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Abstract. The article deals with a system of partial and ordinary differential equations de-
scribing creep and damage processes in the material of thin-walled structures. It is shown that 
if set up in suitable Sobolev spaces, this system may be solved uniquely, locally in time. 
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1. Introduction 
Metals and alloys exposed to high temperatures over a certain period of time experience 
irreversible deformations. Such phenomena, called "creep", must be taken into account 
in analysis and design of thin-walled structures (see [481). In fact, creep strains cause 
significant stress redistributions in such structures and may give rise to creep failure, 
even under moderate loading. 

Creep deformations correspond to irreversible changes of material properties, due to 
nucleation, growth of microcavities, ageing of microstructure or other factors (see [521). 
In order to represent such damage effects in a mathematical way, it is usual to consider 
a nonlinear system of differential equations comprising two kinds of equations. On one 
hand, there are constitutive equations for the material at hand. They state how the rate 
of change of the creep tensor depends on stress state, temperature, and some internal 
state variables. On the other hand, hardening or softening of the respective material is 
described by an appropriate evolution system for internal state variables. This system 
may be derived by considering the mechanisms of deformation and of damage evolution 
acting in a given material (compare [38] for example). 

In addition to such a material model, another set of equations, governing kinematics 
and equilibrium of the respective structure, must be specified. These equations usually 

H. Altenbach: M.-Luther-Univ., Dept. Material Sci., D-06099 Halle (Saale), Germany 
P. Deuring: Université du Littoral, Centre Universitaire de la Mi-Voix, 50 rue F. Buisson, B.P. 
699, F-62228 Calais Cedex, France 
K. Naumenko: M.-Luther-Univ., Dept. Material Sci., D-06099 Halle (Saale), Germany 

ISSN 0232-2064 / $ 2.50 © Heldermann Verlag Berlin



1004	H. Altenbach et. al. 

take the form of a system of partial differential equations, which may be linear or 
nonlinear depending on the magnitude of the deformations exhibited by the structure 
(see [49]). 

In this paper, we shall perform a mathematical analysis of such a model describ-
ing creep-damage processes in thin-walled structures. Corresponding to the indications 
given above, this model consists of nonlinear ordinary differential equations - govern-
ing creep and damage processes in the respective material - and of partial differential 
equations - governing kinematics and equilibrium of the thin-walled structure under 
consideration. To simplify our discussion, we reduce the thin-walled structure to a thin, 
shallow shell. Moreover, we neglect hardening effects and assume creep behaviour to 
be isotropic, incompressible and independent of the kind of loading involved. Then our 
model includes just one internal state variable, and it describes creep-damage behaviour 
only in the isothermal case, under quasistatic loading. It should be remarked, though, 
that the reduction to a single state variable is not essential for our theory and only 
serves to diminish the number of equations involved. 

As a further simplification, our model does not account for geometrically nonlinear 
effects of shell deformations. In other words, we assume strains and displacements to 
be small. In such a case, the total strain tensor e may be additively decomposed into 
an elastic part CC and an irreversible creep part e'', 

6 = e + 6cr 

(see [38]). The elastic part of the strains can be calculated from the Hooke's law, that 
is, the stress tensor a of the shell is given by 

ajj =	Cjk1•(ek:—e)	for li,j<3	 (1.1) 
k,l=1 

where the elastic isotropic material parameter tensor C takes the form 

Cijkl
E =

2(1 - v2) (sk bjt + Si : Sjk) (1 - u) + 2v 6ii skI)	 (1.2) 

with E denoting Young's modulus, ii Poisson's ratio and 5, Kronecker's symbol. Note 
that the tensor C is constant. This, of course, means we consider a homogeneous 
material, with its elastic behaviour independent of the damage state. 

Concerning the relation between strains E ij and displacements u 1 , it is derived from 
the Kirchhoff-Love hypotheses, under the assumption that both the strains of the middle 
surface of the shell and the rotational angles of the normal vector of this middle surface 
are infinitesimal quantities. Then the kinematics of the shell may be characterized by 
specifying the displacements of the material points of the middle surface. We further 
assume there is an open bounded set A C R2 such that each point of the middle surface 
may uniquely be assigned to an element (x i , x 2 ) of A. The shape of the shallow shell 
is described by the principal curvatures (ic)1< , <2. Then, denoting the thickness of 
the shell by h, and setting V = A x (-, ), we get the following relations between the 
strains e, and displacements U,: 

Eij = ( Di u, + D,u,) + K ii u3 - X3 DDu3	 (1.3)
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for x E V and 1 i, j !^ 2. The symbols D 1 and D, denote partial derivatives with 
respect to space variables. Assuming that the shell is loaded by a force q : A —* 1R 3 , the 
quasistatic equilibrium equations can be put as follows (see [9] and the references given 
therein):

C, h(DkDju(z l , x 2 , t) +	x2) Dk u3(x l , z, t) 
j,k= 1

+ Dkl. (z l ,x2)u3(xl,x2,t)Big)	 (1.4) 

2	 h/2 

=	Cjik:J	Dke(xj,x 2 ,x 3 ,t)dx 3 +q,(xi,x2)h 
i,j,k=1 

for 1 < 1< 2, (x 1 ,x2 ) E A and t E [0,1'], and 

Cijkth(hDIDkDiDiU3(XI,x2,t) 
i,j,k,1=1

+ i(x1 , x2) K k,(x I , x2) u3(x1, x2, t) + Ickj(x 1 , x) Du(x i , x 2 , t)) 

=	
(1.5) 

c1ikI(Ki(x1x2) f2 e(x1,x2,x3,t)dx3  
i,j,k,l=1 

h/2 
—
 J

DD1e'j(xi,x2,x3,t)x3dx3 
J + q3(x1,x2)h 

-h/2	 J 

for (x 1 , x2) E A and t E [0, T]. Concerning the inelastic part E,r of the strain tensor, it 
is supposed to satisfy the ensuing system of ordinary differential equations 

	

eJ(x,t) = AI'(u,e)' 1 (x,t) A(u,E)(x,t)(1 - d(x,t))"	(1.6) 

d(x,t) = Br(u,)m(x,t)(1 —d(x,i) m	 (1.7) 

for x E V and 1 < j,i 2. Here u denotes the displacement vector and 6cr the creep 
strain tensor. The letters A, B, n, m,ff stand for material constants, determined from 
uniaxial creep tests under stationary loading and constant temperature. The internal 
state variable d: V x [0, T] - R describes the effect of damage arising in the material. 
The operators r and A are defined by 

=+O22 — all O22 +3a2) 

and
=- 22 

A 22 (u,e'")	a22 — 31 a ll	 - 

A l2 (u, ecr) = A 21 (u,	012
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with aij introduced via (1.1) and (1.3). The unknowns in system (1.4) - (1.7) are the 
displacement vector u, the creep strain tensor EC and the damage variable d. Equations 
(1.6), (1.7) represent our material model, and system (1.4), (1.5) describes kinematics 
and equilibrium of our thin shallow shell. 

