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Acoustics of a Stratified Poroelastic Composite 
R. P. Gilbert and A. Panchenko 

Abstract. In this paper we discuss the acoustic boundary layer problem for a poroelastic 
seabed abutting onto a liquid half space. The problem is addressed using the method of 
homogenization where the microscopic equations are modelled after Burridge and Keller [5], 
Levy [10], and Panasenko [13]. A difference in our approach is that we do not consider the 
viscosity coefficients to be dependent on the pore size. To achieve continuity of displacement 
and stress at the interface to an arbitrary asymptotic order, we introduce correctors of two 
different types on each side. Then correctors of different types are matched across the interface. 

Keywords: Homogenization, asymptotic expansions, boundary layers, composite materials 
AMS subject classification: 74 Q 10, 35 Q 35 

1. Introduction and Remarks 
In this paper we discuss the vibrational motion of a porous medium whose pore space is 
saturated with fluid. The porous medium we propose to study is formed by a periodic 
arrangement of the pores into cells. The vibrational motion is assumed to be stimulated 
acoustically by a signal whose wave length is A. For an averaging procedure to work, we 
need the wavelength to be large compared to a typical cell size £. Assuming in addition 
that A is comparable to the characteristic macroscopic size L of the problem and the 
fluid phase is incompressible, one can classify different homogenized models, as was done 
in [2) heuristically, and justified rigorously in 1 7) . In these works, four different types of 
possible macroscopic behavior are listed: 

• Model I: The acoustics of a fluid in a rigid porous matrix regime. This case was 
considered previously by Gilbert and Panasenko [6]. 

• Model II: Diphasic macroscopic behavior of the fluid and solid matrix. This case is 
considered using the methods of two-scale convergence in [7]. 

• Model III: Monophasic elastic macroscopic behavior. This case is also discussed in 
[7]. 

• Model IV: Monophasic viscoelastic macroscopic behavior. 

Model II, the diphasic case corresponds to the Biot model [3, 41. 
In this paper, we allow the fluid to be compressible and do not assume that A is 

comparable to L. Thus the model developed in the paper will also work for A large 
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compared to £ but small compared to L. The homogenized model obtained is close to 
the "slightly compressible" variant of model III as developed in 1 7] . The microscopic 
equations we use are similar to the ones used in papers by Levy [10] and Burridge and 
Keller [5]. The only, but essential difference is that we do not assume the viscosity 
coefficients to be comparable to the pore size. We adopt a point of view according to 
which viscosity characterizes properties of the fluid regardless of the pore geometry. The 
immediate conclusion then is that the classical Biot model is an approximation valid 
for pore size lying within a certain range. The latter is determined by the viscosity of 
the fluid and by the geometric characteristics of the medium. Passing to the limit of 
"infinitely small" pore size, one should expect to obtain a set of equations different from 
[3, 5, 10]. 

Denote the ratio between £ and L is given by e, EL = £. The geometrical structure 
inside the unit cell Q = (0, 1)" has a solid part QS which is a closed subset of Q, and 
a fluid part QI = Q\Q3. Now we assume Q 3 is periodically repeated over R" and set 

= Q' + /c for k E Z'. Obviously, the obtained closed set X' = 
UkEZ" Qk is a 

closed subset of R' and X I = R\X 3 in an open set in R". We make the following 
assumptions on QI and X': 

(i) QI is an open connected set of strictly positive measure with a smooth boundary, 
and Q' has strictly positive measure in Q as well. 

(ii) X 1 and the interior of X 3 are open sets with boundary of class C°°, which are 
locally situated on one side of their boundary. Moreover, X 1 is connected. 

Now we see that X = (0, L)" is covered with a regular mesh of size e, each cell being a 
cube Q7, with 1 < i N(e) = I X I( e ) - " [ l + 0(1)]. Each cube Q7 is homeomorphic to 
Q, by a linear homeomorphism [Ii, being composed of translation and an homothety of 
ratio . We define

Qs = (r1) - '(Q')	and	Q = (H)-1(Qf) 

For sufficiently small e > 0 we consider the sets 

Tc ={kez hh IQSA: cX}	and	Ke = {k E ZIQSkCaPDX 54 01 

and define
x:= U
	

Se=OX: X=X\X. 
k E T 

Obviously, 0X = OX U S . The domains X and X represent, respectively, the solid 
and fluid parts of a porous medium X. For simplicity we suppose E N. Then K = 0. 

We construct a full asymptotic expansion for the system of two composites of the 
above type, separated by a plane interface. The first part of the construction deals with 
inner expansions. The development here is based on the general method proposed by 
Panasenko [13]. Then we proceed to take care of the boundary layers at the interface. 

The major part of this work is devoted to the investigation of interface effects 
between two different composites. We consider the simplest model situation of a single 
plane interface. The goal is again to produce a full asymptotic expansion accurate
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to an arbitrar' power of the parameter, which normally is a difficult task. A simple 
computation shows that the usual inner expansions can not be matched at the first level, 
even after the introduction of boundary layer correctors of a type typically employed 
in the literature. In classical works on homogenization such as [151 this problem is 
discussed, but the only rigorous work known to the authors is the recent paper by 
Avellaneda, Berlaynd, and Clouet [1], where the problem of interface matching is solved 
under the assumption that wave propagation can be described by wave equations at 
the microscopic level. The authors use the Floquet theory and operator perturbation 
theory to obtain explicit asymptotics of the Dirichlet- to- Neumann map at the interface. 

