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Nonlinear Hyperbolic Equations 
with 

Dissipative Temporal and Spatial Non-Local Memory 
F. Mona and J. Neëas 

Abstract. The equation governing the evolution of a displacement vector in an elastic body 
with dissipative temporal and spatial non-local memory is considered. The memory term is 
generated by a singular but integrable kernel. The existence of a global weak solution to the 
associated initial- boundary problem is established by constructing Calerkin approximations 
and deriving a suitable energy estimate. 
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1. Introduction 
In this paper, the equation governing the evolution of a displacement vector in an elastic 
body is investigated. The body is assumed to occupya reference domain Q C R' at 
an initial time and to have unit density. The vector u = (u 1 ,... ,UN) represents the 
displacement and from Newton's laws of motion we obtain for it the wave equation 

u=divo -1 -f (1) 

where cr ij is the Cauchy stress tensor and f = (fr,. . . ,fpj) is the external body force 
per unit mass. 

This equation holds for both the elastic and the plastic cases. The properties of a 
material are expressed by the constitutive law, which describes the relation between the 
stress and the infinitesimal strain tensor eu = (-'- + The stress is a function 
of eu for an elastic material, while it depends on the velocity of cu in the case of the 
plastic one. In the linear cases, the relation in an elastic body is expressed by Hook's 
law (then (1) is a hyperbolic equation), while for a plastic material Newton's law holds 
(then (1) is a parabolic equation). 

The stress tensor usually depends on the instantaneous strain 

o 1 (x,i) = 9W—(eu(x,t))	 (2)
aeii 
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where W = W(e,) is a function of free energy. In the case of one space dimension the 
problem has been solved. The global existence of a weak solution of the mixed problem 
follows from a recent work of Di Perna 151 and is based on compensated compactness 
arguments. In spite of intensive efforts of many mathematicians the question of global 
existence of a solution to the general nonlinear elastic problem remains open. There are 
several results in some special cases for dimension N > 2. 

Experience indicates that certain materials have memory. It means that the stress 
depends not only on the strain at the present time i, but also on the entire history of 
the strain from zero to time t. In this case, the instantaneous stress (2) in equation (1) 
is extended by the memory part, which usually has the form 

jh(t - r)(eu(x,t) - eu(x,r))dr 

(h denotes a suitable kernel). At first sight it is surprising that the existence of a 
solution to such an equation can be proved (see [2, 12]). However, there are other 
materials where the stress depends not only on the history of the strain at given x, but 
also on the history at all points located in a neigbourhood of x, more generally on the 
history at all points of ft Our work generalizes the results from [2] for such a type of 
nonlinear elasticity memory choices, both time and spatial ones. (The singularity in the 
memory part of stress approaches the Dirac function.) It is the purpose of the present 
paper to prove global existence of a weak solution. 

We will consider the equation 

a ii(x,t) - 	(X, t)	(X, t) on Q x (O,) (i = 1,2,...,N)	(3) axi 

where the stress consists of both the instantaneous and the memory part a = a' +aM,

I - aw  
cY - 

ad) 
—(cu)	 (4) 

and
= —A [ J (e,u(e, r) - e1u(,	

h(t - r) 

0 Il	 x 
t)) 

I _V 
dedr,	 (5) 

with boundary conditions
u(x,.)=O	(xEacl)	 (6) 

and initial conditions
U(- ' 0) ='u0 

= UI 

Let the domain Q c RN (N > 2) be bounded and let it possess a Lipschitz continuous 
boundary oft We assume that the function W R2N - R is continuous, has bounded 
second derivatives, W(0) = .!.(0) = 0 and the condition of ellipticity is satisfied, i.e. 
there exists a real number ,c > 0 such that

(7) 

02W 
Oe Oe 

(q) aak, ^ ? h a Il 2	 (8)
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holds for every a,q E R2N . We also suppose h(i) = e_ t t where 0 < v < ,N - 1 < 

<N, A > 0, and 

I E W2((O,00);W1_2(ul;R1')) 

fl L2 ((0, oo); W" 2 (ci; RN)) fl L°°((0, oo); L2 (ci; RN)) 

E W2(ci;RN) 

E L2(ci;RN). 

We use the Galerkin approximation. The operator - ^;crjj is compact both in time and 
arj 

space. The memory part of the stress tensor allows us to establish the basic estimates. 
We will deal with spaces of functions with non-integer derivatives (see [1, 3, 10, 18]). 