The relations in (1.6) and (1.7) were proposed by Rabotnov [51]. Hayhurst [32] 
modified them by introducing a generalized multiaxial stress criterion for damage evo-
lution. This modification implies that different operators should be substituted for I' 
in equations (1.6) and (1.7), respectively. The theory we shall develop in the following 
may easily be adapted to such a situation, provided 1' is replaced by operators which 
smoothly depend on a ij . We further note that in our model, the creep strain rate and 
the damage rate are sensitive only to the von Mises equivalent stress. 

Equations (1.4) - (1.7) are supplemented by boundary and initial conditions. For 
simplicity, displacements and rotation are prescribed everywhere on the boundary 3A 
of the shallow shell:

u(.,t)IÔA=uo

	I ôu 3 (x i ,x2 ,t)	 (1.8) 
A	 =w0(x1,x2) 

an( A)  

for ( X I, X2) E 0A and i E [0, T], with given functions u 0 : 9A -* R3 and wo : ÔÁ i-i R. 
The symbol (A) denotes the outward unit normal to A. The initial conditions read as 
follows:

EdT(X 0) = eo(x) 1
forxEV	 (1.9) d(x,0) = do(x)J 

where e 0 and d0 are given functions. 
We refer to [7] for a more thorough discussion on how the preceding model arises in 

mechanics of solids, and to [46] for comparisons with experiments. In [8], an effective 
numerical scheme is proposed in order to obtain approximate solutions to equations 
(1.4) - (1.9). Here we intend to show these equations are well posed in a mathematical 
sense. In fact, we shall prove that if set up in suitable Sobolev spaces, problem (1.4) - 
(1.9) may be solved uniquely, locally in time. To this end, we shall assume the domain 
A has a smooth boundary, and the parameters in and n in (1.6) and (1.7), respectively, 
verify the relations n > 3 and in > 2. The latter assumptions are valid for creep 
behaviour of metals and alloys under moderate loading and temperature (compare [10], 
for example). 

Our proofs are based on an argument which states that for Ec' given in a suitable 
class of functions, the solution u to boundary value problem (1.4), (1.5), (1.8) exhibits 
the property that the functions V QuI(,t),V Q u 2 (o,t) and Du3 (,i) are bounded in 
for each fixed value of t. Since the space variable o is taken from the two-dimensional 
domain A, and because we seek our solutions in Sobolev spaces, the argument just 
mentioned is valid due to Sobolev's lemma provided we proceed in one of the following 
two ways: either equation (1.4) is solved in W-2(A)2 with some s > 2 and equation (1.5) 
in W-, ,2 (A) with .s > 3, or we consider solutions of (1.4), (1.5) in W2 ' P (A)2 and W3"(A), 
respectively, for some p > 2. We decided for the second alternative because then our 
theory becomes somewhat less complicated, and our assumptions on the parameters 
in and n are less restrictive than those which would be necessary in the first case.
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Equations (1.6) and (1.7) become singular when the state variable d takes values close 
to 1. This is the main reason why we can only prove local existence in time of our 
solutions. The details of our existence result may be found in Theorem 6.1 below. 

In the mathematical model given by equations (1.4) - (1.7), internal variables are 
used in order to describe creep behavior of metals. (These internal variables are, of 
course, the functions d and EC7.) Mathematical models involving internal variables 
and pertaining to bulk materials were considered in [12, 13, 29, 31, 34, 35, 37, 39, 
45, 47, 54 1 . These references essentially deal with constitutive relations which lead to 
initial-boundary value problems of the type w 1 + C(w) = 0, where C is a monotone 
operator. A detailed mathematical theory for constitutive equations of monotone type 
is given in the monograph [3] by Alber. In the non-monotone case, existence results 
global in time could be shown by Alber and coworkers in certain special situations (see 
references [4, 51 dealing with certain constitutive equations in one space dimension, [15 
- 191 pertaining to the Bodmer-Partom model, [14] treating constitutive equations of 
pre-monotone type). A local existence result for Miller's equations is proved in [36]. If 
the right-hand side of constitutive equations as those in (1.6), (1.7) satisfies a global 
Lipschitz condition with respect to the internal variables, solutions global in time may 
be obtained by the arguments presented in [33]. The article [6] gives a presentation - 
from the point of view of a mathematician - of how constitutive equations with internal 
variables are derived in continuum mechanics. 

We mention that another way of modelling creep behavior of metals consists in 
introducing integral terms instead of internal variables (see [22 - 25, 591, for example). 
It should further be indicated that the monograph [40] treats certain systems of ordinary 
and partial differential equations arising in population dynamics. Concerning the special 
case of coupled linear partial and linear ordinary differential equations, we refer to [41, 
42] for results on well posedness and numerical treatment. 

The results on coupled ordinary and partial differential equations established in the 
preceding references do not cover system (1.4) - (1.7). Similarly, although there is a rich 
mathematical literature on the theory of thin shells (see the monographs [11, 21, 27, 
43] and the references therein), we do not know of any mathematical study pertaining 
to shell models with internal variables. Thus, in order to solve problem (1.4) - (1.9), a 
seperate investigation is needed, which will be presented in the present article. 

2. Notations and definition of function spaces 

If m, n E R, we shall use the abbreviation in V ii for the maximum of in and n. For 
N E N and 0 E RN, we put I el I = elI+ ---  + I O N I, whereas Ioj denotes the Euclidean 
norm of o. 

Let A be a set. For a function f : A s—* IR, we put If Io = sup{If(x)I x E A}. 
Assume that F is a space which contains functions mapping A into R, and take a E N. 
Then we define

={F: ARt7FjE..F for 1<j<a} 

= {F : A RXO1 F13 E F for 1 <
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Suppose F is equipped with a norm Ily. Then we define the norm .	of the space 
77' by

IIFII	= >12 II FdI	(F e F) 

The norm 11 . ILrx of	is to be understood in an analogous way. Similarly, if 8 
and 13 2 are spaces with norm	and	1182, respectively, we choose the norm 

II(v 1, v2)II81x82 = 11 v 1II81 + lI v2II82	(vi E 8 1 , v2 E 82) 

for the space 8 x 82 . Moreover, for a space B with norm	118, for T e (0,00) and

€ C°([O, TI, 8), we put

II u II8,	= sup {II u ( t )118 : t E [0,T]}. 

Note that if (8,1111 8 ) is a Banach space, then fi . IIB, is a norm, and C°([0,T],13) 
equipped with this norm is also a Banach space. 

Let N, k e N, p E (1, c) and B C R N an open set. We write W"P (B) for the usual 
Sobolev space of order k and exponent p. The corresponding norm is denoted by 11 . Ilk,p, 
and the corresponding seminorm by I Ik,p, that is, 

IIUIlk,p= 
(aENO	

IIDouII
' ,, <k
	 and	IuIk,p=.(	>12	IlDuII I 

for u E WkP(B). We define W"(1l) as the closure of C000(B) with respect to the norm 
Ilk,. Put p' = (1 — k)-'. Let WP(B) denote the closure of LP (B) with respect to 

the norm 

lIfII-k,p = sup 
I fB 

fvdx: v E W(B) with lI v IIk,p' = I	 (f € L(B)). 

— k As is well known (see [1: 3.12]), the space W0 ' P (B) may be identified with the dual 
space [W" (B)]' of W" (B) if this dual space is equipped with the usual norm. We 
write W'P (B) for the dual space of W1P'(B). 

