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Potential Type Operators

on 

Curves with Vorticity Points 
V. Rabinovich 

Abstract. We study potential type operators on certain non-Lipschitz curves r. The curves 
under consideration are locally Lyapunov except for a finite set F of singular points. The 
normal vector v(y) to the curve I' does not have a limit at the singular points and, moreover, 
v(y) may be an oscillating and rotating vector function in a neighborhood of the singular 
points. We establish a Fredholm theory of potential type operators in the spaces 
where p E (1, co) and w is a weight satisfying the Muckenhoupt condition. 
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1. Introduction 

Let I' be a curve which is locally Lyapunov except for a finite set F of points on F. We 
refer to the points in F as the singular points of F. We consider operators of the form 

Bu(x) = a(x)u(x) +J @')' x - g(x, y)u(y) dl	(x E F)	(1) 
r	I'—I2 

where dl is the oriented Lebesgue measure on F, a and g are bounded matrix functions 
on ['with elements having second kind discontinuities with respect to x and y at singular 
points of F, and u(y) is the interior normal vector of the curve I' at the point y E r\F. 
We assume that the vector v(y) does not approach a limit at singular points. Moreover, 
we allow v(y) to be an oscillating and rotating vector function in a neighborhood of 
each singular point. Singular points of the latter kind will be called vorticiiy points. We 
require that the curves under consideration satisfy the well-known Carleson condition 
(see, for instance, [11). The class of operators (1) includes the operators of harmonic 
potentials, wave potentials, and other operators on curves with vorticity points which 
are important in mathematical physics. The results of this paper allow us to consider 
interior and exterior boundary value problems in planar domains whose boundary has 
vorticity points. 
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We construct a Fredhoim theory of operators (1) in the Lebesgue spaces L,(r,C') 
with p E (1, oo) and a weight w satisfying the Muckenhoupt condition [1]. 

In the case where F is a so-called Radon curve without peaks and a and b are piece-
wise continuous functions, potential operators have been considered by many authors, 
starting with Radon's classical paper [2]. Later these operators have been investigated 
by Y. B. Lopatinskiy [3], I. Daniluk [4], V. Shelepov [5], and other authors (see, for 
instance, the surveys [6, 7]). Potential operators on curves with peaks are considered 
in papers by V. Maz'ya and A. Solov'ev (see, for example, [8 - 10]). Note that the 
class of curves studied here is not contained in the classes of curves treated in the afore-
mentioned papers. It should be noted that the methods of the papers [3 - 51 are based 
on the theory of Wiener-Hopf equations on the half-line developed in the well-known 
paper of I. Gohberg and M. Krein [11]. But in the case of vorticity singular points this 
method is not applicable. Our approach is based on the theory of Mellin pseudodif-
ferential operators. Earlier this approach was successfully applied to singular integral 
operators on some Carleson curves in the author's papers [12 - 141 and in joint work of 
the author with A. Böttcher and Yu. I. Karlovich [15 - 161. 

The theory of potential type operators on curves with vorticity points differs essen-
tially from the theory of such operators on "nice" curves. For instance, the operator 

Au(x) = J (v(y),x - u(y) dl	(x E F) 
r	Ix-Y12 

where

Ix EC: x = iexpi5lnt with t  (O,t 0 ) and SE R} 

is a piece of a logarithmic spiral, is not a compact operator in the space L(r), which is 
in contrast to the case when F is a simple Lyapunov arc of finite length. It should also 
be noted that oscillations of the curve F and of the weight w may lead to the appearance 
of massive local and Fredholm spectra of the operator A L(F, w) - L(r, w). 

The paper contains five sections. In Section 2 we provide some auxiliary material 
on Mellin pseudodifferential operators following the papers [13, 14, 17]. In Section 
3 we consider potential type operators on certain simple unbounded curves 7. We 
construct a local symbol at singular points, give a criterion for Fred.holmness and an 
index formula. We also prove a criterion for the compactness of certain operators in the 
spaces L(F, C'). Section 4 is devoted to potential operators on closed Jordan curves 
with vorticity points. We give a description of the local and essential spectra and derive 
an index formula. In Section 5 we discuss applications of the results of Section 4 to the 
double layer potential operator for the interior Dirichlet problem.