The main idea that makes matching possible is the introduction of two different cor-
rectors on each side. The first corrector is a usual one, so we call it "old". The second, 
"new" corrector combines the fast variable part of the expansion on this side and the 
slow variable part of the inner expansion from the opposite side. The matching is done 
as follows: the old corrector from one side is matched with the new corrector from the 
opposite side. This is the crucial part of the method. On the output, this "microscopic" 
matching produces two families of constant matrices used to obtain macroscopic match-
ing conditions. The constants can be determined explicitly from the formula contained 
in Theorem 4.1, and also from the examination of the proof of Theorem 5.3. As an 
example, we calculate homogenized transmission conditions for the main term of the 
expansion. The result shows that the homogenized transmission conditions can be writ-
ten in terms of homogenized normal stress only. The conditions for subsequent terms 
contain non-trivial corrections to the homogenized stress, which shows significance of 
edge effects. The details can be found in Section 4. 

In order to control decay of boundary layer correctors, one needs to estimate solu-
tions of the cell problem in unbounded domains. In the present case the cell problem 
is a system of stationary viscoelasticity. The problem to solve is twofold. First, we 
need to obtain sufficient conditions for the existence of solutions with derivatives which 
do not grow too fast. Then, imposing some extra conditions, we show that derivatives 
will decay exponentially, and the solution itself will stabilize to a constant vector with 
exponential speed. This is the most difficult and technical part of the paper. It is 
based on special a priori estimates of Saint-Venant type. Estimates of this kind for the 
elasticity system were obtained by Oleinik and Yosifian [11]. In the paper, we obtain a 
generalization of these estimates, since we need to deal with complex-valued coefficients. 
Moreover, the estimates in [11] are written in a half-space. In order to control the decay 
of solutions of the transmission problem, we need to estimate the decay of solutions on 
both sides of the interface, rather than on just one. We point out, however, that most 
of the technical arguments from [11] still works. 

The paper is organized as follows. In Section 2 we discuss the system of equations 
to be homogenized, and a certain transformation that leads to the elimination of the 
pressure from the system. In Section 3, the inner expansion is obtained. Section 4 
contains the details of the interface matching procedure. Finally, in the technical Section 
5 we give proofs of the estimates needed in Section 4.
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2. System of equations for acoustics in a periodic porous 
medium 

Consider an infinite E-periodic medium composed of an elastic solid and a compress-
ible viscous fluid. Let X 3 and X 1 denote the domains occupied by the solid and fluid, 
respectively. Their common boundary S is assumed to be a smooth manifold of codi-
mension one. The displacement vector u satisfies the system of equations (written 
componentwise):

	

Ps
	

S 

	

-
	+ fi	in X 3	 (2.1) 

axj 

foU l	Ocy' 

	

P	 in X 1 .	 (2.2) xi 

Moreover, on the interface 5, the transmission conditions 

[u] = 0 1 

	

[cxjzi] = 0	
(2.3) 

hold, where vj denote components of unit normal to S pointing inside of X'. In the 
solid part, components of the stress tensor a 5 satisfy the Hooke law 

1	 ,\ 

	

= ak,ekz(u),	kI(U) = ( 
auk

7 + 
OU	

(2.4) 

with coefficients a 1 e C(X 3 ) satisfying conditions of symmetry and positivity: 

=asik,=
(2.5) 

k 1 e 1 j(u)e 1j(u) ^! aJkIeI(u)ekl(u) ^! k2e1,(u)e1,(u). 

In the fluid part X 1 , the stress tensor satisfies the Navier-Stokes law 

af	
au= —5,3P + (A618kj + 2/L5jkSjI)Ckj (.-),
	 (2.6) 13

where the viscosity coefficients i and \ satisfy 

	

IL > 0,	- > — 
2 
—k2 ,	0 < k2 < 1.	.	(2.7) 

	

1	3 

If the displacement is small, we can linearize the equation near the reference state 
characterized by the known reference densities p 3 and p'. The linearized equation of 
state relates pressure P to the perturbation of density p: 

P = C2 P,	 (2.8)
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where c is the speed of sound. Moreover, the linearized conservation of mass equation 
gives a relation between p and the velocity	: at 

Op 
-+ Pf div--=0. (2.9) 

Integrating, we obtain p + p f div u = 0. Combining this and (2.8) we have P = 
—c2 p1div u, so that the pressure can be eliminated from (2.6): 

= a ,ki e k g (u ),	.	 (2.10)

where

af,k, = — C2 p1 SijökI + ('\Sijk1 + 2/thk6J,). 

Denote by a 1 j the components of thew symmetric fourth-order tensor equal to intj
 X3 and to af.in Xf , and denote by a the corresponding "unified" symmetric stress 

tensor. Since e(u) is also symmetric, we can write 

Ou 
aij = aijkl

UX k 

Then
au 0 

Ox)	0x,\	OXkI 
where Mk, are n x n-matrix operators with components a2kI. Using matrices Mk, we 
can replace (1.1) and (2.2) by a single system:

(2.11) 0i 2	Oxk\	Ox,) 

where p° equals to p3 in X 3 , and top' in X 1 . The components a, j of the matrices Mk 
satisfy (2.5) and (2.10) in X 3 and X 1 , respectively. On the interface 5, the transmission 
conditions (2.3) hold. 

3. Inner expansion and homogenized system 

The purpose of this section is to obtain a complete inner asymptotic expansion for a 
solution of system (2.11). The word "inner" means that at the moment we prescribe no 
macroscopic boundary conditions and treat the medium as infinite in all directions. The 
terms of the expansion will satisfy a chain of problems with coefficients independent of 
the parameter. The first system in this chain provides the macroscopic homogenized 
equations. 