Assume that B is C 2 -bounded. Then, for s E (0, 2), we shall use the standard 
Sobolev spaces W' P (aB) of fractional order s and exponent p. 

We further introduce some function spaces which are particular to the theory we 
shall present in the following. To this end, let A be a bounded open set in R2, and take
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h E (0,00). Abbreviate V = A x ( — f, ). Then we set 

W = IV E W 2 (A)3 V3 E W 2 (A)}, lI v lIw = II( v l, v2 )I1 I , 2 + ll v3112,2 (v E W) 

v = IV € W2 ' P (A) 3  v3 € W3'P(A)}, ikilv, = Il( t, l, t)2)112,p + 11 v3113,p (v € V) 

VpO = {v € W2 "(A) 3 fl W P (A)3 : v3 € W3 "(A) fl W0"(A)} 

	

Xp = LP (A)2 x W;- "P (A),	Il Fllx, = ll(Fi, F2)ll + IF3 11- 1,p for F € X 

L) i a( . , ., x 3 ) € T,4T 1P (A) for X3 € (— h	) , h 
Y = {a: VRmeasurable sup 

{lla(.,.,x3)lil,P: x3E(—,)} 

ll a Il y, = sup {II a ( . , x3)II1,p : x 3 E ( — i, )} for a € Y,. 

Note that the mappings 1111w, ll liv,, 11 Jim, and 11. Ily, are norms, and the corresponding 
spaces are Banach spaces. 

3. Auxiliary results 

In this section, we give an overview of the tools we shall need. First we mention two 
Sobolev inequalities which we state here in order to be able to refer to the constants 
appearing in them. 

Theorem 3.1 (some Sobolev inequalities in R2 ). Let p € (2, oo), Il C R 2 open, 
bounded, with Lipschitz boundary. Then there is a constant C 1 > 0 with 

JlUllp	Ci lluIIl,2	(u € V,T1'2(Q)) 

l u lo	Ciliuiii,,	(u € W''(cl)). 

Proof. See [1: p. 97/98] U 
For completeness, we state some further inequalities which will turn out to be useful. 

Theorem 3.2 (Poincaré inequality). Let ii e {1,2},N € N,1 C RN open and 
bounded. Then there is a constant C2 > 0 with 

II U iIv,2 5 C21 u l,2	(u € 

Proof. See [1: p. 158/15911 

Lemma 3.1 (Korn's inequality). Let N € N,S2 C RN open and bounded. Then 
there is a constant C3 > 0 with 

	

li U lI,2 <—C3	llDu + D1 u iI	(u € W'2 ()).	 (3.1) 
-	i,j=1 

Proof. As is well known, the lemma follows by integrating by parts on the right-
hand side of (3.1) and then applying Theorem 3.2 with ii = 1 [26: p. 1260/126111
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Theorem 3.3 (Minkowski inequality for integrals). Take M, N E N and p E 
(1, oo). Let X c R M and Y C R"' be measurable sets and F: X x Y R a measurable 
function. Then

I	 I 

ly(JF(x,Y)dxYdY)' <J(JIF(x))IPdYdx. 

Proof. See [53: p. 27111 

We shall further need some results on existence and regularity of solutions to the 
biharmonic equation and to the Lamé system. Concerning the biharmonic equation, we 
have by 130: Theorem 7.1.2] 

Theorem 3.4. Let Q C R2 a bounded domain with C 4 -boundary. Let p E (1,00), 
and define

	

F = .77(p, 1): W3 '(1l) fl W''(l)	W"(Q) 

by

F(u)(v) = in Vu Vvdx 

for u E W3P() fl W''(l) and v E W" (Q). Then the mapping F is bijective, and 
there is some constant C4 = C4 (p,cZ) > 0 with 

U 113,p	C4IIF(u)II_i,p 

for u E W 3 "() fl W"(). 

Concerning the Lamé system, we shall need the following result: 

Theorem 3.5. Let Q C R2 be a bounded domain with C 2 -boundary. Let IL ,.\ E 
(0,) and pE (1,00). Define 

= (p,1 it, .A): W2 "(cl)2 fl W'(cl)2 -* 

by
g(u) = pLu +( + ) Vdivu 

for u E W2 P(cZ)2 fl WP(1)2. This operator 9 is bijective, and there is a constant 
C5 = Cs(p,Il jz,A) >0 with

11 U 112,p	CsIIc(u)II 

for u E W 2 "(1l) 2 fl W0''(1l)2. 

Proof. This theorem follows from [2] (see [20: p. 296 - 298]) for more details I 

Finally, we recall some well known facts on trace theorems, repeated here in such a 
form as will be needed later on.
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Theorem 3.6 Let N E N,p E (1,00),cl c R' an open, bounded set with C3- 
boundary. Let () denote the outward unit normal to l. Take v 0 E W — *"(Ocl) and 

0 E W2_1(acz). Then there is a function u 0 E W 3 ' P(l) with 
N 

	

uoI 9l = v0	and	Duo a n (Il) = w0 
j=1 

where the functions uoI aQ and DuoI aQ are to be understood in the trace sense (1 < 
j N). 

Furthermore, let	E W2_13(ô1l). Then there is a function io E W 2 "(fZ) with

ioI c9 = 3o in the trace sense. 

Proof. See [1: 7.50 - 7.5611 
Due to the regularity assumptions required for v0 ,w0 and i30 in the preceding the-

orem, we could, of course, impose an additional boundary condition on u 0 and io. 
However, we shall not need this fact. 

Theorem 3.7. Let	 be given as in Theorem 3.6. Let u E W2'P(l).

Then u E W"(cl) if and only if 

u I OIl = 0	and	 .	= 0 in the trace sense. 

Moreover, take u E W"P(Il). Then u € W''(l) if and only if uI c9 = 0 in the trace 
sense. 

Proof. See [1: 7.54 and 7.5511 

4. System (1.4), (1.5) with a given right-hand side 
For the rest of this paper, we shall assume that p is some fixed number from (2, oo). 
Moreover, let A C R2 be some fixed bounded domain with C 4 -boundary, take h E 
(0, ), and put V = A x(—, ), as in Section 2. With p, A, h chosen in this way, let the 
spaces W,VJ,,V,,°,XJ,,YJ, 

,c	
be defined as in Section 2. For i,j E {1,2}, let c e C1(A)2x2.


Assume that , = ic for 1 < ij < 2. 
In this section, we shall study system (1.4), (1.5) under boundary condition (1.8), 

assuming that c c ' is a given function from y2. Recall the coefficients CJk, introduced 
in (1.2). It follows from this definition 

Lemma 4.1. There is some constant C6 > 0 such that 

C1	Tk, ? C6	T?j 
i,j,k,l=1	 i,j=1 

for T E R2X2 with r, = rj .	 - 

Next we introduce a family {ae}cE[0,1I of bilinear forms, with a 1 corresponding to 
the variational form of system (1.4), (1.5) considered in [8] (compare Lemma 4.4 below).
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Definition 4.1. For e E [0,11 and v, w E W, put 

a(v, w) 
= f	C, h 21 Di vj + D1 v + V'kijV3) 

A 
x (Dkw1 + D s w k + /klW3) 

+ 12 h2 DDv3 DkD(w3]d(xl,x2). 