	

Potential Type Operators	1067 

2. Mellin pseudo differential operators 

2.1 Main properties of Mellin pseudo d iffere ntial operators. We say that a 
matrix function (a1(r,.X))'=1 defined on IR x R belongs to Em (n) if the functions 
a 1 (r, A) are in C'(R+ x R) and satisfy the estimate 

sup (rôr)°ôatj (r, A)I(A)_ m	< 

R+ xU 

for all c, 3 E No = {0} UN, where (A) = (1 + A 2 )4 . A matrix function a(r, A) (e E°(n)) 
is said to be slowly varying at the point 0 if 

	

lim sup (rôr)'ôajj (r, \)I(A) 6 = 0	 (2) 
r—.+0 AEIIt 

for all a E No and 0 E N, and it is said to be slowly varying at the point +x if 

	

urn sup I(rôr)ôaij (r, A )I(A) = 0	 (3) 
r—.+oo AE 

for all & E No and /3 E N. We denote by E(n) the class of matrix functions in E°(n) 
which are slowly varying both at the origin and at infinity. Let Jo(n) and J(n) denote 
the set of matrix functions for which condition (2) or (3), respectively, holds for all 

E N0 . Finally, set
J(n) = Jo(n) fl J(n) fl E'(n). 

Let a(r, A) E E' (n). The operator 

	

(Op(a)u)(r) = a(r,Vr)u =in d'Aj. a(r,A)(rp')u(p)pdp	(4) 

where d'A = dA and u E C000(R+,C"), is called the Mellin pseudodifferential operator 
with the symbol a(r, A). The class of all such operators is denoted by OPEm (n). The 
notations OPE(n), OPJ0 (n), OPJ(n), OPJ(n) have the obvious meaning. 

	

Let a(r, p, A) (E C(R+ x	x R)) be a matrix function such that 

sup	 <	 (5) 
xR 

for all a,/3,y E No and i,j = 1,...,n. We denote by e(n) the class of all matrix 
functions satisfying (5). 

An operator which is defined by (4) with a(r, A) replaced by a(r, p, A) is called a 
Mellin pseudodifferential operator with a double symbol. Let OPE(ri) stand for the 
class of such operators. We say that a double symbol a(r, p, A) is slowly varying if 

	

urn sup	 = 0 

	

r—+0 PEK,AE	 - 

urn	sup	(r9)$(p9p)a1j(r,rp,A)(A)0 = 0 
r+oopEKAE
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for all a,8,-y E No such that 9 + -Y 0 0 and for every compact K C R+. We denote 
by Ed( n) the class of slowly varying double symbols and by OPEd (ri) the corresponding 
class of operators. 

Throughout what follows we suppose that 1 < p < 00. Let L(R+, d) be the 
Lebesgue space on	= (0, oc) with the measure du(p) =	We denote by L"(lR+, d1u) 
the Banach space of all measurable complex vector functions u(r) = (u i (r), . . . u. (r)) 
(r € R) with the norm

n I / 

IIUIIL(ff,d) = ( J Iui(r)IPdI1) 
0 

We also use the following notations: if X is a Banach space, then £(X) is the Banach 
algebra of all bounded linear operators on X, while AC(X) is the ideal of all compact 
operators in £(X). 

We now summarize some properties of Mellin pseudodifferential operators we will 
need in what follows. 

Proposition 1. 
(a) Every operator A E OPE°(n) is bounded in L(R+,dp) (p € ( 1,00)) and we 

have II A IIzL(r))	C,3 M where 

M = maxsup (rOr)ôaij (r, A)I (A) 
L'+XR 

OZk 

and k, 1 are independent of A. 
(b) If A E OPE°(n) is invertible in L'(R+,du) (p E (1,oc)), then A — ' also belongs 

to OPe°(n). 

(c) Let A, B € OPe(n). Then AB E OPE(n) and the symbol CAB (r, A) of AB 
given by the formula U AB(r, A) = a(r, A)b(r, A) + t i (r, A) where t i (r, A) € J(n). 

