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Homogenization of the Poisson Equation
~ina
Thick Periodic Junction

T. A. Mel’nyk

Abstract. A convergence theorem and asymptotic estimates as ¢ — 0 are proved for a solution
to a mixed boundary-value problem for the Poisson equation in a junction Q. of a domain
Qo and a large number N? of e-periodically situated thin cylinders with thickness of order
€ = O(3). For this junction, we construct an extension operator and study its properties.
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0. Introduction

Let D, be a domain in R® which depends on a small parameter ¢ > 0 and, by the limit
as € — 0, is transformed to a submanifold S of dimension m. The number m is called
the limit dimension of the domain D,. If m < n, then the domain D, is called thin.
Asymptotic methods for thin domains are well-known.

Some years ago several papers appeared that deal with the asymptotic investigation
of boundary-value problems in junctions consisting of a finite number of domains with
different limit dimensions (1, 5, 11, 12, 22, 23]. Boundary-value problems in thick
periodic junctions whose number of components increases as ¢ —+ 0 have own specific
difficulties (see below), and until recently, there were no full asymptotic investigations
of these problems. For these junctions we give the following classification:

A thick periodic junction Q. of type m : k : d is a domain in R™ that is obtained
by joining a large number of e-periodically situated thin domains with limit dimensions
d to an external part of the boundary (which is the contact zone with limit dimension
k < m) of a domain o (which is the junction’s “body” with limit dimension m < n).
Here ¢ is a small parameter which depends on the number of the joined thin domains.
The junction can have two or more “bodies”.

These junctions are prototypes of widely adapted engineering constructions such
as long bridges on supports, frameworks of houses, industrial installations, spaceship
grids as well as other physical systems with very distinct characteristic scales. The
objective of studying boundary-value problems in thick periodic junctions is to describe
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the asymptotic behaviour of solutions as ¢ — 0, i.e. when the number of joined thin
domains increases and their thickness decreases.

In the papers {10,29] the asymptotic behaviour of Green’s function of the Neumann
problem for the Helmholtz equation in the unbounded junction of type 3 : 2 : 1 was
studied. The limit equations describing acoustic vibrations in a porous medium, made
by narrow parallel channels or thin parallel sheets in a solid body (the junctions of
the type 3:2:1 or 3:2:2, respectively) were obtained in the papers [2, 7, 27]. In these
articles the authors established some new qualitative properties of the homogenized
equations: The corresponding Helmholtz equation is no longer elliptic and the operator
which corresponds to the spectral limit problem is non-compact. These properties were
the main difficulties in the asymptotic investigation of boundary-value problems in thick
periodic junctions. As a result of these difficulties convergence theorems and asymptotic
estimates were not obtained.

In the articles [15 - 20}, using some results on the spectrum of discontinuous operator
functions (see [8, 20]) and constructing special extension operators, the asymptotic
behaviour of eigenvalues and eigenfunctions of the Neumann problems for the Laplace
operator in junctions of different types 2 : 1 :1,3:2:2,3:2:1,3:1:1 was
studied. The problem in the junction 3 : 1 : 1 was examined in the case when the
limiting process as € — 0 is accompanied by a concentration of masses on the joined
thin domains {17]. These papers show that the type of a thick periodic junction defines
a resulting boundary-value problem and junction-layer problems in the contact zone of
this junction. However, the junction layers bchave as powers at infinity and do not
decrease exponentially. Therefore, they influence directly the principal terms of the
asymptotics of the solution to the initial problem. The cause of this effect is in the
modification of the geometrical structure of the domain, where junction-layer problems
are considered. The type of a thick periodic junction defines also the construction
scheme of an extension operator P, : H'(Q2,) — H!( U Dy), where Dy is a domain
that is filled up by the joined thin domains in the limit as ¢ — 0.

Extension operators play an important role in the proofs of convergence theorems °
for boundary-value problems in domains depending on a small parameter. They give us
the possibility to pass from a domain depending on a small parameter to a fixed domain
that does not depend on one. For many problems, these operators have to be uniformly
bounded with respect to a small parameter in the Sobolev space H!. The uniformly
boundedness of extension operators is the necessary condition in the statement of some
problems (see [30]). For other problems, such extension operators exist, for example,
for domains that are ¢—periodically perforated by holes with the diameter of order ¢
[6, 25, 30]. But for thick periodic junctions, there exist no extension operators that are
bounded uniformly in €. This is one more difficulty in the research.

It should be emphasized here the difference between the asymptotic investigation of
boundary-value problems in thick periodic junctions and domains with rapidly oscillat-
ing boundarics [4] (those results were also referred in [26: Subsection 3.3]). The main
difference is the following: the function h, which defines the oscillating boundary, must
be a continuously differentiable periodic function, i.e., the boundary is smooth, and
there must exist the reciprocal functions of h to construct an extension operator. These
conditions do not hold for periodic thick junction: there does not exist any function,
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which would define the boundary of the junction .. This junction has only the Lips-
chitz boundary and the periodical structure of joining of thin domains only (in our case
thin cylinders, the cylinder can have various length). Therefore, the scheme of the con-
struction of the extension operator in [4] is not applicable for thick periodic junctions.
Furthermore, if the right-hand side of a boundary-value problem depends on the small
parameter ¢, then we need the special condition on this right-hand side (see (1.3)) to
construct the bounded extension of the solution, and to obtain the convergence results.
Also in this paper, using the method of matched asymptotic expansions, we construct
the leading terms for the asymptotics of the solution and obtain the asymptotic esti-
mates of the difference between the solution to the initial problem and the solution to
the limiting problem.