The proof of the ensuing lemma is obvious: 
Lemma 4.2. For any e E [0, 1 1, the mapping ae is bilinear. There is a constant 

C7 > 0 with
a(v, w)I	C7II v IIw liwliw 

for v,wEW and eE[0,1]. 

In addition, the form a is positive definite: 

Lemma 4.3. There is a constant C8 > 0 with 

a(v,v) ^ CsIIvIIv 
for v E W and e E [0,1]. 

Proof. Let v € W and e € 10, 1]. It readily follows from Lemma 4.1 that a(v, v) > 
j1 h 3 CeIv3 I 2,2 . We may conclude by Poincaré's inequality (Theorem 3.2) that 

ae(v,v) > C V311 2, 2	 (4.1) 

Here and in the rest of this proof, the symbols C and C denote constants which do not 
depend on e or v. 

On the other hand, once more applying Lemma 4.1, we get 

ae(v,v) >Ch	II Dv + Dv + 2Kjv3Il 
i,j=1 

^ 

	

16 Ch > II Di v + Dv II - 3C6 h	 II3II 
i,j=1 

where we used the relation 

(a + b) 2 > a2 + b2 - 2 I ab I ^! a2 - 3b2	(a, b € R) 

in the last inequality. Thus, referring to Korn's inequality (Lemma 3.1), we have 

ae(v,v) ^! C II( v i, v2)II2 —CIIv 
2 

3112 

Combining this inequality with (4.1) yields 

l v IIw = II( v i , v2)II2 + II V3II2	C(ae(v, v) + II v3II,2)	Ca, (v, v) 

and the lemma is proved U
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Definition 4.2. For E E [0, 1], define the operator £ :	'-4 X, by setting 

= 	hCIkl(DkDv + ./(KJDkv3 + Dk#cijv3)) 
i,j,k=I 

for 1 E {1,2} and v E V°, and 

£e(v)3(a) = J	hC, 
A i,jk,I=I 

> (ii DkDDv3D,a T Cls ijKkIV3U — /.KkIDjVi7)d(xl,x2) 

for v E V° and a E W'"(A). Note that by the definition of the coefficients C1kz 

Co(v), =jv+(+A)Ddiv(v i ,v2 ) (j E 112}) 

Co(v)3(a) = JA VLv3 Va dx	
I 

W' (A)) 
	

(v E V) 

with the constants z, A, defined by 

hE	 hEji	.	 h 3 E 
2(1+v)'	

A_i2,	12(1_u2 

Thus, recalling the operator F = F(p, A) and g = g(p, A, p, A) from Theorem 3.4 and 
3.5, respectively, we have

(Co(v):)1<,<2 = 9(v i ,v2

) I = 1(va)	
(4.2) 

for v E V0. 
The bilinear form a and the differential operator C are related in the following 

way:

Lemma 4.4. Let e E [0, 11. Then 

J Ce(v)i WI d(x i , X) + C(v)3(w3) = —a(v, 
A 

for v E V° and to E W. Since any F E X, may be considered as an element of 1'V', if 
F E X, and v E V° with C, (v) = —F, then a(v,w) = F(w) for w E I'V. 

Proof. This lemma follows by some easy computations U 

Now we are able to prove the main result of this section:



1014	H. Altenbach et. al. 

Theorem 4.1. For any F E X, there is one and only one function u E V° with 
£ i (u) = F. There is a constant C9 > 0 with 

C 'lIF jIx	II U IIv,	Cg IIF IIx	 (4.3) 

for 	and u as before. 

Proof. In the following, we denote by C any constant which only depends on A, p, h, 
on the coefficients C,k,, or on the functions ,. For v E V° and e E [0, 1], we get with 
Lemmas 4.3 and 4.4 

II v IIv	C 1 a(v, v)	C II .C e(v )IIxp (II('i , v2)II p ' + 11 v3111,p')	C IIre( v )IIx, IIvIIw 

hence II v IIw C IIr ( v )IIx,. The latter inequality and Theorem 3.1 imply 

II( v i , V2 )II p ± Ik'3 Iii ,	C II .C e( v )IIxp	 (4.4) 

for v E V° and E E [0, 1]. We further observe that 

- £o(v) i =	h CjkI(?cjDkV3 + DkIv3) 
i,j,k=1 

for v E V°,e E [0,1] and I E {1,2}. Referring to (4.2) and Theorem 3.5, we conclude 
for vEV and EE[0,1] 

I(vi v2)I12,p	C5 II( L o(v ):)i (1<2 p < C5 II(Ce(v ),)i <1<2 " + C 11 v3 II 

with C5 = C5 (p, A, u, .X) introduced in Theorem 3.5. It follows with (4.4), 

II( v i V2)112,p	C II 1Cc(v )11x9	 (4.5) 

for v e V° and e E (0, 1]. Furthermore, for v E V°,,- E [0,1] and a E W"(A), 

r(v)3 (a) - £o(v)3(a) = J	—hCjk,(eKIjKk,v3 +	k,Djv)ad(xi,x2). 
A i,j,k,I=I 

Thus we may conclude from Theorem 3.4, (4.2), (4.4) and (4.5) 

1V3[13,p

i' C.C(v) 3 _ 1, + C (II v3II + II(v i , v2) j I1,p )	(4.6) 

CIILe(v)II, 

for v E V° and e E [0, 1], with C4 = C4 (p, A) from Theorem 3.4. Combining (4.5) and 
(4.6) yields

IIvIIv < C II .Ce( V )IIp	 (4.7)
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for v E V,,° and e E [0, 1]. This means in particular the mapping £ : V,,° + X,, is 
one-to-one, for any e E [0, 11. 

Let us show that L is onto. To this end, we use a continuity argument with respect 
to e. In fact, it is easy to show that, for v E V,,° and e, e' E [0,1], 

IKe( v )IIp	C	 (4.8) 

II Cc(v ) - £ ' (v)IIx <C/ - v'I II v IIv• (4.9) 
By (4.8), the operator £ is continuous, and by (4.7) it has closed range and is one-to-
one, for any e E [0, 1]. Moreover, we deduce from (4.2) and Theorem 3.4 and 3.5 that 
,C O is onto, hence Lo has index zero. It follows from (4.9) and [44: p. 27/Theorem 3.11] 
that index(r) = 0 for any E E [0, 11. Note that [44: Theorem 3.111 is valid not only 
for Fredholm operators as stated in that reference, but also for operators with closed 
range and finite-dimensional kernel, as is obvious by the (short) proof of [44: Theorem 
3.111 and by [44: p. 25/Theorem 3.9]. Thus we get index(r i ) = 0. Referring to (4.7) 
we conclude that L is one-to-one and onto. Since inequality (4.3) is a consequence of 
(4.7) and (4.8), the theorem is proved I 

Now we consider the right-hand side in (1.4) and (1.5). 
Definition 4.3. Introduce the mapping A,,: Y 2 X,, by 