(d) Let A (e OPE(n)) act on L(R+,d) (p E (1,00)). Then A* belongs to 
OPE(n) and aA . (r,A) is given by the formula aA. (r ,A) = a(r,A) + t 2 (r,A) where 
t 2 (r, A) E J(n). 

(e) Let A be a Mellzn pseudodifferential operator with a double symbol a(r, p, A) E 
Sd(n). Then A € ORE(n) and aA(r, A) = a(r, r, A) + t 3 (r, A) where t 3 (r, A) € J(n). 

(f) OPJ(n) C .*c(L(R+,d)) for all  € (1, cc). 

2.2 Mellin pseudodifferentjal operators with analytic symbols in weighted 
L-spaces. Let w e C(R+). We say that a vector function u belongs to L(R+, wd) 
if II U IL;(u,wd ) = IwuIIL ( R+ d ) < cc. In what follows we consider weights w(r) = 
exp v(r) where the function v satisfies the estimates 

/ d 
r—) 

k 
I(	

v(r)<oo	(kEN).	 (6)
I\ dr
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Moreover, we require that there is an interval (c, d) 0 such that the function ic(r) = 
rv'(r) satisfies the condition 

C < j flf ?C(r) < sup ICw(r) <d.	 (7) 
rEL+	rEE+ 

We say that a weight w is slowly varying on R if conditions (6) - ( 7) hold, limr....o rK,(r) 
= 0 and	rs,(r) = 0. We denote by 1.(c, d) the class of slowly varying weights. 

Definition 2. We say that a matrix-function a(r, p, A) is in e(n, (c, d)) if a(r, p, A) 
is analytically continued with respect to A into the strip II = (A € C : ImA E (c, d)) 
and

sup	 < oo. 
xfl 

We let OP°(n, (c, d)) denote the corresponding class of Mellin pseudodifferential op- 
erators with analytic symbols. 

The class OPed (n, (c, d)) of Mellin pseudodifferential operators with slowly varying 
double analytic symbols is introduced in evident way. 

Proposition 3. 
(a) Let a(r, p, A) € E0 (n, (c, d)) and let the weight to satisfy conditions (6) - (7). 

Then wOp(a)w' € E(n) and wOp(a)w' = Op(a(r, p, A + ii9(r, p)) where t9 (r, p) = 

fOI K w (T 1 rpr)dT (it is easy to see that condition (7) yields 9(r,p) € (c,d) for all 
r,p € R). 

(b) Let Op(a) € OPSj(n,(c,d)) and w € 7(c,d). Then wOp(a)w' € OPEj(n) 
and wOp(a)w' = Op(a(r,r,A +ii(r))) +q(r,A) where q(r,A) € J(n). 

Corollary 4. Let Op(a) € OPE°(n,(c,d)) and suppose a weight w satisfies condi-
tions (6) - (7). Then A is bounded in L(R,wd). 

2.3 Local invertibility. First we give the following definition. 

Definition 5. Let A € £(L(R,wdj)). We say that A is a locally invertible 
operator at the point 0 if there exist R > 0 and operators B', B" € £(L(R+, wdj)) 
such that B'A = XR and XRAB" = XR where XR is the operator of multiplication 
by the characteristic function of the segment 10, RI . In the same way we define local 
invertibility at the point +. 

Theorem 6. Let A = a(r, Dr) € OPE(n, (c, d)) and w € R.(c, d). Then the operator 
A : L(R+,wd) — L(R.,wd) is locally invertible at the origin or at infinity if and 
only if

urn inf Idet a(r, A + icw(r))I > 0	 (8) 
e—.O (Oe)xn 

or	
urn	inf Ideta(r, A + iw(r)) > 0,	 (9) 

R—. + oo (R,00)xn 

respectively 

2.4 Fredholmness and index. Here we formulate the following result.
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Theorem 7. 
(a) Let A = Op(a) E OPe(n,(c,d)) and w E 1(c,d). Then the operator A 

L(R, wdji) - L(lR+, wdp) is Fredholm if and only if conditions (8) —(9) are fulfilled 
and

urn	inf ldeta(r,A)l >0. 
!1—+ooix(R,00) 

(b) If A E OPE(n, (c, d)) is a Fredhoim operator, then 

IndA = - 1-

	

 
27r 

[arga(r, A + iKw(r))] r(R',R")	 (10) 

where r(R', R") is the positively oriented boundary of the rectangle 

	

fl(R',R") = (r, A) E R x	<r <R' and JAI <R"}. 

