
is satisfied.

We introduce the spaces Qk(G) of bilinear (if k = 1) or bicubic (if k¥ = 3) polynomials
defined on the quadrilateral (see, e.g., [9, 12]). We denote

Wh={A€§:AisavertexG€T}
Wi ={AecW,:4¢o0}
Th={A¢W,:4€an).

The spaces V(Q), W(R2) and U,q(Q) are approximated by the families of subspaces
{Vaa ()} nen, {(Wh, () }nen and {UR3 ()} nen, Tespectively, where

Va(R2) = {v e V(Q) : v/G € Q3(G) for any G ¢ Th}
Wi(Q) ={veW(Q):v/G ¢ Q1(G) for any G € T, }
Uai"(Q) = {v € UE(Q) : E/G € Qo(G) for any G € Ty}
U:;,h(Q) ={ve Ul(9):q/G € Q,(G) for any G € Tn}
USMQ) = {v e US(Q) : S/G € Q3(G) for any G € T}

Clearly, such defined subspaces V4(Q), Wy(Q), de‘h(Q), U:,"h(Q), Uf‘;h(Q) are finite-
dimensional (see [12]). It is then quite natural to approximate K.(S,9),0.(8,Q) by

Ken(Sn @) = {vn € Va(Q) : va(4L) > Sh(A%) + eHpiace VAP € Wi ie. AP € o}

Ocn(Sh, Q) = {u,, € Wa(Q) : va(A") 2 Sh(A}) + eHmem Y A" € Wi, ie. AP € Q},
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respectively.

Let us consider the following discrete variants of a(E, v, z), b(E, v, z), (T (g), v) w(a)
for any ex € U2, (Q):

a(En,vn,z4)

= [ eron), Mo () Ny (o0)] [ QB [Norlon), Ny (e Noy(en)) a2 42
for any vs, za € V4 (9),
(T () vn)wa) = Zth za,ya)+/ qupdQ (4.27)

for any vs € V4(Q2), and

B(En,vn, 21) = / Qs(En)(Ne(on)Na(zn) + Ny (vn)Ny(24)) 42 (4.28)
Q
for any vp, zs € Wi(f2). On the other hand, the linear operators

Aw(ER) : Va(Q) = V¥ (R)
Bu(Ey) : Wi(Q) = Wi ()

define the discrete bilinear forms

(An(En)vn, zn)v,(a) = an(En,vn, 24)
(Br(En)vh, za)w, (@) = ba(En,vh, z4),

respectively. In the following we assume that

(An(En)vn, zn) v, () := (A(En)vn, 28)v(n)

(Tn(gn), v w0y = (T (an), va)wia)

(Br(En)vh, zn)w, () := (B(En)vn, za)w(n)
Lr(en,vn) := L(en,vn).

This means that no numerical integration is used in the problem. The approximations
of (Pre) and (Phro) are obvious now.

Due to the above made choice assumptions (H1)4, /1°,4° and (H1)s, /1° are sat-
isfied for our problem. Assumptions (H1)g, /5% 6° are satisfied too, as By = 0 for
h € (0,1). Let us check assumptions (H1)4,/2° 3% and (H1)sg, /2°,3°. If E;, — E in
R and gs, — ¢ uniformly in ©, Sk, — S strongly in H%*(R), vy, — v weakly in V(R),
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2p, — z strongly in V(2), then

/n [Vex(vh,), Ny (08, ), Ny (0n,)]
x [Qa(En)] [Wee(zn, ), Nyy(2h, ), Nuy (21, )] TdO2
- / [Nee(vn, ), Nyy(oh, ), Moy (on, )]
x [Qa(Bh, = )] [Nez(2, ), Nyy(2n, ), Nay(2n, )] TdS2 (4.29)
+ /n [Nee(wma)s Nyy (vn, ), Ny (01, )]
X [Qu(E)) Weelzn ) Moy, ), Noy(an,)] a0
- /Q [Vez(2), Ny (0), Ney ()] [Q(E)] Wi (2), Ny (2), Ny (2)) T2