2	ph/2 
A,,(cr),(xi,x2) =	C1j*iJ	Dka.(xI,x2,x3)dx3 

	

i,jk=1	-h/2 

for 1 E {1,2},a E Y22 (XI, X2) E A, 

A,,(a)3(a) 
= f	Cj ( - ^ij (X

 , x 2 )J	a k,(x I , x, x 3 ) dx 3 . a(x i , x2) 
A i,j,k,l=1	 -h/2 

I- h /2

h/2 
-Dak,(x1,x2,x3)x3 dx 3 . D;a(xix2))d(xix2) 

 

for a E y2X2 and a E W''(A). 
Lemma 4.5. The mapping A is well defined, that is, A,,(a) E 24 for a E y2X2 

and there is a constant C i o > 0 such that 

II Ap(a )IIx	C10 IIaD),2x2 

for a E 

Proof. For a E Y22 3 ,k,l E {1,2} and" E 10, 1), we get by Theorem 3.3 

(JA J-.h/2	 J	-h/2

h/2	 '	 * h/2

/ak,(x) dx 3 d(x i , x2)

\

 )	J	IIakz(., , X3 )IIpdx3	h II a klII y
 

and 
/	I-1-h/2	 \	+h/2 

DJ ak1(x)xdx3 d(x l x 2 )) <h" IlIDiakI( x3)IIPdx3 <h1IIak,lIy. 
A	h/2	 -h/2 

The lemma follows from these inequalities, after some easy computations U
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Definition 4.4. Define the operator £ in the same way as £, but with the domain 
of the former operator enlarged from V° to V,,. 

Corollary 4.1. For u O E V,a E Y 2 and F E X,,, there is one and only one 
function v = v(uo,c,F) e V° with 

	

L i (v) = —,C(uo) + Ap (c) + F.	 (4.10) 

There is a constant C11 > 0 such that 

II v (uo, a , F)IIv, < C11 (Iluo 	+ I1 a IIy; x2 + IIFIIx) 

for u 0 E V,a e y2X2 and F€ X,,. 

Proof. Combine Theorem 4.1 and Lemma 4.5 I 

In view of system (1.4) - (1.7) which we ultimately want to solve, we state Corollary 
4.1 for the case the right-hand side in (4.10) depends on time. 

Corollary 4.2. For u 0 E V,T e (0,00),q E C°([0, TI, X),g E C°([0 , TI, y2) 
there is one and only one mapping U = U(uo,g,q) E C°([0,T],V°) such that 

C 1 (U(t)) = —r(uo) + A(g(t)) + q(t) 

for t E [0, T]. Moreover, 

lIU(uo,g,q)Iv,,	Cii(Il uoflv, + IgII2x2	+ IIqIIx,,00) 

g, q) - U(uo, g', q ')IIv,	C11 (II - 9IIyX2 00 + II q - q'IIx,,00) 

hold for u 0 E Vp, 9,9' € C°([0,T],Y2) and q,q' € C°([0,TI,X), with C 11 from 
Corollary 4.1. 

5. An estimate of the solution to system (1.6), (1.7) 
when the function u is given 

In this section, we consider system (1.6), (1.7) of nonlinear ordinary differential equa-
tions in suitable function spaces, under the assumption that the function u is given in 
C°([0, T], Vt). We begin by defining the right-hand side in (1.6), (1.7) in a more formal 
way than in Section 1.
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Definition 5.1. Define 

a(1,1)=1, a(1,2)=2, a(2,1)=3, a(2,2)=4 

FkI( z , x ) = z 1 + z2 +Ick,(x1,x2)z3 — X3Z4 —z5 (z € R5 ,x € V,1 k,l 2) 

x) =	CkIFk: (P(k,1), U(1,k), U5, 9a(k,l)+5' O(k,1)+9 x) 
k,1=1 

(ü E R 13 ,x € V,i,j € {1,21) 

P(z) = (z + z - z 1 z2 + 3z)	(z € R3) 

Q i (z) = z I - z2 , Q22 (z) = —z 1 + z2 , Q 12 (z) = z3 (z € R3) 

r( 9 ,x) = P(Gji(,x),G22(,x),Gi2(&,x)) ( LOER 13 ,x € V) 

= Q(GIl (U,x),G22 (9,x),GI2(,x)) (e € R' 3 ,x E V,1 < i,j !^ 2). 

Let A,B € R,n E [3,00),m € [2,00) and ñi € (O,00) be fixed. Then put 

R,(,5,x) = Ar''(,z)A1(,x)(1 - 5)_fl } 

S(,5,z) = B rm ( , x)(1 - 

for p € R' 3 ,5 € (—oo,1),x € V and 1 i,j 2. 

With these notations, system (1.6), (1.7) of differential equations may be rewritten 
in the form

t) = R(B(u, e, d)(x, t)) 1 
a

	

	
(5.1) 

t) = S(8(u, cr, d)(x, t)) J 

with 8(u,e,d)(x,t) defined by 

13(v,g,5)(x,t) =

D1 D1 v3(, t), D1 D2v3(, t), D2D1v3(, t), D2D2v3(, t),	(5.2) 

gII(x,t),912(x,t),921(x,i),922(x,t),S(x,t),x) 

for x € V, Y := (x i ,x2 ),t E [0, TI, with some T € R, and for functions 

Ax [0,7]'—' R 
g: V x E0,T1 ,_4 

5: V x [0,71	R 

with v(-, t) € W fort € [0,T]. 
We choose some number 0 € (0, ) which will be kept fixed for the rest of this 

paper. The following estimates will be basic to our arguments:
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Lemma 5.1. There is a constant C12 > 0 such that, for i,j E {12}e' E 
R' 3 ,9,9' E (—oo,1 - J,x E V and ii E {0,1,...,16}, 

D , R j(, 9 , x )I + IDS( 9 ,9,x) I :^ C12 (1 + Ih),''T' 

and
D1,R,(ü,9,x) - DR 1 (e',9',x)I + I D 9 S(&,9,x) - DS(p',9',x) 

' C 2 (1 + 1,0 11 + IO'Ii)
mVn

( iU - 
'0,11 

+ 9	O'l) 

where D0 R1, = Rij and DO S = S. 

For brevity, we wrote D 1 , ..., D13 for derivatives with respect to 101 , ---, L013, and 
D 14 , D 15 , D16 for derivatives with respect to 9, x 1 , x2. 

Proof of Lemma 5.1. For z E R3, 

P(z)=	 +3z)2 ^ 

Thus, for q E [2, oo) there is a constant C(q) > 0 with 

< C(q)z[ 

	

ID,,(P')(z)I	C(q)z' 

	

- D1,(P)(z')I	C(q)(Iz1 + zl)_2z - Z' 11 

for z, z' e R3 and ii E { 1, 2,3). The lemma may be deduced from these observations by 
some easy but tedious computations, which we omit here 

Lemma 5.2. There is a constant C13 > 0 with the properties to follow: Take 
M, T E (0, ), v( l ) , v(2) E C°([0, T], V) with IIv( T)llvp,00	M for r E 11, 21. Moreover, 
take (1),(2) e Co([0,T],yx2), 5(I)I5(2) E C°([0,T],y) with 

1—	(x E V) 
2 

- &"(0)II Y2x2 + II( T )( t) - T)(0)IIy, ^ 1	(r E {1,21) J 

fort E [0,T]. Abbreviate 8( T )	13(v(T),0(r),6(r)) for r E {1,2} (see (5.2)). Then 