Consider system (2.11) together with the interface conditions (2.3). Assuming that 
u is a time-harmonic vector with angular frequency w, and slightly abusing notation, 
we replace u(x,t) by u(x,)cIt. Then the amplitude u(x,) satisfies 

pu - —u) 2	 (AkP__) =	 (3.1) - 
Ox,	OXk
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where u(x) is an n-component vector function of x, Ak3 ( , w) are periodic n x n matrices 
with components	given by

=(3.2) 
in X 3 , and by

Akj = ( - c2 p1 + ii.\)5j6k, + 2ZW /L6 ik 5jI	 (3.3) 

in X f . By assumption, Ak, are smooth everywhere in R'2 except a smooth manifold S 
of codimension one. On S, the transmission conditions 

[u] =0 

A" aul =0 (i=1,2,...,n) 

are satisfied, where vj are components of the unit normal to S. We look for an asymp-
totic in E solution of the form 

U "	 N(e)Dv(x).	 (3.4) 

	

p , '=O	Iil=' 
By the chain rule, the differential operator 

5	a 
= 

corresponds to 

E2L+E_1[Ak(
52	52	5Ak 

+	+ 
aae)

5 ] 52 
+ Ak,	. 	(3.5) 

SXjSXk 
Substituting (3.4) into system (3.1), and taking (3.5) into account, we obtain 

f	 -w2pN"Dv + > l+P_2 ELN"D'v 
i,p=O	lil=l	 l,p=O	IiI=I 

5N' SDtv 
+ + >	em'' > aek i,p=O SXk	(3.6) 

+	C' >	
AN" a2 Div 

SXkSXj 
', P =0	II=' 

Next, we shift indices in the sums above to get 

-w 2 pN'D'v = E	E l+P2 E _w2pN2ID&v 
l,p=O	II=' I=0,p=2 IsI=i 

ON" OD'u i: EI+P	I	Ak	
=

1+p-2 SNP12 •"ll 
A,1	D 

5 k 
1 1 1 =1 1=I,P=o aek 

111=1 

E'	-(AkjN"") OXk --_	= >	el+p_2 V' 
I,p=O

C1	
AjN"" a2 Div- 

-
Cp+I-2

>	A,2N""3"D'v. 
SXkSX2 1,p=0	111=1 12,p=O IiI=1
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Then (3.6) transforms into

f

	

	 H"()D'v,	 (3.7) 
I,p=o 

where H 1 depend on NO , Ak) ,w and p. Since the left-hand side is of order 6 0 , we 
obtain

N°'° = N"° = I, 
where I denotes the unit matrix. Also, we assume that NO = 0 if at least one of p and 
j il is negative. Then, collecting terms in (3.7), we have for Hr" the expressions 

H°'° =0 
H"° = L^N l ' o = 0	 (3.8) 

-	H"° = -w2 pN'T 2 ' 0 + LN"° (p> 2) 

H°" =	+ LN°"	and	H1 =	+ LN" 

and

H" = -w2 pN" 2 " + Ak1,

	

(p?0,Ii>1)	(3.9) 
+ -(A,N""") + A, 2 N""3 ' + LEN". 

If we require that HP, ' be constant, equations (3.8) and (3.9) can be used to determine 
NO recursively. 

All equations above are of the form
= -Tn " - HP,', 

where

TP, ' = -w2 pN" 2 " + A k1 1 + —(A11NP,'2") + A1112N""3 ". 
.Oek 

Note that TO depends on the previously obtained N"" with p' + I i 'I < p + I ii. We 
specify the constants H P, ' to be (TP "), and write 

= -TP, ' + (TP, ').	 (3.10) 
This choice of HP, ' guarantees that each cell problem is uniquely solvable up to a 
constant matrix. To show this, consider the variational formulation of cell problems 
(3.10). Denote by V' and V° the spaces of 1-periodic vector functions 

	

V 1 = {v E H11.., : (v) =o}	and	V0 = {v E L 0  (v) =01. 
Consider a sesquilinear form b on V' given by 

	

b(u,v) = JB(u,v)dx,	where B(u,v)(x) = 

The variational formulation of a cell problem now reads: find u E V' such that 
b(u,v) = (f,v)	 (3.11) 

for some I E V° and all v E W. Of course, the actual cell problem (3.10) is a matrix 
one, so we have to solve several vector problems and determine columns of an unknown 
matrix one by one.
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Theorem 3.1. There exists a unique solution of problem (3.11). 

Proof. We note first that the symmetry conditions for Ak, remain the same as 
in the real-valued case. This implies B(u,u) = e(u)*Ae(u), where A is the fourth 
order tensor with components A( ") and e(u) = ( + +	This and the ellipticity 
condition for A implies B(u,u)I > c1 II e(u )II2 (Q) . By [13: Theorem 2.8], the second 
Korn inequality IIuIIHI(q) < C II e (u )11L 2 (Q) holds for all u E W. Hence, the form B is 
coercive on V', and by the Lax-Milgram lemma, problem (3.11) is uniquely solvable for 
any f E V°(Q)I 

The asymptotic series for u now takes the form 

u H2 '°v(x) + H"2 02v(x) 
ox,, ox, + E

1 -2  

P+I>2	II=' 

	

fl	ON°"	\ 02v(x) 
= -w2 (p)v(x) + >2 (Ak, 0k + A1112130 

I 

+ >2 1-2 E H"D'v. 
p+1>2	111=1 

Representing v as an asymptotic series v(x)	>q-O vq(x) we obtain a chain of 
averaged problems for successive determination of vq: 

LVq = fq,	 (3.12) 

where
______	 32v(x) Lv = — 2 (p)u + >2	0k 

+ A1112)00,
XiI 'i2 I ,i2=I 

and
fo = I 

fi = - >2 >2 
I +p= 3 lil=' 

12 = -	>2 H"D'v0 - > > H"D'vj, 
I+p=4 Il= '	 l+p=3 111=1 

and, generally,
g-1 

fq = ->2 >2 >2 H"D'v. 
t=O l+p=q-i+2 111=1 

The first equation in chain (3.12) is the homogenized system 

— 2 pu + >2 (
ON°,12	 \ 02v(x) 

	

Ati	+ A,, 12/	 =	(3.13)
a^k Ox,, Oxj2 

II,121	'



Acoustics of a Stratified Poroelastic Composite	985 

The matrices N°2 above are obtained as solutions of the cell problem 

	

= --A l2 ,	 (3.14) 

satisfying the eriodic boundary conditions and the transmission conditions [N o i2 1 = 0 
and [Ak3	 '. n] = 0 on the interface hypersurface S. 