Here the numbers R', R" are such that a (r, A + iic(r)) exists for all points of the 
domain (R x R)\ll(R',R"). 

3. Potential operators on simple curves 
We now consider the potential type operator 

	

Au(x) 
= i f (v(y),x -	g(x,y)u(y)dl	(x E )	 (11) 

lTj	lx—y12 

on a simple unbounded curve -y. We suppose that y has the parametrization 

7={XEC:x=texpi9(t)}	(tER)	 (12)


where 9 is a real-valued C'-function on R+ satisfying the conditions 

<	(kEN) 

lim (t) 2 e@ =0	 (13)

dt 

lim (t--) 2 e(t) = 0. l—. + oo dt 

The simplest example of such a curve is the logarithmic spiral x = t exp(i6 In t) (t E 
R+) with the twisting coefficient 5 E R. More complicated examples are provided by 
curves with a variable twisting coefficient 8(t) : x = texp(i8(t)lnt) (t E IR+) where 
8(t) sin(ln(ln)) with a E (0, 1). It is easy to check that 8(t) = 6(t)lnt satisfies the 
above conditions ( 13). 

We suppose that g(x, y) = (gk,(x, y))'., where gti E C°°(7 x ) and the functions 

gk , j(i, r) = gt,t (t exp i9(t), r exp i9(r))
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are subject to the coditions 

sup ( tô )(7-5r)k,I( t , T )I < 00	(,/3 E N0 ).	 (14) 
L+ x 

Moreover, we require that

a urn sup tgk,i(t, T) = urn sup t9k,j(t, r) = 0	 (15) t0 r	Ut	 t—oo 

	

.	 a. urn sup T a —gk , :(t,T) = u . rn sup T—gk,,(t,T) = 0.	 (16) 
t	UT	 L—oo	UT 

Let 4' : Co°°(y,C") —i C000 (R,C") be the mapping acting by the formula 

i(t) = (4'u)(t) = tu(texpi9(t))	(t E R). 

Clearly, 4' can be continued to an isometric isomorphism of L(-y; C") on L(R+, C", dp). 

Proposition 8. Let A be an operator of the form (11). Then A = 4'A4'' 13 a 
Mellzn pseudodifferential operator in the class OPE(n) with the symbol 

•	2n6e(t)(A+i sin 

	

2	 i+6(t)	
(t, t) + q(t, )	(17) 7A,( t , A ) = -  

2 sinh	sinh i—*6,(i) 

where e(t) = t6'(t),q(t,X) E Jo. 

Proof. After the change of variables y = rexpz8(r), the vector v(y) assumes the 
form

v(z +rexpi9(r)) 
= (1 +ir9'(r))expi(6(r) - 

U = d(r)expi9(r)	(18) 
(1 + (r91(r))2) 

where
d(r) = —i	

1 + ir&'(r) 

(1+ (_01(,))2)12, (9) 

Further,
(u(y),x - y)	Re[v(y)(x - y)] 

Ix—y12
1 i(y)(x—y)+((x—y)	 (20) 

-	Ix—y12 

2 x—y x — y 

It follows from (20) that 

(v(y),x—y)	1	d(r)	 d(r) 
Ix — y i 2	= (texpi(6(t) —9(r)) - r	I exp —i(9(t) - 6(r+	 ).	(21) )) - r
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Taking into account (13) we obtain that d(r) satisfies the estimates sup11 . I(i)kd(t)I < 
00 (k E N0 ) and that lime_.+o (t)d(t) = 0 as well as limj... (t)d(t)	0. Let usdt introduce the function	

dt

	

m(9)(t,T) 
= 

9(t) - 9(r) - JiI_rrrel(tl_rrr)dr.	 (22)  In t — lnr -
0 

It is easy to check that m(9)(t, r) satisfies conditions (14) - (16). Formula (22) yields 

exp i(9(t) - 9(r)) = (ir' )Im(0)(r)	 (23) 