In Section 1 we formulate the boundary-value problem (the initial problem) and
prove auxiliary inequalities. Section 2 deals with the construction of an extension oper-
ator provided that the right-hand side of the initial problem satisfies a special condition.
This operator is uniformly bounded in ¢ for the solution to the initial problem. The con-
struction of the extension operator for junctions of type 3 : 2 : 1 is both most complex
with respect to the constructions of extensions for other types of thick periodic junctions
and most general for ones in conception. In Section 3 we prove the convergence theo-
rem. If the right-hand side has a special form, then we can construct an approximation
function and obtain asymptotic estimates. This is done in Section 4. In this section
we use some symmetry in the structure of the thick periodic junction. It helps us to
define more exactly asymptotic relations for junctions-layer solutions, to detect other
properties of ones, and to obtain better estimates for residuals of the approximation
function.

1. The initial problem

1.1 Statement of the problem. Let a thick periodic junction §2, of type 3 : 2 : 1
consist of the “body”

Qo={z€lR3::z:'EKa.nd0<:z:3<7(:c')}

and a large number of thin cylinders

N-1
Ge = U Ge(i’j),
1,j=0
where - -

G,(i,j):{zGR3: (?—i,?—])Ewand —1<x;§0},

ie. Q. = Qo UG,. Here z' = (z1,2;), K = (0,a)?, v is a smooth positive function on
K and v > 70 = const > 0, N is a large positive integer and, therefore, the value € = §
is a small parameter which characterizes the distance between thin cylinders and their
thickness; the plane domain w with smooth boundary belongs together with its closure

to the disk {z' € R?: (21 — 3)* + (= —%)2<p§<4l}.
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Define I', = 8Q, N {z3 = —I} and consider the mixed boundary-value problem

Azuc(z) = fe(z) (z € Q)
dyu(z)=0 (z € 09, \T) (1.1)
uz) =0 (zr ely)

in the junction €2, with given Dirichlet data on the bases I, of the joined thin cylinders
and the Neumann boundary condition on the remaining part of the surface 9Q,. Here
a9, = aa_u is the outward normal derivative.

We can regard without loss of generality that the right-hand side f. belongs to L,(f2)
where Q is the interior of the union Qo UD, D = K x (I, 0) being a parallelepiped
that is filled up by the thin cylinders G.(3,5) (i,7 = 0,...,N — 1) in the limit as
€ = 0 (N — o00). We also assume that the function f, satisfies the following two
conditions:

fe—=fo  inL(R) as e =0 (1.2)

and there exist positive constants C;,rg, o such that for-all € € (0,¢0)

/ FO@))dz<C  (i=1,2) (1.3)
al,
where

Fi(z) = e~ (]. (:c+ €& (:c)) (&1 = (1,0,0),& = (0,1,0)).

Here and further we interpret the symbol Y as follows: if Y is a set, then YO is the
union of Y and of its image, symmetric with respect to the plane {x. =0}, and if Y
is a functlon then ¥ is its even extension into the relevant domain with respect to
the plane {:r:, = 0}. Further, Qo,, = K x (0,r) and Q, ,, is the interior of the union
Q0,r, UG.. Condition (1. 3) means that the function f, has not strong scattering of the
values on the neighboring cylinders.

Consider some example: The function

¢( ifIEQo
oz) = ( 1)*izy ifz € Go(iyj) (i, =0,...,N —1)

does not satisfy condition (1.3). For this function, the variation of its values on the
neighboring thin cylinders is very big, i.e., if we construct any extension of this function
in the Sobolev space H', then the gradient of the extension will be of order L.

Let for a function gz € L(Q) there exist constants Co > 0 and €9 > 0 such that,

for any € € (0,€0) and z',z" € Q, |ge(z') — ge(z")| £ Colz’ — z”|. Then condition (1. 3)
holds for g,.

So, our aim is to describe the asymptotic behaviour of the solution u, to problem
(1. l)ase—’O (N — +00).
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1.2 Auxiliary inequalities. Consider a space HY(Q,,T,) formed by functions of the
Sobolev space H'(2,) whose traces vanish on I.. In this subspace we introduce along

1
with the usual norm [|ull; = ( fo (IVul? + u?)dz)? a new norm || - ||, that is generated
by the scalar product

(u,v)e = / Vu - Vvdz. (1.4)
Q.
Denote the space H'(Q,,T¢) with scalar product (1.4) by H,.
Lemma 1.1. For ¢ small enough, the norms || - |1 end | - || are equivalent, i.e.
there ezist constants c; > 0 and o > 0 such that for all € € (0,€q) the inequalities
lulle < llully < crllulle  (ue€ He) (1.5)

hold.

Proof. In (1.5), it is not obvious only that the second inequality holds. Suppose
the contrary. Then there exist sequences {€m }m>1, {vm}m>1 € He,, such that

lim €, =0

m—0
lomlly =1 (1.6)
1
omll?. = /ﬂ (Vomlds < . (1.7)

Since the sequence {vm}my1 is bounded in H'(Q), we may assume without loss of
generality that it is a Cauchy sequence in Ly(%). From inequality (1.7) it follows that
{vm}m>1 is a Cauchy sequence also in H'(p):

1 1
o = oo H @) < [fom — v L2 4 2 + 1.