4. Interface matching and boundary layers 

In the previous section we did not consider boundary conditions, so the construction 
above applies only locally in R'. To investigate the nature of the changes needed to 
incorporate boundary effects, consider the following model problem. Suppose that the 
plane interface {x : Zn = 01 separates two different periodic media. We assume that 
equations (3.1) together with the constitutive relations (3.2) with possibly different 1-
periodic matrices A are valid in the halfspaces K+ = {x : x, > 01 and K = { x kj 
X, < 0), respectively. A particular case of this is acoustics in a two-layer media of 
the type homogeneous fluid above, fluid-saturated sediment below. At this point we 
prescribe no conditions on u as j X n j - oo. Our primary interest is to investigate how 
the presence of the interface affects homogenization. 

For any z = (z 1 , ...zn) E R", let 2 denote the vector (z i , .. . z,,_i , 0). In what follows, 
we use the notations 

w(a,b) = {x : a <x, <b} 

Z(a,b) = {x: 0 <x < 1 (j = 1,... ,n -1) and a <Zn < b} 

= {x : x,, = t} 

with f  modified accordingly. We also denote 

Q = {x : xi E (0,1) ( = 1,...,n)} 

={x:xjE(0,1)(i=1,...,n-1) and xnrzzO}. 

Denote by H 1 ((a, b)) the space of locally H'-functions 1-periodic in 2. We recall that 
L denotes the differential operator in equations (3.1). A function u E H'(w(a,b)) is a 
weak periodic in 2 solution of the problem: 

Lu = I 
in a, b) if for any v E 1'(w(a, b)) such that v = 0 on F'a U r6 the relation 

f
(A aku,ahv)dx=1c, 

(ab) (a,b) 

holds.
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Below quantities with sub- or superscript + are defined in K, and similarly - 
refers to a quantity defined in K. In K+, we look for asymptotic expansions of the 
form

u	?'	(N" + M')()D'v+(x) + S'D'v_(x),	(4.1) 
p ,i=O	IiI=I 

where v± are asymptotic series formed by (so far) arbitrary solutions of the chain of 
homogenized problems (3.12) in K. In K we look for a similar expansion with all 
pluses replaced by minuses and vice versa. The matrices are as above, and Mc" 
and Si" are matrices 1-periodic in . Substituting (4.1) into the original equations (3.1) 
and repeating the calculations of Section 3, we obtain the identical equations for M' 
and	written explicitly only for Mt":

=	 (4.2)

in K+, where MM are of the form 

MM	
' 3MM. 

4" = MM Ø + 

where
MM = —w 2 pM 2" + AM.' 1 "il 12  

MM"J =	+ 
0 To start the chain, we set M^ 0 

= M+
10 

= S+0'0 = S+1 ' 0 = 0. On the interface x = 0 we 
impose the transmission conditions

= u_ 

= a(u)0 }	
(4.3) 

where
= 

These conditions arise due to requirements of continuity of displacements and stresses. 
Differentiating u± and shifting indices in the sums in the same fashion as in Section 3, 
we obtain

00 

= i ep+1-1 
P,I=0

P,'2'	D I v+ + An") + A11(N2' "+ M jil=j [ n)	+ 

00	 asp"	 1 

+	 I4+	+ +A SPt2tlj Div _ 
p,1=0	lil='	

''	+
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and a similar expression for cr(u - ). Substituting into the second equation in (4.3), 
collecting terms and combining with equations (4.2) we obtain the following transmission 
problems for determination of the pair of matrices M+PS and S S_ 

= MM in K +	 (4.4) 
= SS'	in K 

J 

with the interface conditions

N' + M" = 5!." + k'	 (4.5) 

and 

A-(N" + M!") + A11(NS2	+ M"2 ") =	+A-.,5-' ' 2 " + t', 

where k" and i' are constant matrices. We look for solution of this problem in the 
class of 1-periodic in matrices which decay exponentially as - . Similarly, the 
pair Mt", S." should be a solution to the problem 

= MM" in K-)
(4.6) 

= SS"	in K 
J 

with the interface conditions

Nt" + Mt" = S" + k!. s	 (4.7) 

and

+ Me") + A11(N'2 ' + M" 2 ")	 + A,SI2S + t!'
ac,	ns 

at the interface. Let us define the operator L to be L+ in K+ and L in K. Then 
the problems above can be written in the common form 

Lu=f	 in KUK 

[u] = 4)	at x,, = 0	 (4.8) 
[a(u) = 'P(i) + i	at x,, = 0. 

In order to formulate the solvability theorem, we first introduce some definitions. 

Definition 4.1. Let u(,x) E L' c be to  a vector function 1-periodic in ±. We say 
that u has one-sided exponential decay, if the estimate 

	

I1 U IIL 2 (Q.) < Ce°N	 (49) 

holds either for s E Z+ or s E Z, with constants C > 0 and a > 0 independent of s. If 
(4.9) holds for all s E Z, we will say that u has two-sided exponential decay. 

To describe the behavior at infinity we will use
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Definition 4.2. A vector function u will be called one-sided exponentially stabi-
lizing if there exist a constant vector w such that the function u - w satisfies estimate 
(4.9) either for s E Z+ or s E Z. If there is a pair of constant vectors w+ and w 
such that one-sided estimates (4.9) hold for both respective differences, we will call u 
two-sided exponentially stabilizing to w+ and w. 