Applying formulas (21) and (23) we see that A t is the integral operator 

1 

	

(A,	 r)v(r v)(i) = J (k(t,r)+k(t,r))(t,	dr 
)— 

T 

where k(t, r)	i	1+ir9 (r) 
(I (t-t)l+-()O)) . If Re > 1, then 

—fcothir()xdA	(x € R)	 (24) 

(see [15: p. 414]). Using (24), (18) - (19) and the equality dl = (1 + (T9(7-)) 2 )4dr we 
arrive at the representation 

(A,v)(t)= --- 
fR

dA I a(t , r , A+i)(tr_ 1 Yr) Av( dr 
- 2ir	JR+ T 

where
a(t, r, A) = - (a i (t, r, A) + a i (t, r,A))(t, r) 2 

and
1 + ir9'(r)	/	A ai(i,r,A)=_	.	 cothir 1 + im (9)(i, r)	\ 1 + im (9)(t, T) 

From estimates (13) and (15) - (16) we infer that a(t,r,A) E E(n). Hence, by Propo-
sition 1/(e), A, is a Mellin pseudodifferential operator with the symbol 

a(t,t,A)	[coth(	)) _coth( 1	.9))](tr)+(t,A)	(25) 

where q(t,A) € J0 . Finally, the identity cotha — cothb = 
sinh(b_a)

 sinhasinhb in conjunction with 
(25) gives formula (17)1 

Let us now consider A as an operator acting in the space L(-y, w) with the norm 
II u IIL( 7 ,w)	I wu IILfl () . We suppose that the weight w satisfies the condition 


= w(texpi9(t)) E R(_ 1- 1--1). (26) P '	p 

This condition is similar the well-known Hunt- Muckenhoupt condition (see, for instance, 
[1]).
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Corollary 9. Let A be an operator of the form (11) and let w be a weight on 7 
satisfying condition (26). Then Ap ,. = wAw' is a Mellin pseudodifferential 
operator in the class OPE Its symbol is given by the formula 

27,6,(g)(A+i(i+,c(t))) 
i	sin	1+6(i) 

CA * . . ( t, A) =
	 (t, r) + q(t, A)	(27) 
2 sinh A+i	 (A+i(!+(i))) 

	

sinh	1-iö.(i) 

where q(t, A) E .Jo and n @ (t) = 

Proof. This corollary follows from Proposition 3 I 

Corollary 10. Let A be an operator of type (11) and let w be a weight on satis-
fying condition (26). Then A : L(-y,w) —* L(-y,w) is a compact operator if and only 
if

11maA(t,A) = 1ImaA,( i , A ) =0 

uniformly with respect to A e R. 

Corollary 10 tells us that there are two reasons for A : L(7, w) — L(7, w) to be 
a compact operator: 

1) lini 1 ..... 0 (t, t) = lim1......0	(t, i) = 0 
2) lim.0 89 (t) = lim 1_ 69(t) = 0. 

Let
Au(x) 

=
(u(y),x -	u(y)dl,	(x €7)


Ix—y12 

be the potential operator of the double layer. Then A is compact if and only if condition 
2) holds. Let be a bounded curve with the parametrization = {x e C : x = 
texpi9(t)),t E [0, to] } where 9 satisfies condition (13) on [0, to]. Suppose also that 
condition (13) 2 is fulfilled. Then A : L"(-y, - L(7, w) is a compact operator if and 
only if lim t .o bo(t). 