Hence, {vm}m>1 converges in this space to some element vy € Hl(Qo). By virtue of
the Friedrich inequality and inequality (1.7) we have

Ovm\2 1
2 4 </ Fm\ < L
/;; vadr < a,m(azs) z<—

¢m

Granting this, from (1.6) and (1.7) we obtain that

1=|vml? — / vadz as m — oo and / |Vuo|?dz = 0.
Qo o

This means that v = —’;— in Qo, where | Y|, is the measure of a domain T in R".
’ |n°|3

On the one hand, from the trace theorem for functions in Sobolev spaces and [24:
Corollary 1.7] it follows that

/ v2dz — |wl2 |7 a® as m — oo

em

where Q. = G. N {z3 = 0}. On the other hand, we have

Ovm\2 1
2 < - m it
/ vmdx_/c (azs)dz<m—>0 as m — 0o.

em fm

The lemma is proved
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Remark 1.1. It should be noted that here and further all constants ¢; and C; in
asymptotic inequalities are independent of the parameter €.

Using Lemma 1.1 we can state that the right-hand side of the integral identity
/ Vu,(z) Vo(z)dz = —/ fe(z)p(z) dz (p€ HI(Q,,FE)) (1.8)
f), Q,

for problem (1.1) defines a linear continuous functional in H'(Q.,T.) and, therefore,
there exists a weak solution u, that is unique and satisfies the inequality

l[ue; H(Qe, L)l < eall fe; La(Q)] < cs. (1.9)

Show that u, has not strong scattering of values on the neighboring cylinders. Let
Xr, be a smooth cut-off function on R",

0 ifzz >rg
T = 3 - r 1.3)).
Xro(Z3) { 1 ifz; <2 (ro taken from (1.3))

Define I'y, = {z : 2’ € K and z; = 70}. Then the function v, = XrolUe IS a weak
solution to the problem

Av(z) = $,.(z) (z € Qo,rp)
Azv.(z) = fo(2) (z € G.)

ve(z',m0) =0 ((z',r0) € Ty,) (1.10)
ve(z) =0 (¢ e€Ty)
6,,1)5(:1:) =0 (I (S aQe,ro \(Pe U Fro))

where @, = Xrofz + 2(Xro ),az;,uc + (Xro )”ue~
We extend problem (1.10) in the even way through the plane {z; = 0} (i = 1,2)
and set 2a—periodicity conditions on the corresponding side of the parallelepiped a

0,ro"
Since the extended problem is invariant- with respect to shifts by € along the axis z;,

the function

5 (z + €&;) = 9(z)
€

Vi(z) = (&1 =(1,0,0),& = (0,1,0)) (1.11)
that is 2ae-periodic in z; satisfies the relations

B0)(z + eg;) ~ B(z)

~AVO(z) = : (e €9),)
V@) = L Ei‘) =) (z € G

V(2! rg) =0 (' € KM
V(z) =0 (z € T)

Vi (z)=0 (z € 3\ (PO UTW U {z; = £a})

&,7o
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whence, using condition (1.3), Lemma 1.1, (1.9) and the second energy inequality [13],
we deduce the inequalities (i = 1,2)

VO H@E,, B0
< & (IFD; Lo @D + 192te; La(R + 1 (xXro) Oevgthes La(S20))
< & (IFD; L@, + 1o La(R0)] + lue; H (R, To)1))

<Cs

(1.12)

2. The extension operator

Now our aim is to pass to the limit in identity (1.8). To this end we construct an
extension operator. As we mentioned above, there exists no extension operator bounded
uniformly in €. In order to verify this assertion, it suffices to make use of the function
¢o from Subsection 1.1. But we can prove the following

Theorem 2.1. For the solution to problem (1.1) there ezists an eztension operator
P.: H(Q.,T.) - H(Q,I'_))
such that
2 o~
[P @ 0-0] <o (S IE0 @D) + a0l @
k=1 .

where the space H'(Q,T_;) is formed by functions of the Sobolev space H'(Y) whose
traces vanish on 'y = {z: 2’ € K and z3 = -1}.

To prove this theorem, just as in [20] for thin junctions, first we use an extension
from a thin cylinder into a thin beam. Since the proof of this result was not given in
the mentioned paper, we give it here.

Lemma 2.1. Let
T, = {z 2’ €T, =€¥ and z3 € (—1,0)}
B, = {:z :z' €S =¢€S1 and z;3 € (—1,0)}
where T 1s a plane domain with Lipschitz boundary belonging with its closure to the

square S) = {2’ : |z1| < 1 and |z2| < 1}. Then for all u € H'(T,) there ezists a linear
eztension operator P, : H'(T,) — H'(B.) such that

/B‘(‘P,u)zd:c < co /I’. u’dz . (2.2)

/ |v,7>,u|2dxgc0/ |V u|?dz. (2.3)
B, T.
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Proof. Obviously, it is sufficient to prove inequalities (2.2) and (2.3) for smooth
functions. Expand the thin domains T, and B, with respect to z; and I, in % times. By

u(n', z3) we denote the function u(en’,z3) with ' = ’7' There exists a linear extension

operator £ : H'(Z) — H'(S)) (see [6, 14, 21, 25, 28, 30]) such that
&Gy B el B @] (=01 (29

where the constant ¢, is independent of both the function u and the variable z3. By
repeating the construction of the operator &, in [21, 28] one can see that

0es (E1(2(n', 23))) = &1 (Be,ti(n', 23)). (2.6)

Define the desired extension by the formula
(Peu)(z) = t(z3) + &1((n', 23) = (33))] o
where
t(z3) = g /2 u(n',z3) dn’.
Using (2.5) and (2.6), the Poincare inequality and the elementary estimate
|, Is);fz(z)ll

H

lt(z3)| <
we can prove inequality (2.3) :

/ |vz'qu|2d$
B,
’ 2
=/ /; |V &1 (@(n', 23) — t(z3))| dn'dzs
-t Js,
0 .
“ ./l (/ (#(n', za) - t(‘t"‘))zdn’ +/ IV,,.a(,,ng)qu') dz;
o ,
cr [ [ 190t o i,
-1/ ,

= C2/ |V,'u|2dz
T.