Theorem 4.1. Suppose that f in (4.8) has two-sided exponential decay. Then there 
exist constant vectors t , w+ , w such that problem (4.8) has a 1-periodic in solution u 
such that e(u) has two-sided exponential decay, and u is two-sided exponentially stabi-
lizing to w+ and w. Moreover, 

= 1K- 
f(x)dx - 

fK+ 
f(x)dx - J(i)di.	 (4.10) 

Proof. First, we prove the theorem under the assumption that Ajc, f, 1, '' are 
smooth functions of their arguments. Consider a vector function U defined in K+ and 
satisfying the following conditions: 

i) U(i 3 O) = 
ii) c(U)(, 0) = -'I'() - t. 

iii) U and e(U) have one-sided exponential decay. 

The existence of U follows from Borel's theorem (see, for instance, [8: Theorem 1.2.6]). 
Next, consider the function v = u - U, and let F denote the function equal to f - F in 
K, and equal to f in K- . The function v is a solution to the problem 

Lv=F in KUK 

	

[v] = 0	when x,, = 0	 (4.11) 

	

[o(v)] 0	when Zn = 0. J 

In other words, v must be a global solution of the system of equations in (4.11). By 
Theorem 5.4 from Section 5, for any constant vector q this system has a solution v such 
that P(v, 0) q, where P(v, 0) denotes a generalized moment of v at x, = 0. For the 
definition and properties of momenta, we refer to Section 5 below, and to [12]. Theorem 
5.4 also implies that v satisfies the a priori estimate

2

) 
IIe(v)IIi2(k,k)) < c (Me	6I)IkI + kI	j('	- f,,dIM. 

 II  

Now apply Theorem 5.3 from Section 5. We see that v is exponentially stabilizing 
in K if P(v, 0) = - fK- 1(x) dx. Also, v will be exponentially stabilizing in K 
provided P(v, 0) = - fK- 1(x) dx. Combined, these equalities imply that v will be 
two-sided exponentially stabilizing if we set 

P(v, 0) = - j f(x) dx = - JK 1(x) dx.
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Hence we obtain that

JK + F(x)dx = JK + f(x)dx - 1K-	 (4.12) 

Consider the left-hand side separately. Since F = div (a(U)), we can integrate by parts. 
Due to periodicity, contributions of the derivatives with respect to i i vanish. Hence, 

IK+ 

F(x)dx =jaxJcr(U)nddxn. 

The choice of U makes the contribution of the upper limit in the x,,-integral zero, and 
we obtain

IK

F(x)dx=— / a(U)(1,0)=— fo 'F()di. 
Jq  

Combining this with (4.12) we obtain (4.10). The existence of the constant vectors w+ 
and w as well as two-sided exponential decay of e(v) follow from Theorem 5.3. Now, 
using condition iii) for U we find that u is two-sided exponentially stabilizing to w+ and 
w, and that e(u) has two-sided exponential decay. 

Finally, since constants in the estimates depend only on dimension and bounds for 
coefficient matrices, we can approximate the actual A)IC, jr, 4' and 'P by sequences of 
smooth functions and pass to the limit in the estimates I 

Once M' and S' are found, we can obtain a sequence of macroscopic transmission 
problems. We use the notation vq (x) ± , L± and so on to refer to vectors and operators 
defined in K+ and K, respectively. Using these notations and the above transmission 
conditions for M' and Sr", we can write 

[u]  
cc

 kDtv+(x) - k'D'v_(x).	 (4.13) 
p ,'=o	II=' 

Similarly, the jump of the normal stress at the interface can be written as 

[a(u)]

	

	 tD'v(x) - t'Dv_(x).	 (4.14) 
p,t=o 

In order to satisfy the original continuity requirements, we need expressions on the right 
of these equations to be zero. Now, representing v(x) as an asymptotic series v = > vq 

and collecting terms in (4.13) and (4.14) we obtain the chain of transmission problems 

LV =	 (4.15) 

in K± , where the homogenized operators L± and the right-hand sides fq are defined as 
in Section 3. On the interface x, = 0 the transmission conditions 

[k°'°vq ] =	 k.'D'v(x) - k2'D2v_(x) 
-	1+p+k=q,k<q II='	 (4 16 

[i°"D"vq j =	 > t'Dv+(x) - i!'D2v_(x) 
1+p+k-1=q,k<q II='
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are fulfilled. 
Let us now compute explicitly transmission conditions for the first two problems in 

this chain. Recall that N°'° = I and M°'° = S°'° = 0. This, together with (4.5) and 
(4.7) immediately gives 

k°=k°'°=I	and 

Next, consider equations (4.15), (4.16) for p = 0 and some fixed 1 = i 1 . The first 
observation is that MM° hl = SS° , " = 0 which yields k±0 ". ' = 0 after applications of 
Theorem 5.3. Next, we apply the formula for t from Theorem 4.1 to get 

" 
-, t" = I 1A ON
	

+A)di.	 (4.17) 

Let A 3 denote the homogenized matrices 

-	/	ON°" A
nil dx. 

	

IQ	 + 
Moreover, denote - allolil 

	

= A,	+ A, 1 - A,1.

Now we can write (4.17) as

t	nil Oil -A +	+f A 1 di.	 (4.18) - Q 
We want to show that the integral is zero. Note that the cell system for N" can be 
written as	= 0. If Ak are smooth, we can integrate this equation from zero to 

< 1 with respect to x, and then integrate over Q . The integrals containing A 1 with 
k n vanish because of periodicity, and we get 

f
A1(t,)i± = f A1(o,)d Q	Q 

for all t E [0,1]. In other words, the integral on the right of (4.18) is aconstant. _ 
Integrating this constant on the interval (0, 1), we will obtain the average of which 
is zero by the definition of A 11 . Hence the original constant must be zero. In the case 
of a general A 1 the same conclusion is obtained by approximating A 1 by a sequence ns 
of smooth matrices and passing to the limit. Putting everything together we obtain 

Proposition 4.1. The first non-trivial homogenized problem in the chain has the 
form Lv0 = f in K+UK , with the transmission conditions [v0 ] = 0 and [AIDI1VO] 
0 at the interface Z n = 0. 

