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Abstract. For the real-valued Sobolev-Hilbert space on [0,) comprising absolutely con-
tinuous functions F = F(t) normalized by F(0) = 0 and equipped with the inner product 
(Ft , F2 ) f000 (F1 (t)F2 (t) + F1'(i)F(t))dt we shall establish a real inversion formula for the 
Laplace transform. 
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1. Introduction and results 
The real inversion formulas for the Laplace transform are important in mathematical 
sciences, but the formulas are, in general, very involved (see, for example, [8, 12, 13]). 
In [3, 111, new real inversion formulas for some general situations were given by a new 
method for integral transforms in the framework of Hilbert spaces. Those formulas are 
translated into computer algorithms in [4, 5]. In some special cases, their error estimates 
were given in [2]. In the new method, inversion formulas for integral transforms will be, 
in general, given in terms of strong convergence. For some practical purposes, we wish 
to obtain inversion formulas in terms of pointwise convergence. For this purpose, we 
shall establish a real inversion formula for the Laplace transform of a simple Sobolev 
space, which will be given in terms of pointwise convergence. 

Let S be the Sobolev-Hilbert space on t > 0 comprising absolutely continuous real-
valued functions F normalized by F(0) = 0 and equipped with the inner product 

(Fi ,F2 )s	I (Fi (t) F2 (t) + F(t)F(t))dt. 

We consider the Laplace transform of F E S 

f(x) [LF](x) = I F(t)e - "dt	(x > 0).	 (1) 
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In connection with some general real inversion formulas [ 3 , 11], we would like to consider 
a more general Sobolev space such that for any positive q the inner product is given by 

(F1 , F2)s,q = J (F1 (t)F2 (t) + F;(t)F(i))t'-2dt. 
0 

However in this general case, its reproducing kernel will be very involved. So, we 
shall consider the simple Sobolev space S. For more general order Sobolev spaces, the 
circumstances are similar. That is, the Sobolev space S will be a reasonable space for 
the Laplace transform for our purposes (see Lemmas 1 and 3 for this comment). 

Then, we obtain 

Theorem. For the Laplace transform (1) of the Sobolev-Hilbert space 5, we have 
the real inversion formula 

F(t) = Lm f f(x) I e-,r K(T, t)(PN(x, r) + QN( x , r))drdx	(2) 

where

K(r, t) = (e__ h I - e_e_i) 

N 2n 
PN( x , T )	

(_),+i (2n) (v)	1	
(rx) 

x ((2n + 1)(rx) 2 - (2 + 5n + v + 3nv)7-x + n(u + 1)2) 
N 2n 

QN( x , T ) = -	(-1)"' 
(2n (zi '\	1	

(rx)' 

x ((4n2 +6n +2 )(7-X)3  - (8 + 3v + 26n + lOnv + 20n 2 + 8n2ii)(rx)2 

+ (v + 2)(2 + v + 8n + 4nii + 9n2 + 5n2 v)rx - n2 (u + 1)2(ii +2)). 

In the real inversion formula (2), for any t > 0 the right-hand side converges and its 
convergence is uniform on [0, oo). 

We introduce the differential operator 

= 

for any non-negative integer n.
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2. Preliminaries for Theorem 

At first we note 

Lemma 1. The reproducing kernel K for the Sobolev-Hilbert space S is given by 

2
 cc r sin(te) sin(t) 

K(t,t) = - J2 + 1	
d =	- e'e 1 ).	 (3) 

2 
0 

Proof. For the positive matrix K(t, 1) defined by (3) we shall show that the repro-
ducing kernel Hubert space HK admitting the reproducing kernel K coincides with S. 
From (3), we see that any member F of HK is expressible in the form 

F(t)= 
2 
f 

H()sin(ie) d
	 (4) —	

e2+1 
0 

for a (of course, uniquely determined) function H satisfying f fI d < - and we 

have the isometrical identity II F II K = f00° f$ d (for this argument see [9, 10] or 
[11]). From (4)