IN

IA

and

/B (82 (Peu)) dz

= /_ Ol /s | (t'(z3) + & (0n, (', 25) - t'(;s)))zdn'dzs
< ¢? /0 (IYIJ_I/:‘: (azaa(n,,$3))2d7ll +¢q /E (8:51(n',z3) — t'(z;))zdn') dz;

-
Sca/ (8z5u)%dz.
T,

Inequality (2.2) can be proved by analogy with the previous inequality B
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Remark 2.1. In just the same way one can prove the existence of an extension
o), H'(B.\ T.) — H'(B.) with the same properties as the operator P,.

Proof of Theorem 2.1. This construction will be carried out in several steps. At

first we prove that there exists an extension P from each thin cylinder G.(i,3) into
the thin beam

B,(i,j):{z: (-?—i,ze—z—j)eB(”) and —I<:1:3§0}

such that
|PDu; H (U (UL B i) S el HY Q)| (we H'Y(QW).  (27)

Here B(*) = {z':|z1— 3| < h and |z - 31 < h} is a squaré containing the domain
w,po<h< % To this end, we use Lemma 2.1 to extend a function u to each cut beam
B.(t,j)N{r: —-l<z3< -5}

Next, we use the operator P, from [14] to extend the function u from the domain

1 1
{:z: ﬂ—i——l<h, and ‘z—z—i——|<h(—e<xs<e}
€ 2 £ 2

\((Bui\Gelis ) n {z: 5 <25 < 0})

to the domain
1 1
{:c: ﬂ—i——|<h and ‘x—z—i——|<h —€<:1:3<6}
€ 2 € 2

(i,7 =0,1,...,N —1). In [14], there are given two-side estimates for the norm of the
extension operator P, acting in Sobolev spaces on the exterior or interior of a domain
with small diameter of order €. In our case, as follows from this paper, the H!-norm of
B. is uniformly bounded in €, and estimates of the type as in Lemma 2.1 are valid.
For the next steps it is important that we construct the extension for the solution

u, to problem (1.1). By u, we denote again the extended function Py, for which
estimate (2.7) is valid and which vanishes when z3 = —I. For eachi € {0,1,...,N -1}
we extend the function u, from the system of thin beams B.(¢,j) (7 =0,1,...,N —1)
to the thin plate

1
B,(i,*):{x: J;—I—i—é‘<h, 0< 12 <a, —I<13§0}.

At first we extend the function u, to each domain

= .. e . 1 Ty . 1

D,(z,1)={z; ‘?l—z—i‘<h, heZ-j-35<1-h, —l<1:3<—5}
(j = -1,0,1,...,N), that is situated between two cut beams

Be(i,7) = Be(5,j)N{z: -l <z3 < —e} and  B.(5,j+1)
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using the “linear matching”

i.(z) I:= aii(e,zy,z3) + b,’j(e,xl,zs)(zz — 5(h +7+ %))

where
. 1
aij{e,x1,23) = u, (z,,e(] + h+ -2-),13)

1 . 3
b.’j(E,I],l‘g) = 6(1—_2}1—)- (ue(Il,E(] —h+ 5),13) - ai]’(E,l‘],.’Es)) .

In the case of extreme beams, we perform the even extension of problem (1.1) through
the plane {z2 = 0} and {z; = a}, respectively. Estimating the norm of the function .,
we get

|l HY(De (3, 5))|)* <

e(i+h+1) —
¢ / / (e(a?j + |V pai5?) + € (b?j + |V zabis)?) + eb?j)d:zgdxl.
e(i-h+1l) J-1t

(2.8)

From Lemma 2.1 and the inequalities
u?(0) < g/ u?(t)dt + 2¢ /e(u')z(t)dt
0 0
(u(e) - u(O))2 < e/(; (w)?(t)dt (u€ H'([0,¢]))

we obtain
e(i+h+3) p—c
6/' / a?j d:L‘;;dI]
e(i—h+3) J-1
s . . 2 2 = .. 2
< e (”u,;Lg(BE(z,]))” +e ”azzue;LZ(Be(Z;J))” )
< csllues H' (G (i, )|,
and

e(i+h+1) —c
e / / b2, dzsdz,
e(i—h+1) J-1

< e (V5 La(Belis )NI” + €100 VI La(Beis DI + [18ees La(Beis 1))
< es (IVOHV Gl DI + [Jue H' (GG )

where the function V% is defined by (1.11) and 5c(i,j) =G(4,5)N{z: -l < z3 < —¢}.
Using the second energy inequality [12] with the smooth cut-off function x satisfying

_ 0 ifI;;Z—%
Xe(ma) - { 1 if T3 S —€
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we analogously estimate the other values in (2.8) as

e(i+h+d) p-c ’
e/ / IV,lzaa,'de:c;;dJ:]
-1 .

e(i=h+1)
< e (|| Vues La(Gelt, D)* + € Jues H* (e
< e ([lue B Gl DI + e La(G ).