Definition 1. Let 0 <s <2 and let u : ci -, B be a function, where B is a Banach 
space and ci C R" is a domain with Lipschitz continuous boundary. We define 

	

II U	• '(O; B)

	

lxO	_1N42. dxdy	 if 0 < s < 1
- { IIIIl2(I;B) + ff   
-	 II8 _______________ 

lUII	
N 

M; w1,2fi) + >i1 Ox1	z_y1N+2(._1) dxdy if 1 < s < 2. 

The space W'2 (ci; B) contains the functions u satisfying IIuIIw.,20;B < 00 , W1,2( Q; B) 
= L2 (ci; B), and W1,2 (Q; B) is introduced as usual. (If B = R, then we denote W'2(ci) 
= W-,,2 (Q; R).) The space W' 2 (ci) can be introduced as the closure of V(1l) (test 
functions) in W'2 (Q) and we denote the dual space W 1,2 (ci) = (W' 2 (ci)). For

	

- <s <	we have W' 2 (ci) = W3,2(ci). 

Let {w'}> i be a basis in W0" 2 (ci) which is orthonormal in L2 (ci) consisting of the 
eigenfunctions of the equation

w+9w=0 on  

and let {A}> 1 denote the corresponding eigenvalues. Then in the space W'2 (Q) an 
equivalent norm can be given by 

UIIw..2 (0)	A c	where c, = in uw'dx 
= 1 

and
IIUIIv,2(jRN) 

where I means the Fourier transform of the function U: 

=
 IRN

u(x)e_ 1+ dx	( € R")
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We shall use the Parseval equality 

fN udx = (2ir)N JN ud	(u,v E L2(RN)),	 (9)

and rules for the Fourier transform of the convolution and derivatives: 

U * V = U V,	 (10) 

au W
axj = —i (e)	(u E S*(IRN),v e L2(RN)).	 (11) 

Here the space of temperate distributions S(R N ) means the dual space to 

S(RN) = { E C(R): sup IxD°(x) <co for all multi-indexes a, E NN} zERN 
and the convolution of u and v is introduced by the formula 

(u * v)(x) faN u (e) v (x - e)de.	 (12) 

We shall need also the Fourier transformation of the powerj-j. for	1 <a < N: 

a-N 
(JF)	

= (2ir)*2*° r () (/e? + ... +	 ( 13) 

(see [4, 6, 9]). 

2. Galerkin approximation 

After defining a weak solution of our problem we will construct its approximants by the 
Galerkin method. 

Definition 2. A weak solution to the mixed problem (3) - (7) is a function u E 
L00((0,); W01, 2 (92; RN)), for which 

it E 
ii E L2((0,T);W2(1l;R'')) for all T>0 

and for all v E W'2 (cl; R h') and for almost all T > 0 the equality 

 

JITf 
ü(x,i)v(x)dxdi + TJäW 

__—(eu(x,t))ev(x)dxdt 

-
 f

T	
eju(, r) - eu(e, h(t - r) dedr ev(x) dxdt	(14)

 

In U f (	Ix — eI	) fT 
=	f f(x,t)v(x)dxdt
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holds (it is necessary to understand the integrals in the sense of distributions). 

There exists a basis {w"}> 1 in the space W0"2 (c) which is orthonormal in L2(cl). 
We construct Galerkin approximants u" of the form 

n 
u'(x, t) =	Ck

(n) (i)wc(x)	(n E N). 
k=I 

Using successively w 1 ,. . ,w" as test functions in (14), we get the following conditions 
for the functions of time	. , c,": 

I oW (^:c (kn)+ in 	(t)ew k (x)) e ii  

_________________

	 10,	

-fine,wk()e,jwm(x) ddx
	(ck

(n) (r) - Ck
(n) (t))h(t - r) dr 

 k=I 

= jf(x,i)w(x)dx 

with initial conditions

f ° m d c(0) =	uw1

	

 

I	(rn=1,...,n). 
0) 

= in	
x 

uw"dx 
J 

This problem possesses a unique solution on an interval 10,8) (8 is the maximal time 
of existence of the solution, see [8] or [11]). Thus there exist approximate solutions u" 
satisfying the equation 

[ü'vdx+ fn --(eu")e1vdx 
 

- A [ 

(Jif 
(eju, r ) -	t)) 

h(t - r) ddr) e j v(x) dx	(15) 
in CIO I x a 0 

= [fjvjdx 
in 

for all v E sp{w',... ,w'} (the subspace spanned by w1,...
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3. Basic estimates 

For the approximate solution introduced in the previous section we may establish the 
following estimates. 