H() = ( +1) JF(t) sin(t) di	 (5) 

in the L2 space and so, from (5) we obtain II F II K = f (F(i) 2 + F'(t) 2 )dt. From the 
uniqueness of reproducing kernels, we have the desired result I 

Lemma 2. In the Laplace transform (1) of 5, we have the isometrical identity 

IIFII = 
CO 

 
n!(n+ 1)! J{(Dn f(x)) 2 + (D(xf(x)))2 } dx.	 (6) 

0 

Proof. In general, for F E L 2 (0, oo) we have the isometrical identity 

00	 00 

J F(t)2dt=1	
1 

W!-(n —+I)! I(Df(x)) 2 dx	 (7) 
0	 0 

[11: Chapter 5]. Since F(0) = 0 and by integration by parts, f0
00 F (i)e-t di = xf(x). 

Hence, from (7) we have the desired isometrical identity (6) 1
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Lemma 3. In the Laplace transform (1) of S, we have the real inversion formula 

	

00	1	
00	 00 

F(t)	 1)! J [Df(x) D,,Je_nzK(T,t)dr 

+ D(xf(x)) . D (X 
I 

e-r 'K(7-, t)dT)] dx	
(8) 

	

CO	 00
e_t - 

n!(n+1)! J [D,,f(x).D( x 2 _1 ) 
nO 

+D0(xf(x)).D(x( e' - e_
Xt

 x2_1 ))]dx. 

The convergence of this series is uniform on [0, ). 
Proof. First we have

00 

(LK( . , t))(x) = f e_ZTK(T, t) dr 

0

00
	

00 

= f e' 
(2 

f 
sin(re) sin(te) 

de) dr \1rJ	e2+1 o	o 
00 

2 f	sin(te) 
= J (2+1)(e2+x2) 

0 
e_ t - e 

- x2-1 
11: page 4101. Hence, by using the reproducing property F(t) = (F(),K(•,t)) of 
K( . , t) in S and the isometrical identity (6) we have the desired result (8). The uniform 
convergence of (8) on [0, ) follows from the general property of reproducing kernel 
Hilbert spaces (sec (11: page 35/Theorem 1]) and the boundedness of the reproducing 
kernel (3) for S on 10, ) I 

For the property of f satisfying (7) we note 
Proposition 1 [11: Chapter 5]. For a function f satisfying (7) we have the iso-

metrical identity 
00	 00

f
00 

	

n!(n+ 1)! 
(Dnf(x))2	

= z—o+ 2 
dx	lim -

	
If(x+iy)I 2 dy	(9) 

0 

where f is analytic on the right half complex plane fl+ = {Rez > 01 and belongs to the 
Szegö space on R+ with a finite norm (9). Furthermore, then we have, for n > 1 and 
0 m n — i,

ôIm[xf(x)]xn+m+l = o(1) '1
(x-0--) 

f(x)x 2 =O(l)J
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and for n > 0,
ôf(x)-40	(x—co). 

3. Proof of Theorem 

For n > 1, by integration by parts and by using Proposition 1, we have 

I Dnf(X) DczTdx 

T J (xf'(x))a((nx2 - Tx2 

= —T f f(x)3xô ((nx2 - TX2 
= _r n f f(x)(3((nx 2	l)_1T) - rx2e	+ xa:((nx2 - rx2I)e_zT))dx 

= _ T n J f(x)(a((nx2T - TX 2 I)eXr) 

- xr5((nx2" - 7X2	)e	+ xô(2n2 x2 ' - (2n + 1)Tx2nl)c_XT)dx 

= —r / f(x)e 	
(n) (_T)v (a_(nx2n - TX 2n+1) 

- xr5 '(nx2" - rx2 ') + x5 L (2n2 x2Tl - (2n + 1)7x2n))dx 

= 
If (x)e -xr 	(-1)' 

(n	r(2n + 1) 