and

s e(i+h+i) p—e
£ / / |Vxltgbij|2d33dxl
e(i—-h+3) J-1

< e (IVVE; LG DI + X[V HAEei, I + lfues HAEGL )
< e[V H Gl )| + e H (Geli )|
+ B oG DI + || Lo(Geli DI
Thus, the right-hand side of (2.8) is estimated by the sum of the terms |
IV BN Gl I, Nlues BN Gy 1D La(Geli, I [|fes La(Gei i)
To extend the function u, to the whole domain
D.(i,j) = {2:: ‘z—'—i—ll<h, h< z—z—j—%<1—h, -—I<'1:3§0}

it 1s sufficient to use the periodicity of the domains D,(¢,7) (j = —1,0,1,...,N) and
Remark 2.1 with the domains

1
T¢={z: Jv—‘-——\<h h<——§<1—h, —s<13<0}
3 3 1
Bc—{.’t. ?——I , €<Iz<2 —§€<$3<56}.

As a result, we obtain the extension to the thin plate B.(i,*) (i = 0,1,...,N —1).
Similarly we extend the function u, to each thin plate

I?2

B,(*,j):{z:0<zl<a, ‘?—j—%l<h, —l<1:3$0}

along the direction of the z;-axis (j = 0,1,...,N —1).

Thus, on the second step we have constructed the extension Pe(z)u, (Pz(z)u, =0
when z3 = —[) for which on the basis of conditions (1.2), (1.3) and inequalities (1.9),
(1.12), (2.8) the estimate

[P 1 (90 U (UNS (B U Bt )|

2 ~ L ‘ (2.9)
Sco (Z [FR; La( QDN + || fes L2<Q,)||>
i=k
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holds.

Now it remains to construct an extension Pe(s) into the thin beams

. o1 .
T,(i,;):{z:h<°’€—l—z—§<1—h, h<1;—2—_7—%<1—h, —I<23$0}

(1,7 = —1,0,1,...,N) just as previously, we perform the even extension of problem
(1.1) through the planes {z; = 0} and {z; = a} (i = 1,2) for the extreme beams. To
this end, we use at first Remark 2.1 with the domains

T, =T.(0,0)Nn{z: z3 < —¢}

B,={z: %e<x1<ge, %e<zg<;e, —I<135—e}
to extend Pz(z)ug into the cut beams T,(,7)N{z3 < —¢} (¢,7 = -1,0,1,...,N). Next,
the extension P!* of the function Pe(z)u, to parallelepipeds with the diameter of order
€ is constructed in the same way as for perforated domains [6, 25, 30]. As we mentioned
in the introduction, this extension is bounded uniformly with respect to the parameter
€ in the Sobolev space H'. Thus, according to what has been said and estimate (2.9),

the extension operator P, := Pg(s) o P,m o P,(‘) was constructed, and it satisfies estimate
(z1 .

3. The convergence theorem

Its proof consists of several steps. First, using the extension operator P,, we pass to
the limit in the integral identity (1.8). Next, selecting test-functions, we find the weak
limit of P.u., and conclude that this limit is the solution of a homogenized problem.

Theorem 3.1. Let conditions (1.2) and (1.3) hold. Then for the eztension P,u,
of the solution u, to problem (1.1) we have

P.ou, — v weakly in H'(Q,T_.;) as € =0

where the function

vz z
wi) = {30 nieD ©
13 a weak solution to the problem
Avg (z) = fo(z) (z € ) ‘
92,v5 (2) = fo(z) (z € D)
dvf(z)=0 (z € 0%\ K)
v()_(zl’ _l) =0 ((:L‘,, —I) € F_l) (32)
vi (z',0) = vy (2',0) (z' € K)
dsvg (z',0) = |wl, D504 (',0) (z' € K). )
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Proof. Using the extension operator constructed in Theorem 2.1, we can rewrite
the integral identity (1.8) as

!
Vu, -Vedz + / xu(%) VP.u, - Vydr
e > , (e H'QT-))  (33)

= - nofewdz+/oxu(%)f&dx

where x.,(n') (n' = (m,n2) € R?) is a 1-periodic function in 5’ satisfying

1 onw

(') = { 0 on[0,1)?\w.

Due to conditions (1.2), (1.3) and inequality (2.1), the -sequences

{Xw(%')a,_.(P,u,)} (i=1,2,3) (3.4)

are bounded in L,(D). Therefore, we can choose a subsequence of {¢} (still denoted
by {€}) and pass to the limit € — 0 in (3.3). We obtain

| Vi(2) - Vil dr + [ n@ouptards=- [ popdz = ol [ oz (39)

for all ¢ € H'(Q,T_;) where ; (¢ = 1,2,3) are weak limits of sequences (3.4) in
Lo(D), respectively, and vo = v (see (3.1)) is a weak limit of the sequence {P.u.} in
HY(Q,T.).

Next, we select test functions to find these values. Since

/ o (2) 22 Pelue(e))é dz = —/ Xo(Z)Pelue(@)z, 0 da
for all ¢ € C§°(D), we have

73(2) = |wl2 Bzgvg (2)  (z € D).

In order to determine v, and -2, we consider the integral identity (1.8) for problem (1.1)
with the test function 1; defined by

forz € Qp
Yi(z) = { Yi(Z)p(z) forz e Go

where ¢ € C§°(D) and Y;(m:) = —ni + {ni] + % (: =1,2) ([z] is the entire part of z); it
is obvious that ¢; € H'(Q,,T.). As a result, we get

/ xo (% )a,_P (ue(z))pdz = Oe) (e — 0)
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whence v; = v, = 0. Thus we have
/ Vv{,*'(:z:) -Ve(z)dz + |w|2/ 0:,v (2)0:,0(z)dz = —/ fop dz — |w|2/ fop dz
112 D 179 D

for all ¢ € H'(Q,T_;). This integral identity means that the function vo is a weak
solution to problem (3.2). This problem is called resulting for problem (1.1). The
operator that corresponds to problem (3.2) is non-compact as the differentiation in D
is taken only with respect to z3. It should be noted there are no boundary conditions
on the vertical sides of D.