Let us now consider the operator 

Bu(x) = a(x)u(x) + I f	' - g(x, y)u(y) dl	(x € 

where a(x) = (ak,,(x)),1 and àk,1(t) a t,,( t exp zO(t)) satisfy the same estimates with 
respect to t as gk , ,(t, r). It follows from Corollary 9 that, up to a symbol q(t, A) E Jo, 
B,, is a Mellin pseudodifferential operator with the symbol 

0 B...,( t , A) = à(t) +	(t, A) 

where UA.,	A) is given by formula (27).	 -

The next two theorems follow from Theorem 7 and Proposition 3.
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Theorem 11. B : L(-'y,w) -9 L(-y,w) is a Fredholm operator if and only if 
(1) ' flfry Ideta(x)l > 0 

(ii) iirng_.o infAC IR Ideta B. , ( t, A)I > 0 and 1im. 0 infAEUt Ideta B. , ,,(t, A)I > 0. 
If conditions (i) and (ii) are fulfilled, then 

IndB =
2ir 

where F(R', R") is the positively oriented boundary of the rectangle 

11(R',R") = {(r,A) E R x	<r < R' and 

and where the numbers R', R" are chosen so that [ O A.( t , A)] 1 exists for all points in 
the domain (R x R)\ll(R', R"). 

Theorem 12. The operator B : L(7,w) - L(- y ,w) is locally invertible at the 
PP point 0 if and only if lim e	infAEn Ideto. , (t, A)I > 0. 

The local spectrum of an operator A : Ly,w) -, LP w) at a point x E is 
defined as the set of all points c E C for which A - ci is not locally invertible at the 
point x. We denote the local spectrum of A at the point x by SpA. 

Theorem 13. A point c belongs to SpA if and only if there exists a sequence 
tm -4 0 such that limm_. infAElR det(aA, , (tm, A) - c I)I = 0. Thus, the local spectrum 
of A at the singular point 0 is 

SpoAr U 1 E C: det (&A, (A)—cI)= Ofor some A E RU{oo}} 

where det (&A, (A) - c i) denotes the set of all partial limits of det (on, (t, A) - ,;I) as 
t -4 0. 

From the previous theorem we learn in particular that the local spectrum of A at 
the point 0 can be a set of positive planar Lebsegue measure and that its structure is 
defined by the behavior of the curve, of the coefficients, and the weight at the point 
zero. 

4. Potential type operators on Jordan curves 
with vorticity points 

In this section we consider potential operators on oriented closed Jordan curves [' in 
the complex plane C. We will suppose that r has a finite set F of singular points and 
that I'\F is locally a Lyapunov curve. 

If z E F is a singular point, then there is a neighborhood U Z of the point z such 
that

r fl U = {x = z ± texpi4(t) : t E [0,sJ}
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where U and U f is a right side and left side half-neighborhood, respectively, of the 
point z. We suppose that

w(t) = O(t) + 9(i)	(I E (0,s]) 
where the functions 9 and 8 satisfy estimate (13) 1 on the interval [0, sj and equality 
(13)2. Moreover, we suppose that 

0 < O(t) <M_ <m <9(i) < M <2ir	(z E F).	 (28)

From (28) it follows that

OI(t)
hmi d	=0. i—.o	di 
Hence, the function 9 describes the rotation of the curve 1' at the point z, while the 
functions 01 characterize the oscillation of the curve at that point. In the case where 
z is an angular point of the curve, which means that the limits lim j_.o O(t) = 9(0) 
exist, condition (28) says that the point z is not a peak. 

Let
1
	MY),	Y) Ar'u(x) = IX - 12 g(x,y)u(y)d1	(x E F) 

be a potential operator on the curve F, assume the matrix function g(x,y) is bounded 
on F and continuous on I' \ F, and also assume that the matrix functions 

9++(t, T) = g(z + iexpi4(t),z + rexpit4(r)) 
g,_(t,r) = g(z + iexpi4(i),z - rexpiw(r)) 
g(i,r) = g(z - texpiw . (i),z + rexpiw..(r)) 
g_(t,r) = g(z - texpiwff(i),z - rexpiw(r)) 

have entries satisfying conditions (14) - (15) in a neighborhood of the points t = 0 and 
r =0. 

We consider the operator Ar in the weighted space L " (17, w) where 1 <p < oo and 
w is a positive continuous function on F\F. In a neighborhood of a singular point z the 
weight w is supposed to admit a representation w(x) = expv z ( Ix - z l) ( I x - zI < .$) 
where the function vz satisfies estimates (6) on (0,$) and lim t ..o (t)2vz(g) = 0. As di 
above (see condition (26)) we suppose that t1(t) = expvz(t) € 7(—,1 - ). Put 
9 z (j) = j!i ) 8 z ( t) = t-!2. and 9z(t) = 0' (t) - 9z (t). 