V )	 f(n+v+1) 
0 

x(_2n+1 (rx)	+3n±1 2	 2n+1	
)rx+n(n+v+1))dx. - 

+ti+1	n+t'+l 

Similarly, we have 
00 

J D(xf(x)) 
0

00 

= (—r)	f a(x(xf(x))')(x2 r 2 - (2n + 1)xr + n2)erx2ndx 

0 
00 

(n-I) J (xf(x) + x 2 f'(x))5(x2272 - (2n + 1)X 2n T + n2 x2 )edx =

0
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= f AX) (Xa.n(X2n+2 7 2 - (2n + 1)X2"1 IT + n2x2n)eT 
0 

	

-	 - (2n + 1)x21 7- + 722x2n)e_zr))dX 
CO 

= T(n_1)ff(x)(xa(x2n+2T2 - (2n + 1)x 2 'r + n2x2n)e_ZT 
0 

+ x2ôOz(x2n+272 - (2n + 1)x 2 '7- + n2x2n)e_)dx 

= r(n_1)f AX) (xô(x2+2r2 - (2n + 1)x2fl + 1 7- + 722x2n)e_1T 
0 

- x25(r3x2n+2 - (4n + 3)r 2 x 2 ' + (5n2 + 4n + 1)rx 2 ' - 2n3x2n_I)e_zT)dx 
cx, n 

	

= r	ff(x)e	
(n)(_,). 

0	 v= 0 

X (xô_P(x2n+2r2 - (2n + 1),2+l, + n2x2") 

- x 2 5 ' (r 3 x22 - (4n + 3)r 2x2+ + (5n 2 + 4n + 1)T x 2 ' - 2n3x2_1))dx 
00 

= I f(X) —	
(_1)1 (n r(2n + 1) 

x 2 (XT )1 
0

\v)F(n+v+1) 

/	4n2 +6n+2	 8+3v+29n+lOnv+30n2+8n2i+8n3 

	

X (	 (rx)3 -	 (rx)2 \(n+v+1)(n+v+2)	 (n+v+1)(n+LI+2) 
2+v+9n44nv-1-1n2 --.cn 2 ,,--.cn 3	- 

-f
72 + v + 1 

Therefore, from Lemma 3 we have the desired real inversion formula (2) I 

4. Concluding remark 

The integrals (6) are effectively computable by using the Mellin transform 

(Mf)(q - it) = I f(x)x9-"-'dx. 

Indeed, note the identity

27r J I Dnf(x ) I 2x21 dx 

-Tx _n2(n+v+1))dx.
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=(Mf)(q - jt)1 2 (q 2 + t 2 ) 2 {(q + 1)2 + t 2 } ... {(q + n - 1)2+ t 2 }dt (q > 0) 

[11: Page 207/Formula (28)]. Hence, 

27r J IDn f(X)I 2 1x = 

_CO (Mf)(	
)2{(1)2 

+ t2} 2 {( 1 + 1)2 + t2} ...{( + - 1) +t2}dt, 

and so the first part of (6) is 
00

CO	 1  
'=	n!(n+ 1)! J IDnf(x)I2dx 

no
00 

CO I1'( + n + it)12 
dt. 

27r 
E n!(n + 1)! 

J (Mf)( — it) 2{(1)2 + t2}	
+ it)12 

-00 

However, by using the famous Gauss formula 

F(a,b;c;1) = r(c)r(c 
- a — b)	

(c V —No,Re(c — a — b) > 0)

r(c — a)r(c — b) 

with

F(a, b; C; 1) =
	r(c)	+ rz)I'(b + n) 

	

r(a)r(b) E	n! ['(c + n) 

[1: p. 556/15.1.10 and 15.1.1], we have 

I =	7 (Mf)( - it) 2{(1)2 + 2}2 (10) 

[11: p. 205/Formula (22)]. The second part of (6) can be handled similarly by using 
the transformation rule in the Mellin transform M(xf(x))(q - it) = (Mf)(q + 1 — it). 
The series in (10) is estimated by the behavior of the Mellin transform (Mf)( - it) 
at infinity, in some cases. For example, if (Mf)( — it) is a continuous function in 
t € R and (Mf)(- it) = O(ItIbe1uI) ( I t i — oo) for any fixed b < —, then (10) 
converges, from Ir(x + iy)]	/ II	e - 12- l y l e	 (II —' oo) [6]. 
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