By solving the ordinary equation of problem (3.2) in the parallelepiped D with
regard to the boundary condition on I'_; and the first transmission condition in the
contact zone K, we find that

0
vy (z) = / (z3 — t)fo(z', t) dt + 1:31+1 <v0+(:c',.0) + /_ltfo(z',t)dt) . (3.6)

Now, according to the second transmission condition in problem (3.2), we obtain the
problem

Avg (z) = fo(z) (z € Q)
A (z)=0 (z € 0 \ K) (3.7
Avt(z',0) — w2l vt (2',0) = fo(z') (z' € K)
where
|2

falz )——/ (1 + 22)fol&', 23) das.

Obviously, problem (3.7) has a unique solution. It means that there is also a unique
solution to problem (3.2).

Duec to the uniqueness of the solution to problem (3.2), the above reasoning holds

for any subsequence of {€} chosen at the beginning of the proof. Therefore the theorem
is proved i

4. Asymptotic estimates

In this section we suppose that the function f, satisfies only the condition

fe(2) = fo(z) +efile,z)  (z€Q) (4.1)
where
fo, f1 € La(R) and | f1(e,-) L2(Q)|| = O(1) (e — 0)
and the plane domain w is symmetric with respect to the straight lines {z; = %} (z=
1,2).

4.1 Formal derivation of the resulting problem using asymptotic expansions.
Combining the algorithm of constructing asymptotics in thin domains with methods of
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the homogenization theory (see [3] and others), we seek the main terms of the asymp-
totics for the solution u, restricted to g in the form

ve % 03 Hz) + Ze"u:(z €) (4.2)
k=1
and, restricted to G.(z,7), in the form

o0
- i i Ty . ] Z?2 .
v (z) + Y efvp (znf)n) (i) = - i,n = — —J) (4.3)

Decomposing formally the function v, in the Taylor series with respect to the variables

z, and T, in a neighborhood of the pont I =¢(i+31)and :r:(’) = e(j + 3), we rewrite
(4.3) in the form

ue = vy (i,7,23) + Zg Vi (z3,n 08 + O(€%) (2 € Geliy7)) (4.4)
k=1
where
k m
ij 1 iy 1 1s] ; 1\ 3 ‘
Vi ’= Z_o mt ((Tli - E)E + (Ugl) - 5) E) v_ m(l .731:3)775 ),ng’)) (4.5)
) ()

and v (3,7,...) = v (2:l , &3 ,...). Let us substitute (4.4) into (1.1) instead of u,.
Collecting and equating to 0 the coefﬁcients by equal degrees of €, we obtain

Dy Vi (zs,m) =0 (7' €w) “6)
ayq[ Vli,j(xs’n;) -0 (au,,/ VI',J(xs,U,) =0 .
and .
Ay Vyl(z3,m') + Bzavo_(i,j,zs) = fo(i,7,23) (7' € w) @
O, ,V;’J(rs,n') =0 (n' € dw). )
Here n' = (771 ,772’)) the variable z3 € (—1,0) is regarded as a parameter in these
problems. From (4.6), it follows that the function V| "7 does not depend on n'. We
restrict ourselves to the leading term of the asymptotics, and thus set V' = 0. Then,
by virtue of (4.5), we have
- - . (i 1 .. ho1
v (1,]7 1377],) = _azlvo (l,],.’ﬂ:;)("]] - 5) - arzvo (1"]113)(7’5)) - E) (48)

The solvability condition for (4.7) is given by the ordinary differential equation with
respect to z; that is present in problem (3 2), and the- points. (:z:l ,zg')). (4,7 =
0,1,...,N — 1) are regarded as parameters in this equation. Since these points make
up the e:-net in I, we can spread this equation in all points of the square K.
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It is understandable what equation we will obtain for the function v§ from (4.2) if
we substitute (4.2) into (1.1). It remains to provide the continuity of the asymptotic
approximation and their gradients in the contact zone K. It is doubtless that

vg (2',0) = vy (z',0) (z' € K).

To get the second transmission condition in (3.2) we can use the method of matched
asymptotic expansion: the outer expansions are given by (4.2) and (4.3); the main terms
of the inner one takes the form

3
ue ~vf(z',0)+¢ Z Zi(n)0z, vt (2',0) + . .. (4.9)
i=1
where 7 = £ and {Z;} are junction-layer solutions which we will consider in the following
section. Thus, the first term vi in asymptotics (4.2) and (4.3) is a solution to the
resulting problem (3.2).

4.2 Junction-layer problems. Let us introduce the “rapid” coordinates n = £in
problem (1.1). Passing to € = 0, we see that the cylinder G.(0,0) transforms into the
semi-infinite cylinder

7 =w x (—00,0]

and the set £y transforms into the first octant {n; > 0 (: = 1,2,3)}. Taking into
account the periodicity of the cylinders G.(¢,7) (¢, =0,...,N —1) we can regard that
the union II of the semi-cylinders II~ and

I+ = (0,1) x (0,1) x (0, +c0)

is a base domain in which the junction-layer problems have to be considered. Obviously,
solutions of these junction-layer problems must be 1-periodic in 7; and 72, i.e.