and

mint | [Wee(o ), Moy (08, ) Ny, )]
x [QA(En,)] [Nex(vn, ), Nyy(vh, ), Ney(va, )] T dO2
> timing [ [Nex(on,)Mou(0n), Ny (01, )]
x [QA(E)] [Nex(vh, ), Nyy(vh, ), Nuy(vn, )] T dO2 (4.30)
+ Jim [N (on) Ny (00, ), Ny (0n,)]
x [Qa(Eh, = B)] [Mex(vn, ), Nyy (v, ), Nay(vn, )] TdS2
> /Q Ve (), Ny (0), Nay ()] [Q(E)] [Ne2(v), Ny (0), Ny ()] Td2.
In fact, as the form a(E,,-) is elliptic on V() for any E € UE(Q), therefore it
is weakly lower semicontinuous. Consequently, conditions (H1)4, /2°,3° are verified.

Similarly, we can verify conditions (H1)g, /2°,3°. Next, the Arzela-Ascoli theorem and
the definition of U,q4(f) yield assumption (H2),/1°.

The crucial point is to prove assumptions (H2)x/2° and ((L0)4,), ((LO)s,). Let
g € Ul () and Ihq € U%*(Q) be the Lagrange linear interpolate of ¢ over 7;. Since
g € W (9), the interpolation theory yields

g = Thgll Lo () < const - hligllwy (a)- (4.31)

Obviously, ¢14 < Ing < ¢z, everywhere in Q. Finally, we have for P;P;,, parallel with
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the z-axis (or y-axis)

Pn+l 3
= Llg(Pisr) - a(P)I < i/] |d:c<M
9z |k, 1Pn) =4 h 9z )

P.+1

|6I;.q| = —Iq(P:-f-l) —-q(P)| < Ry / I%Id" < Mo
Py

7/

Consider the parallelogram and use the skew coordinates [€;,72] via the affine mapping
[z,y] = P([¢€,7])): e =€+ ncosa and y = nsina (4.32)

which maps a rectangle K, onto K. Let v € @1(K). ThenvoP =9 € Q,(K.). Let
= P(Q.), Q. = (0,L.) x (0,Ly), hr = £= and hy = Z. Denote by F;; the grid
points with coordinates £ = th; and n = jhy (1 =1,2,...,mand j =1,2,...,n),
K} = [(i = 1)he,ih, ] % [(G = Dhy,1hy], Kij =P(KJ;)
= (G = Dhe, (0 + Dhe) x (G = Dhys G+ 2)hy) Ny Hij = P(H).

This means that H;; is a "neighbourhood” of the point P(Fj;). Let us set
Ba(PF) = sty [ Ihalz)d (0 i<mi 0% <n)
Hij

We may write
1 4
IngdQt = —-mes K;; I;,q(F,K),
/ K 4 ; ?
where F" are vertices of the parallelogram Kj;;.

Let S., denote the union of all parallelograms K;;, whlch are adjacent to the node
P(Fij). Then we have

/I;.qu ZZ/ IngdQ

=1 j=1

= Z Z smes K Z Ihq('P(

:l)l

Z Z Ing(P(F))imesS;;

i=0 j=0
" C\ mesS;;
z Z 4mes HJ,J gdQ

Hi;
=/qu
Q
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since mes S;; = 4mes H,;, U,’JF,',‘ = Q. Let u.(e) € V() be the solution of (1.3) (with
respect to (4.2) - (4.4)) and u.n(e) € V4(R) be the solution of (2.1) (with respect to
(4.26) - (4.28)). Regarding the regularity of the state function u.(e) € K(S,9) it is
shown in [4] that ¢ € Ly(2) with p > 2 implies u, € W 10e(). Taking into account
(4.31), a standard estimate gives
llue(e) — uen(Ine)llnaay < M(e)hlluc(e)nsay < M.(e)h.
Therefore, as u.(e) € Ke(S,Q) and ucn(Ine) € K, 4(Sh, Q) for h sufficiently small (for
every sag > € > h). This gives the verification of assumption (H2),/2°.
Lemma 9. For any S € US/(Q) there ezists a sequence {Sh, }nen with hy, — 0t
such that Sy, € de’h(Q) and
h,,li—r}}ﬁ 1Sh, = S”c(ﬁ) =0 (4.33)