Example 14. Let ci) = 6z(i) ln I + 9 + 1 sin ln(ln I) and w(t) = t5(i) in I +0-'  
where o z (t ) = f(ln (In i)) with 0 < a < 1, f E C(R) and e < - 9 < 2r - E. 
Then all the above conditions for F are fulfilled. 

Let v z (i) = fl z (j)l fl t where fY satisfies the same conditions as 6' and - < 
inf(0,3] fY(t)	sup(Q , J 13z(i) < 1 - . Then zZ'(t) = expvz(i) E R(—, 1 - 

We introduce the isometric isomorphism 4 : L(F fl U,w) - L([0, s], dj ) by the 
formula

J(i) = (t*cv0 1(z . + I exp iw(i)), tef(z - I exp i(t))) 

fort 	(0,s].



1076	V. Rabinovich 

Proposition 15. Let xz(z) be a cut-off function of the point z, that is, Xz(X) € 
C(r), Xz(X) = 1 in a neighborhood of the point z, and SUPPXZ( X ) C U. Then 

is a Mellin pseudodfferential operator in the class OPS(2n). Its symbol 
o(A)(t,A) is given up to a symbol in the class Jo by the formula 

o z (A)(t , \) = (a(t, A) a(t, A)'\ 
a(t,A) a(t,A)) 

where

sin	i+6(t)2 
a(i, A) =	_____ 	,(A+i(+fl(t))) g(t, t) 

sinh	i+i5()
____ sinh	1	() 

2 7 (g)(A+i(i+fl))) 
Sifl	1+6'(1)	 g_(t, t) a_(t, A) = -	A++t))) . ___________ sinh sinh	I+t6'(t)	 I -iô ()

() 1 1 Fexp(oz(t) - )	 exp _(9z(i) -	
A+i( . +fl i) 

)	i-iô'(t) 
2

I g^(t, t) a(t,A) 

= - [	__________  nh	I+6(i)	 sinh 
_____	 A+i(+fl(i)) 1 

1 Iexp _(9(j) - ir) i+i(	
exp(9z(t) - ) 

a_(t,A) = -- I ______________________  
2

	

	 _____	 sinh	j 
sinh +fl'(t 

+ 4. (i)	 1-i6(t)	J 

Proof. The expressions for a(i,A) and for a.(t,A) follow from Corollary 9. 
The formulas for a(t,A) and a . _(t,A) can be proved as in [14] (see the proof of 
Theorem 3.18 there). We remark that the proofs are based on the formula (see (14, 151) 

2aexp(—i - l)lna ae r 
(a € C\+) J(A,a,e) - / (a - t )_ir A_l dt = 

	

in j	 exp(27r) —1 
0 

where ImA € (0,1) and Re > ii 
Theorem 16. The operator Ar L(r,w) - L(r,w) (1 <p < cc) is bounded. 

Proof. Let >	X3(x) = 1 (x E 1') be a C'-partition of unity on r and let 
11), € C°°(r) satisfy b,(x),(x) = X,(x). Then 

Ar = j xAr = E xiAr bi + E xj Ar(1 - 

The operator xiAr(1 - t,b) is bounded because supp X, n supp t, = 0. If supp Xi 
contains a singular point, the boundedness of x j Arb, follows from Proposition 1/(a). 
In the opposite case, x .,ArtI.u, is bounded as a potential type operator on a Lyapunov 
curve I
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Remark 1. Let the curve r have zero rotation at a singular point z E F, that 
is, assume lim 1 _.0 (t) = 0. Then the formulas for the symbol a z (Ar)(t, A) can be 
simplified. Namely, in this case

/	0	a(i,A) az(Ap)(tA) = a+_(t,A)
	o	) 

where

a	(t, A) = 
sinh {(Oz(t) - ir7r)(,\+ i( + j3z(j)))] 