(R o !3(T))(t) E Y22	and	(So f3(T))(j) E Y, 

for tE [0,T] and rE 11, 2), 

II Ro8 ' IIy2 ,	+ IISoB(T)IIy, 

-	C3(M + II o IIy: x 2 + II6( T)(0)IIy + 1)(mVn)+l
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for r E {1,2}, and 

IR 0	- R 0 t3 2 II y; x2 , + ISo 8' _So 13(2)yoc, 

2	 (mvn)+I 

M +	( I1 T) (o)Il y x2 + 16( T )(o)IIyp ) + 
<(


C13
 T=I 

(11,(I) - v(2)IIv	+	-0	Iy2, + 11 b(I)- 

Proof. Lemma 5.2 follows from Lemma 5.1 and Theorem 3.1. To give an example 
of the arguments involved, consider the term 

IC (X, s) =	o 81))(x s) - D V (RI, o 82(x, s)I 
with x E V,s E [0, T] and zi,i,j E {1,2}. Then 

14 
IC ( X, s) <r R (8(1)(x, s)) - DR1(B 2 (x, s ))l IDt3.'(x, s)I 

r= I
14	 (5.3) 

+	DrRij(132(r, s))I D8.'(x, s) - D8 2 (x, s)I 
r= 1 

+ lD 14 +vRhj (8w(x,$)) - Di4+R1(82(x,$))I. 

But we have by Lemma 5.1 and Theorem 3.1 

16 

i DrRtj (B(1)(x s)) - DR1(B 2 (x, s)) I 
r1

/ 2 13	

)mvn 

14 
c ( :: ::18 (.' ( x, s )I + 1	1130) (X, s) - 13(2)(x s)I 

r=1 r1	 r1 
2	2 1	/

(r)	i	(r) 
<Cl I (	i: (IIDvTsIII , + IIDD 3 (s )iIj ,p + IIü j ( X3, s )IIi ,) 

L= \i,j=I
mVn 

+ v r ii i,P) +1]	
(5.4) 

/ 2
(1)	 (2) 

X (	(IlDiv 1) (s) - Dv2 (s )II1, + II DDv3 (s) - D1Dv3 (s)IIi, 

(2) 
+ IIU( x3 , s) -	(,x3 , s)Il,) 

+ IIv'(	
(2) S) - V3 ( s )lIi, p + II8°(s) - 

r 2	 IMVfl 

ci >	
+ IIU(T) Ily:x 2 ,00) + 1 

Lr=i 
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X (II v( ' ) -	+	- 2 IIy; x2 ,, +	
- (2)IIy,) 

Here and in the following, the letter C denotes constants which do not depend on 
or 6(2) We get in a similar way 

14

DrRjj(t3(x, .$))	C (II v2 IIvp O +

	

Il	IY2oo + 
1)m/h1.	(5.5) 

r= 1 

Obviously,
14 

(IA (	
DM'(x , s)I) d(x i , x2))	

(5.6) 

+ lb	I1y 2x2 oo + 

and
A 

14 

(f. (	
D8'(x, s) - DB2(x, s)I) d(x i , x2)) 

- 2 ()llVp ,00 + lu	- ull Y 2	+ 118' - (2)lly) 

Combining (5.3) - (5.7) yields

A 

(IA 
lA(x,$)IPd(xi,x2))' 

/ 2	 (mVn)+1 1) 
 C(	(ii v) iiv, +	+ b6(Ty	) + 

x (lI v( ' ) -	+ He (1) - uU ll y 2 00 +	-


Similar arguments may be used in order to estimate the expressions 

Rij o B(T)(x,$)I 

a 8(T))(xs)I 

R81 a!3'(x,$) - Rij 0 B(2)(x,$)I. 

No additional difficulties arise if Rij is replaced by S  

By means of the preceding lemma, we may solve system (5.1) if the function zz is 
taken from C°([O, T], Vp ). In fact, the following statement holds. 

Theorem 5.1. Let M e (O,00),eo E yP212 and d0 E ),, with do(x) 5 1 -,3 for 
xEV. Put

T0 = [C13 (M+ 2 1l e01Iy 2x2 + 2 l1 d011 y9 + 
l) (TflVfl)+1 2 l + Cl -1
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with C1 from Theorem 3.1 and C13 from Lemma 5.2. Let T' E (0,ToI and v E 
C°([O,T'],V) with II v IIv,00 :5 M. Then there is a uniquely determined mapping 

(g,6) = (g(v,eo,do),6(v, co, do)) E C0([0,T'],y2 x Y,) 

with
IIg(t) - oIIy2x2 + 11 8( t) - doily,	

2(1 + C1)	
(5.8)


and

(g, 6)(t) = (eodo)+j (RoB(v,g,6), Sof3(v,g,6))(s)ds	(5.9) 

for t E [0, T'], where 13(v, g, 6) is defined in (5.2), the integral in (5.9) is to be understood 
as a Bochner integral in yP2X2 

x ),,, and relation (5.8) means in particular 

6(x, t) :5 /9 
1—	 (5.10) 

for x E V and t E [0,T'l. In addition, 

(g,6) E C1([0,T'],y2 x Y)	 (5.11) 

(g, 6)'(t)	(R o 13(v, g, 8), S o 13(v, g, 6))(t) (t E [0, T']).	(5.12) 

Moreover, g and 6 considered as functions on V x [0, T] are partial differentiable with 
respect to t E [0, T'], and

g(x,t) = R(8(v,g,8)(x,t)) }

	

(5.13) 
8(x,t) = S(t3(v,g,8)(x,t)) 

for x € V and t E [0,T'I. Furthermore, 

g(0) = eo ) 
6(0) = d0	

(5.14) 

Proof. We adapt the standard proof for existence of solutions to ordinary differ-
ential equations in Banach spaces (see [28: Section 10.4]). To this end, we set 

(a, i)(0) = (co, do) and, for all t € [0, T'],	

} 
M = (a, r.) E C°([0,T'],Y2 x Y4) - 

EoIy:x2 + Ik( t ) - dolly, 2(1 + CO 

For (a, K) € M,x € V and t € [0,T'], we obtain by applying Theorem 3.1


-.(x, t) 5 do(x) + k(x,t) - do(x)I 

1 - 0 + CiII'c(, x 3 ,t) -do(., X3)111, 

< 1—/3+CiIli(t)—dolly,	 (5.15) 

-	2
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Obviously,
110'(0 - E0IIy2x2 + IIic ( t) - doIIy,	1	 (5.16) 

for (9, r.) E M and i E [0,T']. Thus, by Lemma 5.2, we get for (a, K) E M and 
t, t' E [0, T'] with t <t' 

II(R o 8(v ) a, ic)ISO B(v, a, 

	

< C3(Mr + II EoIIy:x 2 + II doII y, + 
1)(mVn)+1(j - 

i')	(5.17) 

/9 
- 2(1+ C1) 

where the last inequality follows by the choice of T'. Due to the preceding estimate, 
the mapping T: M	C°([0,T'J,y2 x Yr), introduced by 

T(a, )(t) = (EO, d0 ) + f (R o 5 (v, a, ic), So 8(v, a, r.)) (s) ds 

for t E [0,T'] and (a,ic) E M, is well defined. It further follows from (5.17), for 
(a, r.) E M and t E [0,T'],