05, Z(n),, o = 05, Z(n)| (nedl*,ns >0, k=0,1;7=1,2). (4.10)

n,=1

Let us investigate some properties of solutions to the following junction-layer prob-
lem:

—AgaZ(n) = F(n) (n € M)
0v,2Z(n) = B(n) (n€ ol \w @)
09, Z(n',0) = 0 (n',0) € 8Tt \w) )
05,2, o =% Z(n)|,_,  (n€dN*,ny>0;k=0,1;7=1,2).

At first we study the solvability of this problem. In this connection we use the
scheme given in [22]. Let C¢(II) be a space of infinitely differentiable functions in IT
that satisfy the periodical conditions (4.10) and are finite in 73, i.e.

YVoeCPMIR>0Vne ns| > R:  v(n) =0.
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Let H bé the completion of the space C5°(TT) by the norm

1
2
ulln = (||Vn“||2,(n) + ||Pu||§,,(n))

where p(13) = Win—al (ns € R). We will call a function Z a generalized solution to
problem (4.11) if for all functions v € H the integral identity

/qu.v,,vdT,:/ der]+/ Budn (4.12)
n n A~ \w

holds.
Lemma 4.1. Let ’;F € L(1I) and %B € Ly(01™ \w), and let

/ F(n)dn +/ B(n)do, = 0. (4.13)
In oM-\w

Then there ezists a solution Z € H to problem (4.11) that is defined up to an additive
constant.

Proof. We rewrite identity (4.12) in the form
(Z,v)—/ Zvdn =/ der]+/ Buvdn (4.14)
II-,_, )9 2] 1 \(J

Heg={nell:a<n; <p}

where

and
(u,v) = / Vau-Vyvdy + / uvdn. (4.15)
n N_32
Then the new scalar product (4.15) generates an equivalent norm in H. It is obvious

that (u,u) < e1f|lu||?; (u € H). The inverse inequality with another constant follows
from the Hardy inequality

/+°° ¢*(n3)

+ o0
(1+ )2 dns < 4/; |Ons ®12 dn3 (¢ € C'([0,+00)) with ¢(0) = 0)

and the inequality
/n p2(n)u?(n) d
< / pu’ dn+/ P2((1 = x(ma))u)’dn
M-z, n
. S/ p*u’ dn + cy (/ (3qau)2_dn+/ (X' (n3)u)? dn)
Moz n Moa2

< c2(u,u)

(4.16)
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where x € C(R),0< x <1 and

_J1 ifins| <1

Due to the conditions of Lemma 4.1, inequality (4.16) and the inequality

1]

[ Fnda, < [ o) [ o2 doan,
M- \w —o0 w

(veH)
<c [ (9ol + plrs)e?)dn
n

the right-hand side of identity (4.14) defines a linear continuous functional in H. As
the embedding H C Lo(II_;,2) is compact, there exists a self-adjoint positive compact
operator A : H — H such that

(Au,v) = / wmpelndn  (fuv) € H).

Thus, we can rewrite identity (4.14) as operator equation .
Z-AZ=f

and apply Fredholm theorems to it. It is obvious that every solution of the homogeneous
problem (4.11) in the space H is constant (its Dirichlet integral is trivial). Therefore,
equality (4.13) is the solvability condition for problem (4.11) il

Remark 4.1. Let exp(éo|n3])F € L(IT) and exp(—bon3)B € Ly(0Il~ \w) (8 > 0).
Taking into account the _properties of solutions to elliptic problems in semi-cylinders,
we can select a solution Z of problem (4.11) such that

exp(—61m3)Z € H'(II™) . (4.18)

where 6, is an arbitrary number that satisfies the inequalities 0 < §; < &, and 6 <
VA(w); A(w) is the first positive eigenvalue of the Neumann problem in the plane
domain w. It is clear that the solution Z has the following asymptotics in the semi-
cylinder IT+: B
Z(n) = C+ O(exp(~é2m3)) (13 — +00). (4.19)
Remark 4.2. If the functions F and B from Remark 4.1 are even or odd in any
of the variables {7,7,} with respect to }, then the solution Z has the same symmetry.
In fact, let for example F and B be even in 1, with respect to %, i.e.

F(ni,m2,m3) = F(1 —m,m2,m3) and  B(m,n2,m3) = B(1 — 11, 72,73).

Then, due to the symmetry of the domain w and using the substitution n; = 1 — 7] in
problem (4.11), we obtain that the difference Z(n1,12,73) — Z(1—1;, 7, 7n3) is a solution
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of the homogeneous problem (4.11), and relation (4.18) is satisfied for it. By virtue of
the uniqueness of such a solution, it follows that this difference vanishes.

Corollary 4.1. The homogeneous problem (4.11) has a solution Z¢ ¢ H with the
asymptotics

—:‘0(7]) — { Cw + n3 + O(CXP(_63773)) as 13 — +oo (420)

lwlz 'n3 + Oexp(63ms))  asns — —o0
and this solution is even in 1),7m, with respect to 1/2; 63 > 0.