This shows that microstructure does not affect homogenized transmission conditions 
at this level.
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5. A priori estimates of Saint-Venant type 

In this section the technical results needed to construct boundary layers are collected. 
The most important part here is an a priori estimate of Saint-Venant type obtained 
in Theorem 5.2. The importance of estimates of this type for investigation of behav-
ior of solutions at infinity and proving existence theorems in unbounded domains has 
been recognized by Oleinik and Yosiflan (11] in the context of linear elasticity. The 
development here follows closely that in the book 112: Chapter II/Sections 7 and 81. In 
the present case, we need estimates for the system of viscoelasticity ( complex-valued 
coefficients are allowed). Moreover, we need to treat the transmission problem rather 
than Dirichlet or Neumann ones. This makes it necessary to derive estimates valid on 
both sides of the interface. 

Recall that a function u E H' (w(a, b)) is a weak periodic in i solution of the problem 

Lu=f	in (a, b) 

if for any v E H'((a,b)) such that v = 0 on fa UI'6 the relation 

J(A1kaku,ahv)dx=J 

holds. Next, we introduce generalized momenta P(t, u) defined by 

P(t,u) = urn j':'(t't+3)
 

The existence of momenta is proved in [12). Moreover, we have 

P(t,,u) - P(t2,u) = J	fdx 

for b> t, > t 2 > b, and if AIc and f are sufficiently smooth, then 

P(t,u) = it A56udi. 

The following theorem is a basic version of the Saint-Venant principle slightly modified 
from [12]. 

Theorem 5.1. Let s > h > 0 be integers, and let u be a periodic in solution of 
Lu = 0 in (s - h,s + h + 1). Suppose that P(s - 1,u) = 0. Them 

f
B(u , u )I dx < e- Ah 	 IB(u,u)Idx,	 (5.1) 

W(5,3+I) 

where A is a positive constant independent of s and h.
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Proof. Denote 

g =	- h,s + 1 + h),	g 1 =	- h, s),	g2 = C(s + 1,s + 1 + h). 

Pick a sequence u m of smooth functions converging to u. Then define a function I(x) 
by

exp(A[x, - (s - h)]	for x e 
= exp(A[s + 1 + h - x]) for x E g2 

I. exp(Ah)	 for all other x E g. 

Here A is a positive constant to be specified. Then choose a test function v = ('1 - 1)um 
and plug into the integral identity. We obtain 

j(A h k ak U, ( - 1)ah u m )dx = - f (A hk49kU' ahUm)dX 

=
 -J

(AOku,ôflUm)dX. 
1 g2 

Next, we write 

1	 where wd = { x:s — h+d<x <s—h+d+1}. 

Fix d temporarily and choose a constant vector C such that f(Um + C) dx = 0. Then, 
using the second Korn inequality and the estimate 

II e ( u )11L 2 (wk )	cIIB(u,u)11L2(wk), 

we obtain

	

I(um + C )II L 2 (wk)	M II B ( um , 
where M is independent of m and d. Next we observe that 

J
( A k ok u , afl C)dx = f a(J(A ôku,C)dXdx = 0, 

since P(.s + 1,u) = 0 implies P(t,u) = 0 for all s - h < t <S + 1 + h. Hence, 

f (Aaku,afl um ) dx 

= J (AkôkU,ôfl$(Um + C)) dx 

= J (Aôku,A(Um+C))dX 

CiMAe3_h1)(J IB(u, u)Idx) (J IB(u m , um)Idx) 

C2MAeAJ IB(u,u)Idx + Rm, 
Wk
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where Rm - 0 as rn —* cx. Summing over all wk we obtain 

	

j(Aa,	dx C3MAeA 
fI 

B(u, u) I dx + hRm. 

Repeating the argument we obtain a similar estimate for g 2 . Finally, let m —* co. Then 

J9 B(u,u)(c — 1)dx C4MACA f
gI u92 

Choose A so that the constant on the right is equal to one. Then 

fg
IB(u,u)Idx < 

Ig \(g'Ug2)  

Multiplying by e 4 ' we obtain the estimate desired I 
Next, we need to generalize this to the case when f and P(s — h, u) are non-zero. 

The prototype of the main estimate is given by the 
Lemma 5.1. Let N be a positive integer. The system 

LU = fo + aj	in w(—N,N) 

with boundary conditions

	

'U —	onr_N 
1T,b—f, onFN 

satisfying the compatibility condition 

I
c()d+j 

N 
b(i)di=J	f(x)dx

	

N	r 

has a unique solution U satisfying the estimate

N 
I
2L2((_NN)) <Cl	IIfIIL2 

	

Ie(U)I ((—N,N)) +	IImIIL2(r)l 
m-N	 .1

where

(5.2) 

(5.3) 

(5.4) 

(5.5) 

= 

m=J f(x)dx_f b(±)d 
(m,N)	 rN 

Proof. Consider the problem 

Lv tm = 
u(V m ) = bm 
o(V m ) = bm_i

(m=_N+1...N_1)} 

in t(m-1,m) 

on rm 

on	 I

(5.6) 

(5.7)
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By [12: Theorem 6.31 modified slightly for the case of complex-valued coefficients, prob-
lem (5.7) is uniquely solvable if and only if the compatibility condition 

f bm_ i ()d1_J bm()d1=J	f(x)dx	(5.8) 
rm_j	 r,,,	 (m-I,m) 

is satisfied. Let us check these conditions for problem (5.7). Using (5.6) we have 

f m_i()d1 - j 
J mi()d+J	)d+J	f(x)dx_f
rN	 rN	 (m-1,N)	 rN

=J 

Also, for m = -N + 1 we get 

f )d_J 
N I- 

=1

=j )di_J'i'(—N+I,N) 
f(x)dx+j	(i)d 

['-N 	 ['N 

)di+J	
)di_LN,N) 

f(x)dx+J 

rN	 ['N 	 (-N,-N+I)

=1 -. N, - N + I) 
and similarly, the condition also checks for in = N. By [12: Theorem 6.3] cited problems 
(5.7) are uniquely solvable. Moreover, the estimate 

(,rm 2 
e	I L 2 (w(m- 1 rn)) 

<C [E IIfiII 2 ((rn_1,rn)) + Ikb?Ift2(fm) + IIm-1 II2(Fmi)J	
(5.9) 

holds. Next, consider the sesquilinear forms 

B(Vm,U)dx 

	

= J
(fo,U)dx - f	(f,3U)dx	 (5.10) (m-I,m)	 (m-I,m) 

+J(mU)d - f (m_iU)d1. 