Proof. Consider the parallelogram Q and use the skew coordinates (€,7] via map-
ping (4.32). We have 2 = P(Q), 0 = (0,L;) x (0,Ly); h, = Lz and b, = L

m n

In the following we denote by F;; the grid points with coordinates § = th; and
n=jhy (:=0,1,2,...,m; 7=0,1,2,...,n):
Qi = [(i = Dhayiha] x [(7 = 1Ay, jhy], Qi = P(QF;)
055 = (= Phe, (i + $)hz) x (( = Dhys (5 + $)By) N, O = P(O};).
This means O;; is a "neighbourhood” of the point P(F};). Let us set
Su(P(Fij)) = W/ S(z,y)dzdy (0<i<m; 0<j<n). (4.34)
3] o;;

Next, we shall show that interpolating the nodal values (4.34) by functions from Q:1(Qi5),

we obtain S € Ufjh(Q). We may write

. 4
Swdzdy = tmes Q;; Z Si(FE)
Qi k=1

where F."; are vertices of the parallelogram Q;;. Let S;; denote the union of all paral-
lelograms Q;;, which are adjacent to the node P(F;;). Then we have

/ Spdzdy = X”‘:z":/ Sadzdy
Y] Qij

i=1 j=1

= Z Z tmes Q;; Z Sx(P(F))
k=1

i=1 j=1

=)  Sa(P(FE))imess,;

=0 j=0
m n

_ mes Si;

- z : § : 4 mes O;; Sd:z:dy .
=0 j=0 ' Oij

= / S dzdy
Q

= Mg
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since mes S;; = 4 mes Oij, U.‘)j@,’j = Q.

We now introduce the functions S, = S o P and S.«(hy = Sp o P. Then (4.34) can
be transformed into the formula

Semy(Fi5) = ﬁ/o S.dédn. (4.35)

Moreover, as far as we identify the system [€, 7] with a skew coordinate system, parallel
with the edges of 2, we easily verify that

oS _8S. 9S _0S. OSh _ OSuny OSn _ 9S.(h)
8¢~ B¢’ 8y oy’ B¢ 8¢’ oy On

holds at the corresponding points. Let us extend S. onto a rectangle
(= 2he Ls + 3h2) x (= Fhy, Ly + 3hy)

so that the extension Sp = S, in Q. and Sy is symmetric with respect to the sides, namely
So(Lz + a,n) = So(L: — a,n) for any n € (~3hy,Ly + 3hy) and any a € (0, 1h;), and
similarly along the other sides of 9€2,. This means that we may write

1 . . .
Sen(Fi) = 5 | sdein  @sismiosism)  @30)
z ij(0)

instead of (4.35) where R,;;(y denotes the (complete) rectangle with the center F;; and
the lengths of sides h; and h,. We have

1
Suny(Fir,5) — S’(h)(Fi,j)l

h:
1
/ Sodédn —/ Sodﬁdn‘
Rit1,i.(0) Rijto)

" hZh,
/R hi [So(€ + ke m) = So(€,m)] dEdr;‘ (4.37)

1
hzhy ity ¥

1
S mMomes R,‘j(g)

=M,

making use of the fact that |%‘SE°-| < M, holds almost everywhere. Due to the fact that
Seny € Q1(Q};) in Qfj, the derivative %éﬂ- attains its maximum at the boundary
9Q;;. Then by virtue of (4.37), we obtain the estimate |%s€1| < M, for any [z,y] € Q.
On the other hand, the upper bound M} for %s# can be derived in a parallel way.
Observe that the maximum S,y in Q:j in attained at some vertex of Q,?J-. Thus due to

(4.35) we easily verify that ~Mmax < Sa(2,y) € ~Mmin for any [z,y] € Q. This means
that Sy € US;"(9).
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It remains to prove the convergence (4.33). We consider an arbitrary point [z,y] € Q
and write for [§,7] € P~!(z,y) € Q};

|5h($,y) - S(:I:,y)| =

D(ESoutn) = Y- S(6monléun)
k=1

where oy are the shape functions of Q1(Qy};) (i-e. 0k(F[}') = 6xm holds at the vertices).
By virtue of (4.35), we obtain

|Su(z,y) = S(z,y)|

4

<Y [Suw(FE) — S.(&mox(€,n)|

k=1
hahy /./R" So(0z,0y) dosdoy (4.38)