- (eo, do) I32	2(1 +C1) 
hence T(M) C M. Moreover, referring to (5.15), (5.16) and Lemma 5.2, we find 

IT(o, i)(t) - T(, )(t)I;x2X 

5C13 (M + 2 11 eo11y 2x2 + 2 II doII y, + 1) (mV	1 (IIU - a IIy; x2	+ 1k - IIy,00)T' 
/9 

2(1 + C1) (h a - ahI y2x2	+ Il k - IChIyp,00) 

fort C [0,T'] and (a, c),(,) e M. Since -, we may conclude the mapping T 
is a contraction with respect to the norm of the space C°([0, T'], y2 x2 x ))). Therefore 
Banach's fixed point theorem yields there is a uniquely determined element (g, 6) E 
M with T(g,ö) = (g,). In other words, there is one and only one pair (9,5) E 
C°([0,T'1,y<2 x ).,,) satisfying (5.8) and (5.9). Note that (5.10) follows from (5.15), 
and (5.14) from (5.9). 

In order to obtain (5.11) and (5.12), we have to check whether the mapping S 
[0,T']	yx2 x )),, defined by 

	

S(s) = (R o B(v, g, ), So 8(v, g, b)) (s)	(s E [0, T'J)

is continuous. To this end, we note that by (5.8) 

hg(s) - g ( i ) II 22 + 11 6( s ) - 6(t)hly	2(1 +C1)	
1	(s, t E [0, T'j). 

So we may use Lemma 5.2 in order to estimate differences of the form 8(t) - 5(s) in the 
norm of the space yP2 X 2 x )',. The continuity of S then follows by an easy computation, 
which is omitted here. Now the relations in (5.11) and (5.12) readily follow from (5.9). 
We finally remark that (5.13) may easily be reduced to (5.12) by referring to Theorem 
3.11
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Corollary 5.1. Let M € (0,00),K € [1,00),o E y2X2 and d0 € )', with do(r) 
1- 16forxeV. Put

+ 2 II doII y
, + 1)(mVn)+1]_I 

mm {' 2(1 ± CI ) }• T1 = [c13(M+211e0 

Take T' € (0,1'] and v( 1 ) , v( 2) € C°([0,T'],V) with IIv( T )IIvp,00 M (r E {1,21). 
Assume that for r € {1,2}, the mapping (g(7),8(T)) € C o ([0 , Th ] , y x2 x Y) satisfies 
(5.8) and (5.9) (and hence (5.10)) with v,g,S replaced by v(T),g(),5(T), respectively. 
Then

11g 	- g(2)y2x2	+	- 	11V(1)- v (2) IIv,, .	(5.18) 

Proof. Abbreviate 

C = C13 (M + 2 II C OIIy 2X2 + 2 II doII y + 1)(m%mm1 

Then we get by (5.8), (5.10) and Lemma 5.2, for s € [0,T'j 

o B(v, g(1), ö')(,) - R o 13(v2, g(2) (2))(s)lI 
II y2 X 2 

+ So8(v(1),g(1),6(1))(s) - SoB(v(2),g(2),2))(s)1 

- 5(2 )IIy ,,:,) C(v() - v(2) 11  oo + g( 1 ) - 9 (2)  
IIy X2 , 00 + ii t5 ' 

hence by (5.9) 

11g
	- 9(2)y2x2	+	- 

CT' (11v ( ' ) - ( 2) 
11VP ,	+ 11g

(1) -9 (2) 11y2.2	+ ii' - 8(2)IIyo,)	(5.19) 

<	
1 

1lI(1) - v( 2 )IIv,,co +	( 11g ) - g(2)y2x2	+	- 6(2) I1y oo) 
- 2K 

with the last inequality being a consequence of the choice of T'. Now inequality (5.18) 
follows from (5.19) I 

6. A fixed point argument 

In the following, we shall exploit the results of the preceding sections in order to solve 
problem (1.4) - (1.9). Our main result is 

Theorem 6.1. Let u0 € V,T € (0,c,o),q e C°([0, TI, X),eo € Yp2 X2, and d0 € Y,, 
with do(x) < 1 - 0 for x € V, where 3 was fixed at the beginning of Section 5. Put 

K=-
 

- 

M = C 1 (lI uoIIv, + II coIIy 2P x2 + II q lIx, + 1) + IIuoIIv9
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with C11 from Corollary 4.2. Choose T1 as in Corollary 5.1, and let T' E (0, TI ]. Then 
there is a uniquely determined mapping 

(v,E,d) e C°([O,T'],V x	'<2 x y) 

such that

d(x,t)<l (xEV)	 (6.1) 

= —2(uo) + A(e(t)) + q(t)	 (6.2) 

(E, d)(t) = (eo,do) + 10, (R o 8(v + uo,e,d),S o 8(v + uo,e,d))(s)ds	(6.3) 

for t E [0, T'], where the operators £ and A,, were introduced in Definitions 4.4 and 4.3, 
respectively. For the definition of R, 5,8 see Definition 5.1 and (5.2). 

In addition, for t E [0, T'], 

(e, d) E C'([0,T'],y,,2 x Y,,)	 (6.4) 

= Ro8(v+uo,e,d)(t) 1
(6.5) 

d'(t) = So 8(v + uo, e, d)(t) J 
(0) = co 
}(6.6) 

d(0) = d0 

Ile(t) - C011y2x2 + II d( t) - doIIy,	2(1 ± co'	
(6.7) 

the functions e V x [0,T']	R 21 and d V x [0,T']	R are differentiable with

respect to the variable t E [0, T'], and 

t) = R(8(v + uo, e, d)(x, t)) 1
(6.8) 

d(x,t) = S(8(v+uo,e,d)(x,t)) J 

for x E V and t E [0,T'] 

Proof. Put

M = {WE C°([0,T'],V): II w + uoIIv,,	M}. 

Define 7: M -* C°([0,T'],V,,°) by 

T(w) = U(uo,g(w + uo,eo,do),q)	(w E M) 

with g(w + uo,co,do) introduced in Theorem 5.1, and U(uo,g(w + uo,Eo,do),q) in 
Corollary 4.2. According to Theorem 5.1, we have 

g(w + uo, co, do) e C°([0,T'],y2)	(w € M)
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hence 7(w) E C°([0, T'j, V) by Corollary 4.2. Therefore the mapping 7 is well defined. 
By first using Corollary 4.2 and then (5.8), we get for w E M 

117 (w ) + uoIIv,,	<C11 (ii u0ii	+ Ig(w + uo, Eo, do)IIy2x2	+ IIIIx,00) + IIuoIIv, 

<M 

hence 7(M) C M. We further deduce from Corollary 4.2 and 5.1 and the choice of T' 

117 (w) - Y()IIv,	Cii g(W + uO, Eo, d0 ) - g(ii + u 0 , eo, do)lIzx2, 

C11 
^ kHIW_WIIVP,co 

for w, 1i € M. Since 1 < by the choice of K, we see the mapping 7 is a contraction. 
Now we are in a position to apply Banach's fixed point theorem, which implies there is 
a uniquely determined mapping v E M with 7(v) = v. Putting 

6 = g(v + uo(eo, do) 

d = fi(v + uo,co,do) 

(see Theorem 5. 1), we obtain a mapping (v,e,d) which satisfies (6.1) - (6.8). 
Although the triple (v, e, d) chosen in this way is unique in the sense that there is 

only one suitable element v in M, we still have to show uniqueness of (v,E,d) in the 
wider class of mappings verifying (6.1) - (6.3). Therefore let us take 

(i,i,	E C°([0,T'j,V x	x y) 
with the property that the relations in (6.1) - (6.3) are valid with v,e and  replaced

by ii, F and d, respectively. Assume for a contradiction that (v, e, d) 54 (Y, Z, d) and put


to = max {r e [0,DJ: (iJ,i,d)(t) = (v,e,d)(t) for tE [0,r]}. 