Summing up we obtain 
N 

-	Ii,,	I	(f,U)dx- I	(f1,31U)dx 
M=—N	N, N)	 J(M-1,M) 

+fr- 
(& U)dI_I

r
 (b,U)di, 

N	 N
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which shows that

-	
irn=LN,N)

 B(U,U)dx. 
m=—N  

Estimating the left-hand side in the last equation we get 

L(-N,N) 
N 

15	i f	IB(Vm,U)Idx 
m=—N (m-1,m) 

	

N

> ( fe '( M—I,M)
B(Vm,Vm)dx'\

	
B(U,U)dx"

m=—N 	 I	(m—I,m)	I 

(—N,N) B(U,U)dx(
 M=—N L(M-1,M) E	B(Vm, V') dx) 12 

\J  

This implies

N 

U—N,N) (m-1 (UU)Y (
	

j	
B(Vm,Vm)dx) 

,m) 
N

IIe(Vm) 
2 

IIL2(J(m_Im))) 

Applying estimates (5.9) we see that the sum above is bounded by 

N	 4 

2 
L I2 c2(11f11((m-1,m)) +	IImIIL2()) 

- N 

Estimating the left-hand side from below by the norm of e(U) we finish the proof I 
Using the lemma above we prove the following 
Theorem 5.2. Let u be a periodic in i solution of 

Lu = fo + ô1f1 

in (t 1 , t 2 ), where t 2 > t i + 2 for integers t 1 < 0 and t 2 > 0. Then for any integer 
s,h >0 such that .s - h > t 1 ands+l+h<t l the estimate 

II e(u)2dx

2h+1

	

'	2 C[eJ	 e(u)I2dx+	+	 IfoI +(f,f))dx 
+1+h)	 m=O L(s—h,s—h+m) 

+ P - h,u) + J	- Jr.h 
fd1sJ
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holds with C independent of s and h. Here A is the constant from Theorem 1. 
Proof Let U be a periodic in i solution to the problem 

	

LU = f0+31 f,	in(s-h,s+h+1) 
a(U) = 0 + I,,	on ",—h 

where b and 0 are constant vectors chosen as 

	

it, b+j	fnd=P(s+h+1,u) 
+h^I 

- f	+ J fd = P(s - h, u). 

These equations yield

b=P(s+h+1u)-j	fd

(5.11) 
=-P(s-hu)+j 

With this choice of 0 and 1' the solvability condition from Lemma 5.1 is satisfied, so 
there exists a unique U satisfying the a priori estimate 

rr 2 e iu) L2((i—h,s+h+1))

2 h-4- 1 

C J	(IfoI2+(L,fi))dx+	f M=O r._h+m 
with C independent of s and h. The functions On are defined by 

bmJ	fodx f 
where m = 0, 	2h + 1. Using (5.11) together with the formula 

P(s+h+ 1,u)= P(s- hu)+L
(s—h,s+h+l)

 fodx+k
+h+1

 f,, d - f fd   r._h 
we get

rnf fo
dx_P(s_h,u)_ (.9—h	 j

,s+h+i) 
Moreover, u - U is a solution of the viscoelasticity system satisfying conditions of 
Theorem 5.1. Hence, 

f	IB(u - U, u - U)I dx <e	J	IB(u - U, u - U)I dx. 
i(s—h,s+h+1) 

Estimating B(u - U,u - U) from below by c l e ( u - U )1 2 and then using the triangle 
inequality we get 

f	Ie(u)I2dx <C le-Ah 
L

	
Ie()I2dx 

+ f	Ie(U)12dx]. 
(s—h,s+h+ 1)	 (a—h,s+h+1) 

Application of the apriori estimate for e(U) from Lemma 5.1 completes the proof U
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As a consequence, we derive 

Theorem 5.3. Let fi be vector function satisfying the inequality 

n 1: IIfiIIia,s+i) + IIfIIL'(f) < ce° 3	(s E N)	(5.12) 
i=O 

where c and a are positive constants independent of s. Let u be a periodic solution of 
the system Lu fo + ôf1 in w(O, oo) such that P(O, u) = - f,(0) fodx + f1'. 0 f,, 

IIe(u)IIL2(,(O,..i)) ce (s E N) (5.13) 

where c is a constant independent of s, A is the constant from Theorem 5.1, and 6 is a 
constant such that 0 < 5 A. Then there exist constants C 1 , C2 and a 1 , a2 independent 
of s and a constant vector w such that 

	

II e(u )II L2((3,+ I))	C i e 3	 (5.14) 

	

lu - WllL2(J(,,+I))	C2 e° 23 .	 (5.15) 

Proof. Integrating by parts, we have 

P(su)=P(Ou)+J fodx_f fnd+j fn di 
1'• 

I	fdx+
Jr. 

Hence, by virtue of (5.12), IP(s,u)l 5 ce". Using the apriori estimate from Theorem 
5.2, (5.12) and (5.13), we obtain (5.14). 

Let xs denote a characteristic function fo the set S. Consider a periodic in i solution 
of the system

	

Lv = X,(s,s+i) - X(s+1,+2)	in w(s,s + 2) 
a(v) = 0	 on Ow(s,s + 2).	