4
ij(0)

hz,h // S.(€,1) dozdoy|0k(€,7)

-1(0)
4 1 ‘
< Zh hy //Rk |So(0z,0y) — S.(€,1)| dozdoy
k=1
where Rfj(o) denotes the rectangle with the center at F¥

i3(0)
R 15
other hand, we have

|SO(oza Oy) - S.(f, 77)| = |So(0z,0y) - SO(Ea 77)|
s ISO(OxyOy) - SO(&» oy)l + |SO(£7 oy) - 80(6: 77)| (439)
< §(he Mo + hyMy).

k=1

mesR o) = hzhy. On the

AN

Finally, by virtue of (4.39) and (4.38) one has
|Sh(z,y) — S(z,y)| < 12h max Mo, M)

which gives (4.33) 1
Let us verify conditions (L0)4, and (L0)g, .

Lemma 10. For every fized v € Ax(s gy = Ko(S,Q2) N C®(Q) there ezists a se-
quence {h, JneN C Ke b, (Sh,,, ) such that for n — co assumptions (L0)4, are satis-

fied.

Proof. Let S; i, plate — Seplate strongly if HZ(Q) and vs, — v weakly in V(Q)
for n — co. It will be sufficient to prove v > S, plate in Q. As &(z,y) € H0_2(Q) (Dirac
function, concentrated at [z,y] € Q) is linear continuous functional on V(Q), we have
v, (z,y) = v(z,y) for all [z,y] € Q. Let us suppose that there exists [z+,y.] € @ such
that

U(I.,y.) < Se,plale(zayy-)- (440)
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Moreover, since the element v and S belong to the space C(f2), estimate (4.40) holds
in some neighbourhood U([z.,y.],e) NQ (¢ > 0) where U([z.,y.],€) = {[z,y] € E> :
p({z,vy),[z+,y.]) < €}. Further, diamG; < h for any Gj € 7 and h — 04. This
means there exists A; s, € Wi, such that A;n, € U([z.,y.),€) N Q. Then by virtue
of assumption (4.25) one has A; s, € W for any h < hg. On the other hand, as
Uh(Ai,ho) > Se,h,plale(Ai,ho) for any h < hy, it must be 'U(Ai,ho) = limh_..o<+ 'Uh(Ai,ho) >
Se plate(Ain, ), which is a contradiction with previous considerations.

Consider an element v € K(S,Q). Then due to Lemma 6 a sequence {vo, }neN €
Ax(s,q) exist such that limp_.oo [[vo, — v]|H2(n) = 0. Let vy € V4(R2) be such element,
the restriction of which in G; € 7} is the Hermite bicubic interpolates of v. Then by
definition one has va,|6; = Rey,elg,v and Re, ¢|g, v € Q3(G};) is determined from the
conditions

aRehcc.UAi v(A;
o(A3) = v(A)), (Rew, ele, ¥ ) _ dv(4Ai)

R

ehn el Oz Oz
NRey,ele,v(A41))  Bu(A;) O (Res, el v(Ai))  8%(4))
Jdy T oy 9z0y T 9z0y

where [A;]{_, are vertices of G;.

Denote by ox, = Re,, cvo, the Vi(Q)-interpolate of v,, over the partition 7Tj.
Then op, € K, (Sh,,) holds, since the nodal parameters involve all values v, (A;).
Furthermore,

”Reh,.cvon — Vo, ”H’(ﬂ) < Mh?;llvon "H‘(0)~ ( = O(h?,) for hp — 0+)
holds for any regular family {7} and therefore lima, o, [|0a, = v|ln2(n) = 0. Conse-
quently, condition (L0)4, is verified il
Moreover, it remains to verify condition (L0)s, -

Lemma 11. For every fized v € Ag (s,0) = O(S,Q2) N C§(N) there ezists a se-
quence {vh, }neN C Oc.n,(Sh,, ) such that for n = oo assumptions (L0)g, are satis-

fied.