Lemma 1. For any T E [0,8) the solution u'1 of (15) satisfies for some C 1 > 0 the 
inequality

I 11,1n(T)2dx+ I W(eu(T))dx 
Jcl 

T T 
+AC1 / dTdt JJ	- 	) 1)2 

de (o	 )1+ J
T < J II u1 II 2dx + I W(eu°)dx + 1

0
 I füdxdt. 

	

Jci	 il1 

Proof. Let us extend Un by zero outside ft We put the time derivatives	t) as 
test functions into expression (15) and integrate over (0, T): 

j Ilin
	- f Ik(0)II2dx + j W(eu(T))dx - f W(eu(0))dx 

+ 1T1	
eij 	- eu (e, r ))	ddr) eü(x,t)dxdt	(16) (fo In	 Ix — CIO, = T1 

fü dxdt. 
1  

We can write the last integral on the left-hand side of (16) as a convolution (12), then use 
the Parseval equality (9) and the properties of the Fourier transform of a convolution, 
derivatives and powers (10), (11) and (13) to get 

- 
e,3u'(e,r) e(x,t)dedx 

llxlI	Ix — eI 

1N	 1 e [(eiju-(t) - eu't (r)) * 
1F

ü'(t) dx 

N N	F() 1	
II2(e,t) - =(2r)T2T	

r() 2[ N 

+1	t) -	, r))	, t) de]. 

Denoting by n = ( flt,ri 7. ) the outer normal to OMT, where 

MT = {(t,r): 0<t< r and 0<r < T},



Nonlinear Hyperbolic Equations	945 

we compute that for some d 1 > 0 
I0 ^-111Ti 

2	f	II2+0((e,t) -	(r))	(e,t)de h(t - r)drdt
J0J f N 

= I ii°	LT	t) - ( r ) I 2h (t - r)drdtde 
dt JN 

= I	(I	t) - 	r) 2 h(t - T)fli dS 

	

JN	 'J8Mr 

- fir	
?t) - i,r) I 2h' (t - T)drdt)de

dt 
T T	 2	drdt 

> d1 fo L	(IeI	Ii(e,t) - (e,r)I) d 
(t - 

holds (we use integration by parts and take into account that h' is negative on (0, oo)). 
Similarly

Ti 

I JOo	 j 
/

N	 t) t)h(i - r)drdt 
 

2 rN	 1 
= fIN I_ N fMr	[eit _ (e r ))j h(t — r)drdtd 

and the lemma is proved I 
It follows from Lemma 1 that the approximants Un are defined on the whole interval 

[0,00). 
Using the Gronwall lemma we obtain the following corollary. 

Corollary. There exists a constant C 2 > 0 such that 

IUllL00((0;OO);W12(fl;!N)) 5 C2 } 

112 IlL((o;co);L 2 (n;lR?J ))	C2 

For any T> 0 there exists a constant C3 (T) > 0 such that 

IItill W 2 ((O;T);W 1	.2(N)) ^ C3 (T). 

Lemma 2. For any T > 0 there exists a constant C 4 (T) > 0 such that the solution 
u' of (15) satisfies

huh	 - N	 < C4 (T). 
W2((o;T);W_ 1-	 - 

Proof. Let e = and denote by R the projection operator mapping the space 
W 2 (;R") to sp(w',. ,w'). The starting point of our consideration will be the 
definition

,T ,T	ni \	"nj \ 2 
2	 j J	U Y1 ) - U t.2) w1,2 d d U	W2((o;T);W_1_,2(fl;IR!))	Jo Jo	ti - thI+v	1 2
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and
11 iin(., t ) - jjn(., 

t2)w1_(0.R1) 

=	sup	f (jjn(j) - ii n 
i (t 2))Oi dx 

II0Iwi .f,2^ I (1 

=	sup	f (ü(i i ) –u(t2))(R)dx. 
I1 ,b IIw1+,2^ 1	0 

o 

If we extend any function E Wc2(ci; R") by zero outside ci, then 

I	 \ IHI.2(RN)	IRN (IeI 3 I(e)I)2de	-3<S <+
3

). 

We choose any function & E W e2(ci;RN) with IIIIWi+.2(fl;RN) < 1, denote	=

R'?,b E sp(w',. . . ,w") and use equality (15) for u '2 (ti) and u'1 (t 2 ). First we estimate 

J —( 
f 5w	

oW(fl(t))) 
"co

x) dx
( aeii

-__(euhl(xii))_--_
axj 

(u(x, t i ) - u(x i2))(x)dxl J
°PR 

<d 	5XI	 Sx	
(17) 

<d3	J (iei'	(e,t1) –	(i2))2 (II'	I(e)I)2d 

2 < d Iu"(ti ) – u" ( t2 )IIw t_..2 IPIIwI+,2. 