(5.16) 
)  

Also, set

= I	udx. 

Choosing v as test function in the basic integral identity and using the Schwarz inequal-
ity, we have 

wa - w8+i I = L(8,8+2) B(u, v) dx 

(L38+2 IB(v, v) I dx) (L(3,3+2) IB(u, u) I dx)



998	R. P. Gilbert and A. Panchenko 

The application of the second Korn inequality yields IIB(v,v)IIL2(,(,,,+2))	C where C 
is independent of s. Then

1w, - w3.1 I < C 

where a 0 is positive and independent of s. This implies the existence of w  
Also, we have

- w3+tI < k e'°' 

where k, a0 are independent of s, t. Therefore, we can let t —* oc and obtain 

1w, — wl < keoS 

Now

Il u — WcllL2((,,,+I))	Il u - W3IIL2(;,(,,s+I)) + 11 w, - WooIIL2(,(,,,+I)) 
<k1 [Ile(u)IIL2((,,,+I)) + e°'] 

where /c 1 is independent of s. Now application of (5.14) yields (5.15) U 

The next result is an existence theorem of the type needed for the construction of 
the boundary layer. Consider the problem 

Lu=fo+O,f1	 (5.17) 

in w(—oc,oc). We assume that f1 e L2 (i(t2 ,t i ) for all t 1 <0 and t 2 >0, and periodic 
in i.

Theorem 5.4. Suppose 

n 

I 2	+ Ifn 2	+ Ilf h12	< Me 	(s E N)	(5.18) i1	 L II 2 ( t ,)	11L2(t) - 
1=0 

where M and ö are constants from Theorem, 0 < 5 A. Then for any constant vector 
q there exists a solution of problem (5.17) such that P(0, u) = q and the estimate 

2 
IIe(u)II2((_k,k))	C(Me	61)IkI + IkjIq - f fdI	(k E N)	(5.19) 

Jr 0	I 
holds where C is independent of k and 6 1 E (0,5). 

Proof. Let v"' be a solution to the Neumann problem (5.3) with 

i=q+L0,N)  

(0,—N) 

fodx_ffd
 

fodx+j fdi.
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The vectors /'m from Lemma 5.1 are determined by 

= 

brn=J	fodx_J 1bd=_q+J	fodx+f fd1 
f' N	 (m,O)	r0 

ON = —b 

where m = — N + 1,...n —1. By Lemma 5.1, there exists a unique v' satisfying the 
estimate

n	 N	 12].

e(u)II2((N,N))< c IIfiII 	+ q- I ffld1_LfOdX 
1=0	 - m=—N 

	

The function v N f	-	satisfies the conditions of Theorem 5.1. Hence, we have
an estimate

	

I	- vN	2 
)ll L2((—k,k)) 

Ce	111111L2 (-N-k-I,N+k+1)	 (5.20 

N+k+1	 2 
+	 lq— f fnd— I	fodxl 1. 

m=—N—k—I I	Ji0	Jc,(m,0)	I i 

Let us estimate the last sum separately: 

N+k+I 2 

	

q- I fdi— I	fodx 

	

m—N—k-1
	to
	J(m,0)	I 

2	N+k+I 
2(N + k + 1)q - j fdi +2	E	Ic(O,m)I 

Z'(0,M )
IfoI2dx 

m—N—k-1  

2	N+k+1 
2(N + k + 1)q - j fd +2	 crnM	mI 

m=—N—k--I 
2 

<2(N + k + 1)q - I fd + 2CMe_6N). 

	

if' 0	I 

The constant 6 1 above is any number from the interval (0, 5). To obtain the last inequal-
ity, we used the estimates for f1 from the statement of the theorem, and the fact that 
1L' (O, in)l <cm where c depends only on the dimension of the space. Then substitution 
into (5.20) yields 

N+k+I - vN)II IIe(v	 L2((_k,k)) 

<M2 [M ee6'	+ e_AN(k + N + 1)q ft
o

12]
fdx 

(5.21)
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The constant M2 is independent of N and k. 
Next, we use this inequality to show that e(v') for any fixed k is a Cauchy sequence 

in L2(C(—k,k)). For any t > 0 and any S 0 consider 

e(vk+3 - vk+t ) l 2 L2((_k,k)) 

i—i 

^	1 
Ik(t +l — vk+3+1)Il2(.,(_kk)) 

1=0 

: 

IM2MeAke_61(3+1	+ e_A()(k + s + 1 + 1)q -
	fndiH 

4	(5.22) 

< >2e'4 + M3k4q - J f'dii E_1 
1=0 10	 '0	1=0 

This shows that the sequence in question is of Cauchy type. 
Next we note that all V' for k fixed are solutions to the Neumann problems. 

Hence, they are orthogonal to all rigid displacements. For such functions, the second 
Korn inequality can be written in the form (see, for instance, [12: Theorem 2.9]) 

	

V	IIH'((—k,k)) c CIIe(v k	IIL2(j(_kk)). 

Together, the last two inequalities imply the existence of a function u such that v 3 -* u 
in H'((—k, k)) for any fixed k as s -' cc. Substituting v 3 into the integral identity 
and taking the limit as .s - cc we obtain that u is a solution to the original problem. 
Setting s = 0 in (5.22) and taking the limit as t -* cc we obtain estimate (5.19). 
Finally, integrate o(u - v 3 ) over a thin slab w(— .. , f) including the plane x, = 0. Then 
we use the second Korn inequality to estimate this integral in terms of e(u - v s ) . Next, 
divide both sides by the measure of the slab wish equals to c 11 with c depending only 
on the dimension of the space. Finally, applying diagonal argument and the Lebesgue 
differentiation theorem, we select a subsequence v3t such that 

	

L

	
(u - v) dx --+ 0	as s, I - cc. ct (—i/i,I/i) 

By definition of the momenta, this yields P(0, u) q  
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