Proof. We consider any Q € C*®(§) with Q > 0 and define Q = Y cca Qoc)Xa,
where X is the characteristic function of the set G and o¢ is the centroid of G. Then
we have

lim /(v;.“ — Se hn,mem)Qh, d2 = /(v — S¢;mem)Q dR2, (4.41)
Q Q

'l,,—'0+

since vy, — v weakly in H}(R) and @4, — Q, Se,hn,mem — Se,mem Strongly in Lo(Q)
and taking into account the Rellich theorem. On the other hand, one has

Jh = Sernmem)@,d2 = 3 0(06) [ (on, = Seprmem)d (442)
2 ol G

Gea
Then due to Simpson’s integral formula and the definition of O, 4(Sk, ), we obtain

' 4
/,, (Uhn = Se,hmmem) d2 = L(measG) 3 (vhy = Se.hn mem)(As) 2 0 (4.43)

=1
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where A; € W;. Thus by virtue of (4.42) and (4.43), we arrive at
/ﬂ(vh,. — Sehnmem)Qh,d2 > 0.
Then (4.41) implies fn(v — 8¢ mem)QdS? > 0 which in turn implies v > S + € Hmem a.e.
in ,ie veO(SN).

Let v € A, (s.0). There exists a S, mem € H?(Q) such that S, mem = 0 on 0.
Then we have

v = Semem =0 € 0.(2) = {we Hj(Q) : w>0ae inQ}.

Let us employ a regularization operator Rx with the kernel Aexp[((z,y) — (&,7))/K],
A a constant. Let RxES, mem and Rx Ef denote the regularization applied to a proper
extension of the functions S; mem and 8 to a larger domain Q. D Q, so that RxE6 > 0.
We define

v, = En, (RKES,,memRKEO

+ (”RICE‘Sz,mem - e,mem”c(ﬁ) + “Sz,mem - Se,h,.,mem”c(ﬁ))g)

where &, : C(Q) — Wi(Q) denotes the Lagrange quadratic interpolation and 9 €
C§°(Bp(zo,y0)) a non-negative function with [zo,yoe] € S(w) := {[w,y] € N : w(z,y) >
Se,mem(z,y)} and By(zo,y0) C S(w) a ball. Consequently, vy, € W), (), and for any
node A € W;. we have .

va,(A) > RcESc mem(A)
+|Se,mem(A) — RESe mem(A)| + |Se h,mem(A) — Semem(4)|
> Se,h,mem(A4)
so that vs, € O¢ n,(Sh,,). Furthermore, we may write
[on, = vlHi (o)
= \5,," (RKES: mem) — Se.mem + En, (RcE6) — 6

X (”RlCESz,mcm - Se,mem"c(ﬁ) + Hsz,mem - Ss,ll,.,mem”C(ﬁ))ghn19

HY(Q)
S ‘gh" (RKESz,mem) - RKESe,mem

+ |R,CE6 - o|
HY(RN) HY(2)

+|€n, (RKEO) ~ ReBS| | -+ |RxESe mem = Semen

HY(Q)

+ (|RKESe mem = Se,memll o)

+ “Se,mcm - 'st,hmmem"C(ﬁ))‘gh"o HY(Q)

-0
as K — 04 and h, — 0. Here we have used the facts that S; mem € H3(Q) and
“RICEse,mem - Se.mcm"(;(ﬁ) < const ”RKESe,mem - e,mem”Hz(Q) =0

as K — 04 (the seminorm in H'(Q) be denoted by | - {y1(q)). This means that the
assumptions of (L0)g, are fulfilled B
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Let ug(eg) € W() be the solution of (1.23) and Uoh, (€5, ) € Wh, () that of (2.2).
Taking into account (4.31) and Lemma 9 a standard estimate gives

luo(eq) — uon, (eon. )l i(a) £ Mhalluo(eg)llnany < Muhn.
Therefore, as ug(eg) € Oc(S, ), uon, (con,) € Oc, b, (Sh,, ) for h, sufficiently small.