Let us remark that II U 'IIw ((QT) ;wI_.2 (0 ; R N ))	C3 (T) by Corollary. We can proceed 
similarly in the case of the difference of the right-hand sides of equation (15). It is 
sufficient to look at the term in (15) generated by the memory portion of the stress ff.  For O<t2 <t i <Twehave 

L { I' f c1u"(e, t) – eu'(e, T) 
h(t 1 - r) 

Ix_Ia 

c3u(e,t2) e13u(,a) 
h(t 2 –a) ddal e(x)dx Ln  

If r p1 
=	I /	(eu, t 1 ) – eu"(, t 1 - s)) h(s) ds 

Oxti IJo

I 

– j (eu,t 2 ) - eu(e,t2 –	
– 

	

h(s)dsi 
ep(x) 

ddx	 (18) 

=	I (eu, t 1 ) –	 t2)) h(s) ds 
JRN{ 

t2 

Jo 

- j(
e ii 	t 1 - s) -

 
e ii 	i 2 - s)) h(s) ds 

Pt' 
+ I (e ju',t i ) - eu"(e,ti - s)) h(s)ds} (eij * 

Jt2
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The last line of (18) contains three parts. We can write the symmetric parts of the 
gradient and estimate the corresponding integrals (similarly as in (17)) as 

LI12 (O	1 " 
\OXJ ri) (9X I	Ox, 

<d5(T) Iko lIw l + . , 2 ll u ( t i) - u"(t2)llwI-.,2	 (19) 

:^ d6(T) ll u ( t i) - u'(t2)lIwI_,2. 

The second integral can be estimated as 

L IRN ( 

	( ^Un
Ox,	 Ox, 

t2	O 	 1 "	
-(t1 - s) -	k(i2 - s)) deh(s)ds 

< d(T) 11c0 11w l + .,2 /	II U (ti - s) - u(t 2 - 5)IIw1_2(s)( s	(20) 
Jo

I 12 

	

d8 (T) 
{J	 2 

lI u (ti) - un(t2).2ds} 
-	0 

and

L

T ti	2 Il u ( t i - s) - u(t2 - s)II1_,2 ^ d9 (T) lu II w ((0,T);W' _.2(N )) (ti 

Analogously we get 

I
f0

	

	1 "	--(t1) - 2"I ax,iH( ax ,	Ox,	
s))deh(s)ds 

ti 

<d 10 (T) I lt u ( t i) - u(t j - s)Ilwl-.,2h(s)ds 
it2 

<d10(T) I ll u ( t i) -	(t i - s )llw 1.2 h(s) ds. 
it2 

Hence

L

T t 1

	

	t	 2	
dt2di1 

L [L II u ( t i) - u'(t i - s )Il w h(s) ds] 
(i - t2 )1,+l 

T t	 1 2	dt2 dt 1	 (21) 
sup llu(T)llv',2 J J (J h(s)ds 

rE[O,T]

	

	
) 

( t 1 - 
is n"2 < d1 1 (T) iiu IIL0((0T);WI2();iRi)). 

Lemma 2 follows now from definitions and estimates (19) - (21) and Corollary I
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4. Interpolation 

Let 1 < i and - <j9 < +. We can introduce spaces WP 2 ((O , T);W 2 (cz)) by 
Definition 1. Then v E W1L , 2 ((0, T); W' 2 (1)) may be expanded into the double Fourier 
series

v = 
CO CO

 c1,h2(t)w'(x) 
i=O j=1 

where ho(t) =	and h 1 (t) = J,; cos t (i E N). We use the equivalent norm 

00 00 

I1V11/#.2((o,T);wf2(cl))	
C? .(,j (1 + i2yX. 

i=O j=1 

Lemma 3. Let 0<<,0<c< and O<-y<1. Then there exists aconstant 
C5 > 0 such that 

li v il w(' +6)".2((O,T);W'(' +),.2())	Cs il v il L2((O,T);L2(fl)) IlVll V 1+6,2 ((O T)W-l-.2(cl 

Proof. We compute directly that 

l v ii w(' +6)', .2((o,T);W- ('+') .2 (ci)) 
CO 00 

=	jj c(1 + 
i=O j=1 
CO 00

i(1+e) 2(1—'y) 
=	c(1 + 2)(6) . ,>— 

i=O j=1 
00 CO	 CO 00 

< Cs	> (c j (1 + i2)(1+67+)	
> (c(1 +	AO) 