Obviously,	 - 
1, d)(t) = (v, e, d)(t)	for t E [0, t0].	 (6.9) 

Recalling our assumption, we conclude to <T'. Relation (6.9) further implies we may 
choose T € (0, T'l so close to to that 

g(t) - e(to)II2x2 + 11 6( t) - d(io)Ily,,	
/3 

2(1 + C1)	
(6.10) 

fort € [i 0 ,T] and (g, 6) E {(e,d),(,d)}. Due to (6.7), (6.9) and Theorem 3.1, we get 
for SE {d,d} and x  V 

6(x, to) = d(x,to) 

Id(x,to) - do(x)l + do (x) 

C 1 II d( . , x, to) -do(., x3)II1 + 1 - /3	 (6.11) 

CiII d( to)— doll y,+1--/3 

< 1-13.
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Put
M = max {II v +	Mi+ uoIIv} 

7 =	+ 2 II e ( to)II 2 x 2 + 2 II d( to)II y, + 1)(mV1] 

X 
m ___ /3 m c11+C11 2(1+C1) 

I,	 ( T =min 1Ti ,T,to+-y 
with C13 and C11 introduced in Lemma 5.2 and Corollary 4.2, respectively. Then, 
combining (6.9) - (6.11), (6.3) and Corollary 5. 1, we obtain for t E [to, T"] 

II c ( t ) - Z( t )II 22 + II d( t ) - d(t)IIy,	+2c11 '	- ) I [to, T" III v,.	(6.12) 

Now we may conclude from (6.2), (6.12) and Corollary 4.2 

II( v -	I [t 0 , T"jIIv,,,	C1 II( e -	I [t0, T"]II2x2,,0 
II(v—i)I[to,T"]IIv,00 

hence v(t) = i(t) for t E [to, T"]. It follows with (6.12) 

V(t) = (

i) I 
e(t) = Z(t)	(t E [to, T"]).	 (6.13)

—_dd(i)(t) 

But these equations imply a contradiction to the choice of to, so (v, e, d) = (ii, Z, d) must 
hold I 

Due to the previous theorem, we may solve problem (1.4) - (1.9) under appropriate 
conditions on the data: 

Corollary 6.1. Let vo E W2_(aA)3 with v0,3 E W - " (aA). Moreover, let


wo E W2_(OA), T E (O,00), q E C°([O, TI, X), eo E y2x2 d0 e Y 

with do (x) < 1 - /J for x E V. Then there are T' E (0, T] and uniquely determined 
mappings

	

E C°([0,T'],V),	E e C1([O,T'],y2),	d E C'([0,T'],y) 

such that, for t E [0, T'j, 
,C(u(t)) = A(e(t)) + q(t)	 (6.14) 

d(x,t) <1 (x € V)	 (6.15) 

E'(t) = R o B(u, e, d)(t), d'(t) = So 8(u,,-, d)(t)	 (6.16) 

u I ôA=vo,	 (6.17) 

e(0) = Eo, d(0) = d0 .	 ( 6.18)
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In particular, the pair of functions (u, e) solves the boundary value problem (1.4), (1.5), 
(1.8) with 6cr 

The functions e : V x [0,T'] R 21 and d: V x [0,T')	R are differentiable with

respect to t E [0, T'J, and

6(x,t) = R(8(u,e,d)(x,t))

 I i) = S(13(u, e, d)(x, t)) 

for x E V and t E [0,T']. Thus the triple (u,c,d) solves the initial value problem 
(1.6),(1.7),(1.9) with 6cr = C. 

Proof. Choose u0 in such a way that 

	

uo E V,	u oI ôA = vo,	Du3 IÔA n	= WO.	(6.20) 

According to Theorem 3.6, such a choice is possible due to our assumptions on v0 and 
w0 . Note that in order to satisfy the relation u 0 E V, the assumptions 

	

V0 E W'*'(3A),	p0,3 E W2_1(ôA),	w0 E W'-''(aA) 

would not be sufficient. For u 0 as in (6.20) and for q,60 ,d0 as in the corollary, Theorem 
6.1 yields some T e (0,T] and a triplet (v,e,d) E C°([0,T'],V x yP2 12 x y) satisfying 
(6.1) - (6.8). Therefore the mapping (u,e,d), with u = v + u 0 , verifies (6.14) - (6.19). 
In particular, the equations in (6.17) are valid due to Theorem 3.7, the choice of u 0 and 
because v(t) E V° for t E [0,T') U 

Note that system (6.14) of partial differential equations, which corresponds to (1.4), 
(1.5) consists of three equations; two of them are solved in the strong sense, the third 
one in a weak sense. 

The variational form of (1.4), (1.5), (1.8) coupled with (1.6), (1.7), (1.9) - this 
problem is considered in [8) - may now be solved as well. We state this conclusion in 

Corollary 6.2. Let vo,wo,T,q,eo,do be given as in Corollary 6.1. Define the form 
a(v, w) in the same way as a 1 (v, w) in Definition 4. 1, but with the domain of the former 
form enlarged to

{ (V, W) E W1,2 (A)' x w'' 2 (A)3 : V3, W3 E 

Then there are T' E (0, T] and uniquely determined mappings 

	

E C°([0,T'],V),	CE C'([0,T'],y2),	d E C'([0,T'],y) 

such that
2 

	

a(u(t), w) =	q(t) w d(x i , x2) + IV	CkIek:(x,t) 

	

JA 	i,j,k,I=I 

x (Dw(x 1 ,x2 ,i) + Dw1(xi,x2,t)	
.	(6.21) 

+ij(xix2)w3(xi,x2)_xaDDjw3(zi,x2))dx
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for w E W, and such that the relations in (6.15) - (6.19) are valid. 

Proof. Combine Corollary 6.1 with Lemma 4.41 

In Corollary 6.2, the variational problem (6.21) coupled with system (6.16), under 
suitable side conditions, is solved in the space C°([0,T'],V x y2X2 x yr). It would be 
more natural to look for a solution (u, r, d) with u(t) e W. However, if such a mapping 
u were inserted into system (6.16), the solution (e, d) of this system would, in general, 
exhibit such a low regularity that e would not yield a right-hand side in (6.21) which 
belonged to the appropriate space W-1,2 (A)2 x W-2,2 (A). This is the reason why we 
replaced (6.21) by (1.4), (1.5) (or, equivalently, (6.14)), and chose a L P-framework with 
p > 2 for our theory. 
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