4.2 Transition from a plate to a membrane. From the above mentioned arguments
and due to Lemmas 4 - 8 all assumptions of Theorems 1 - 3 are satisfied. This means
that there exists at least one solution e} = [E},q;,S5;] € Ua4(92), the solution for (P,)
for every (@g/2) > € > h and e§ = [Eg,q5,Ss] € Uad(Q) the solution for problem (Pp)
for the cost functional:

L(e,ule)) = /[u;(e) — z4)%d2.
Q
Particularly, there is a sequence {€n, }xeN,€n, — 0, for which

E:'-g — Ejin R
q:"k — g; strongly in C(Q)
SE’” — S strongly in H*()

Ue,, (e;nk) — ug(eg) weakly in W ().

(4.44)

If the limit state function ug(eg) is such that ug(e}) € K.(S3,9) and #"‘7((1“".) _
J(95)|lL,(0) — O for €n, — 0, then one has

lten, €5, ) = uo(es)lwem = O(vEm)  for €n, =0 (4.45)

where [[v]lw(a) = 0]l 3y for v € W(R) and |
u,nk(e:nk) — ug(eg) strongly in V(Q) (4.46)
where ||[v||yv(q) := ||v||H2(q) for v € V(). Indeed, taking v = uo(eg) in the variational

inequality
<5nn -A(Ee.,,k )utn,t (e:,,k )+ B(Ee‘,.k )uzn,, (e:"k v — Uen, (e:,.k ))v(n)
2 <~7(q:,,,t )) UV — U, (e:,.k ))W(n)
v € K(S;,,R), and v = u,,, (e:”) in the variational inequality
(3(E5)“0(€5)a v-= u0(66)>w(9) 2 (3(95),0 - u0(66)>w(9) (v € O!(S(;’Q))

we obtain

* «\[12 ap . o\ (12
OlA”uen,(ee,..) - uO(co)”V(Q) + c ”uen, (e‘"k) ~ uo(eg) w(a)
ny
< (ACE o), uo(ed) = ten, (€5, ) yeay (4.47)

1 = » » -
+ Z”‘y(qe"k ) - J(Qo)”h(m”uen, (ce,.k) - uo(CO)”W(Q)
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which yields the first estimate

[Juen, (€2, ) — uoled)||y(q

1 * * 1 . * (448)
S a(”A(EO )uo(eo)l V() + M(ETk) ”J(‘I,,‘k) - J(‘Io )"LZ(Q))
and afterwards the estimate
'““fu (e;nk )= “0(65)I|W(n)
Eny (1 o e 1 ) . (4.49)
< 2 (3 IAE uoles)ly- oy + —176,) = T@) )

Hence (4.45) holds and one has u,, (e:“.) — up(eg) weakly in V(Q2), by virtue of (4.48)

and (4.49). Then using this fact in (4.47), one concludes the strong convergence from
the inequality

limsup a||ue,, (e, ) — “O(CS)IK/(Q)

e,.k—'O

< lim (ACESuo(eg), e, (€5,,) = ua(e))y
"k

. 1 - * * »*
+_e}i“_‘,0 Z“‘Y(q‘u )= J(qO)llL,(n)Huen. (e, ) = “O(CO)HW(Q)

= 0.

Remark. One can also consider the case of the partially clamped plate by consid-
ering the non-empty, closed convex subset

Kectam(S, Q) = {v € V(9) : tr(v) > 0 on 69}

of
V(Q) = {v € H*(Q): tr(v) =0 and % =0on aQ.,}

instead of K.(S,§) defined by (4.1,). Clearly, § # K. clam(S, Q) C K(S,9). Under the
definition of U,4(f), if u}(e) denotes the unique solution to the obstacle problem for the
partially clamped plate, one can apply Theorem 3 in order to conclude ul(e) — u(e)
strongly in W(Q) (= {v € HY(Q) : tr(v) = 0 on 89Q,}) (note that one still has
e clam(S,2) = Oc(S, Q) with closure taken in W(2)), where O.(S,) is defined by
(4.1p) and u(e) is the corresponding solution for the membrane. Since, however, in

general u(e) ¢ V() one cannot expect to improve that we have convergence in H?(Q).
In this case a boundary layer arises [15, 16].

Finally, by virtue of Theorem 4 (under the above conditions and Lemmas 9 - 11),
for any regular family of partitions {74}, refining T,, relations (2.12) and (2.14) for
the membrane approximation to the plate with inner obstacle hold.
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