1--y 

i=O j=1	 i=O j=I 

— Csiivii'	 WY 
—	L2 ((0 T) L' (ci)) liv II 4/I + 6,2 ((0 ,T); VV- 1— ,2 (ci)) 

and the lemma is proved U 

-	5. Existence of a weak solution 

The following theorem establishes the Lipschitz continuity of the operator a 

Theorem 1. There exists p > 0, independent of T, such that 

I ia M u - M v11 L2((O,T);L2(fl;N 2 )) < Apeu — CVIIL2((OT).L2(ciRN2)).
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Proof. Using twice the Schwarz inequality we get 

M	M	2 

= (jif 
[(e ij u(, t) - ev(e, t)) - (e jju(e, r) - e jv(, r))]

2 (t	
dedr) 

J (eu(,t) - ev(,t) 2d
	'	d Jix

, ([ h(t -
2 

T)dr) ix- -i° 

+I	I (e ju(,r) - e jjv(,r)) 2 
Jo

h(t—r)
 x_i0 drd fa  I2-l°

8
h(t - r)dr.

We denote P' = f0' h(r) dT and P2 = fB(O,diam Q)	dx. Changing the order of inte- 
gration we go on to compute 

1 M	M 

	

U -	VII0(0) 

< P2P2
[(IT  

(eju(,t)ejt))2dt) (J	dx	
d

J 	 ix-el) 

+ P1P2 fofT 
(e u (e, r)ev(e, T ))2T h(t - r) dt(fd(

ix -) \ Jr	 I jn	
I0) drde 

2pp li eu - eViiL2(L2) 

and the theorem is proved I 

Theorem 2 (Existence of weak solutions). Let us consider equation (3) - (5) with 
boundary and initial conditions (6) and (7). Let the just introduced assumptions be 
satisfied. Moreover, let u > N - ce and coi > pA where co is the constant in Korm's 
inequality. Then problem (3)—(7) possesses weak solutions u on (0,00). These solutions 
satisfy

u E Loo ((0,00);Wo2(cl;R1)) 

zi E 

ii E 

U 

ü E W2((O,T);W_1_i2(1l;R')) 

for all T > 0. 

Proof. Let us choose any T> 0. As ü' is a bounded sequence in L 2 ((0, T); L 2 (Q)) 
and W2((0,T);W_1_f2(cl)), we get from Lemma 3 (putting v = u) that Ü' 
is bounded also in the space W( L),2 ((0, 	where	< -y < 

It is possible to choose such 7, because ii > N - a. The space W 0) '2 ((O, T); 

W_( 1 +2 0)2 (c)) is compactly embedded into W1,2((0,T);W12(cl)). Thus we can 
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choose a subsequence O k which converges to a certain function u in the following sense: 

u T	u	in L2 ((0,T); W1 ' 2 (Q; R")) 

O k	?i	in L 2 ((0,T); L2 (1; RN)) 
U	in 

iink	ii	in W2((0,T);W_1_2(cl;R 

	

—i ii	in L2((0,T);W'2(cZ;R")) 

Now, let P,, be the projection operator from L2 ((0,T); W12(l;RN)) to the space 
spanned by the vectors c3 (t)wJ (x) where cj e L 2 (0,T) (j = 1,... ,n). We have 
P,u —* u in L2((0,T);W2(1;R1')). We put v = u' — P,u as a test function into 
equality (15) to obtain 

I

T

	

	 T I ü(u —(Pu)1)dxdt+ f I	— Pnku)dxdt 
 l	 Jo Joae ij

 — A

17J [Jif 
(e iju(,r) — e jtzi))	h(t - T) d7- 

Jo o	 Ix_ela 
X e(u" —Pflku)dxdt 

T 
= 
II 
	 u	 (Pflku)j) dxdt. 

The first and the last integrals tend to 0. We obtain a lower estimate from the condition 
of ellipticity (8) and Korn's inequality: 

	

1T1	
i(e(u' - Pnk u))e j (u k — Pu)dxdt 

^ _CO II u	— PflktLII2((01).wI2(O;lRfl))• 

As a m is Lipschitz continuous we have 

1T1 
c'(u — Pflk u)ejj (u k — Pflku)dxdt 

<Ap Iu Ik — Pn k UII2((oT).Wi,2(o.N). 

As
çT 

JO J 
ow

— Pfl k u)dxdt --+ 01 

7.

ii 

[ I	(Pflk u)c I (u — Pu)dxdt	0 J Jo Jo 

and icc0 — Ap >0, then u' — Pfl k u —* 0 and also u' — u in 
The existence of the required weak solutions follows as a direct consequence of (15) 1
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