Proof. The solution = is sought in the form of a sum

—_ 77 ~
Zo(n) = x+(n3)ns + |:T—ZX—(U:;) + Zy

where Zo € H and Zj is the solution to problem (4.11) with right-hand sides

2 : 1
F(n) = 2xy(n3) + Xy (m3)ma + mx'_(ns) + |;Ex'i(na)na =: F(m)

and B = 0. Here X+ is a smooth cut-off function with

_ 1 whenn; >2
X+=10 when n3 <1

and x—(n3) = x+(—73) (73 < 0). By virtue of Lemma 4.1 and Remarks 4.1 and 4.2,
there exists a unique solution Zy € H to such problem that is even in 7; and 7, with
respect to % and has the asymptotics

s = { G Ofeo(bm) e 1

O( exp(6373)) as 73 — —oo. (4-21)

In order to find the constant C,, in (4.21), it is necessary to substitute the function Zp
and Z, into the Green formula

/ (E0AZo — ZoAZ,) dn = / (200, Zo — Zody,=0) dn
MN_gr.r oll_r,r

and to pass to the limit as R — 0o. As a result, we obtain C,, = [ Zo(7)Fu(n3)dn B
Remark 4.3. By analogy we can show that the constant C in (4.19) equals

¢= [ zmFmdn+ [ ZomBm)da. (4.22)
nn Al - \w
Let us substitute (4.9) into (1.1) instead of u,. Collecting and equating to 0 the
coefficients by equal degrees of £, we get the problems for the functions Z;. The con-
ditions at infinity for ones follow from the conditions of the matching of the outer and
inner expansions (4.2), (4.3) and (4.9). .As a result, we obtain that Z3 = Z¢ and Z,,2>
are equal to

Zin) = x-(m)(=ni + )+ Zi(n)  (nel)
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where Z; (i = 1, 2) are solutions to problem (4.11) with right-hand sides
Fi=x"(n3)(-mi +3) (n €M)
Bi=-(1-x-(m)vi(n) (nedll™\w).

Remark 4.4. Since the functions F; and B; are odd in 7; and even in Nig(=1)i+1
with respect to %, then, due to the above-mentioned results, it follows that, in the first
place, the solvability condition for these problems is realized. In the second place, the
correspondent constants in (4.19) for the solutions Z; and Z, are equal to zero. And,
in the third place, the functions Z; and Z, have the same symmetry, i.e. with respect

to 3 the function Z, is odd in 7, and even in 72, and the function Z, is even in 1; and
odd in 7,.

Remark 4.5. The main asymptotic relations for the functions Z; can be obtained
from general results about the asymptotic behaviour of solutions to elliptic problems
in domains with different exits to infinity [9, 24]. In our case, using the symmetry
of the domain w and the existence theorem for the concrete problem, we can define
more exactly the asymptotic relations and detect other properties of the junction-layer
solutions. These properties help us to find residuals of an approximation function U,

in the equation and in the boundary conditions of problem (1.1) and to obtain better
estimates for ones.

4.3 The asymptotic approximation. Let vy be a unique solution to the resulting
problem (3.2),i.e. vy is defined by (3.6) and v7 is a solution to problem (3.7). Matching
the outer and inner expansions for the solution u., we construct the global asymptotic
approximation function U, € H'(%,,T,):

Ue(z) = vy (z) + €X0(1’3)}: (Zi(n) = 6i313)0z,05 (2',0)  (n=%,z€Q) (4.23)

and

Ue(2) = 35 ) + & (i(m)0e,v5 (2) + Yalma)Pervs =)
+x0(Es) Y (Zin) = 6uYalm) — 6iaYa(m)  (1=%,2€Go). (424)
i=1

— 6i,3|n—3)aziv(,+(z’, 0))

|wl2
Here xo(z3) = x(;zgz;,) (z3 € R) (the function x is defined by (4.17) and Y;(n;) =

—ni + [mi] + % (see (4.8)). Substituting U, into problem (1.1) in place of u. we find
that, for any ¥ € H(Q,,T.),

/n (VUe- VY + feyp) dz = Fo(y) (4.25)
and
|Fe()] < c(6) € ~°||w; H' (R, T. )|, (4.26)

where § is arbitrary positive number. Using Lemma 1.1 and the integral identity (1.8),
we get from (4.25) and .(4.26) the following
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Theorem 4.3. The difference between the solution u, to problem (1.1} with right-
hand side (4.1) and the approzimation function U, satisfies the estimate

llue = Ues H(Qe, Te)|| S ca(6) ™% (6> 0). (4.27)
Corollary 4.2. It follows from (4.27) that

lue — vo; La(Re)|| < c2(6)€' ™% (6> 0) (4.28)
where vy 1s the solution to the resulting problem.

4.4 Conclusion The symmetry of the domain w with respect to the straight lines
{zi = 1} and {z2 = 1} is only a technical condition. It helps us to avoid awkward
calculatlon and to obta.m better estimates for residuals of the approximation function
U.. If the right-hand side has the form f, = 3o, €* fi(z), then we can define the other
terms in the asymptotic expansions (4.2), (4.3) and (4.9).

From asymptotic estimates (4.27) and (4.28) we come to the following conclusion:
For applied problems or for numerical calculation in thick periodic junctions, we can
use the resulting problem instead of the initial problem with sufficient probability. The
similar boundary-value problem for the elasticity equations in thick periodic junction
of type 3:2: 1 is prepared for publication.

I would like to note that the thin cylinders G, in the junction §2, have the same
length. It was done only for simplification of the presentations. In the case when the
cylinders have various length, and their bases describe some surface y_(z'), z' € K; we
must perform the odd extension of the solution to problem (1.1); and then construct
the extension P,u, in the domain N {z' € K, y-(z') < z3 < 0} as in Section 2. It
should be also noted that extension operators for spectral boundary-value problems in
thick periodic junction are uniformly bounded in € only on finite linear combinations
of eigenfunctions. For spectral problem we are not need of additional conditions like
condition (1.3) (see [16, 20]).
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