9—+( t , t) 1 
sinhir(A +i( +/9z(t)))	 I 

a	(t, A) = 
sinh {(8 z ( t ) - ir)(A + i( + /9Z(t)))] 

g._(t, t). I  sinh(A +i( +(t)))	 J 
Let us consider the operator	 - 

	

Br u ( x ) = a(x)u(x) + (Aru)(x)	(x E I') 

where the matrix function a(x) has the components in C(f\F) and 

a' (t) = a(z +texpü4(t)) 

a' (t) = a(z - texpiw(t)) 

are matrix functions with components satisfying conditions (14) - (15) in a neighborhood 
of the point t = 0. Set

	

- (a(t)	0 az(t)  
o	a '— (t) 

Theorem 17. The operator Br : L(r,w) - L(r,w) is locally invertible at the 
point z E F if and only if its local symbol az(Bi)(t, A) = a-(t) + o x (A)(t , A) satisfies 
the condition

iirn.0 inf Ideto(Br)(t, A)I > 0.	 (29). 
A E!R 

Proof. The proof of this theorem follows from Proposition 15 and Theorem 6 U 
As above, we say that c E C is a point of the local spectrum of the operator Ar' at 

the point x E r if A - ci is not locally invertible at the point x. We denote by SpzAr 
the local spectrum of Ar at the point x. 

Corollary 18. Let z E F. Then c E SpE Ar if and only if there exists a sequence 
tm - 0 such that lim m_. c,o infAElR Ideto z (Ar —cI)(t m ,A)I = 0. Thus, the local spectrum 
of Ar at the singular point z is 

SpEAr =U {c E C: det& z (Ar. - cI)(A) = 0 for some A E RU too)}


where det & z (Ar - cI)(A) is the set of the partial limits of det o z (Ar - cI)(t, A) as t - 0. 
One can see that the local spectrum of the potential operator Ar : L(F,w) - 

L(r,w) may be a massive set, that is, a set with a positive planar Lebesgue measure. 
There are three reasons for SpzAr to be a massive set: 

1) the oscillation of the curve I' 
2) the oscillation of the coefficients 
3) the oscillation of the weight at the singular point z
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Theorem 19. The operator Br : L(r,w) - L(F,w) is a Fredhoim operator if 
and only if 

1) infer Ideta(x)I > 0 
2) lim, —o infAE c Idet o z (Br)(t, A)I > 0 for any point z E F. 

If both conditions are fulfilled, then 

Ind Br = -	_ [argdet (I + a z (t o )_ i cT Z (Ar)(to, A)] 00	 (30) 
zEF 

where to is any point close enough to 0. 
Proof. Simonenko's local principle [20] says that Br : L(r, w) - L(f, w) is a 

Fredhoim operator if and only if Br is locally invertible at every point x E r. The 
operator Ar is locally compact at any point x E r\F. The operator Br is locally 
equivalent (in the sense of [20]) to the operator a(x)I at a point x E r\F. This 
implies that condition 1) is necessary and sufficient for the local invertibility of Br' at 
non-singular points. From Theorem 17 it follows that condition 2) is necessary and 
sufficient for the local invertibility of Br at singular points z E F. The index formula 
can be proved, by the standard method of separation of singularities (see, for instance, 
[18, 19]) and is based on formula (10) I 

Remark 2. The Fredholm spectrum of the operator Ar is given by the formula 
ess spAr' = UZEFSPZAr. 

5. Integral operator of the Dirichlet problem 
Let

Aru(x) = f (V (y), x 2y) u(y) dl	(x E 
r	1xyI 

be the double layer potential on a Jordan curve IF satisfying the conditions of the 
previous section. Moreover, suppose that the singular points z E F are points with zero 
rotation, that is, limj...o (t) = 0 for all z E F. We consider Ar as an operator acting 
in L(F,w) where the weight w satisfies the above conditions. Let 

rz(Ar) = sup j1(I : ( e C and Ar - (I not locally invertible in L(I',w) 

be the local spectral radius A. 

Theorem 20. Let the above given conditions for the curve r hold. Then 

sin Iit - 9 z (t)I( + /3z(t)) 
r(AF ) = lim1..o

sin ir( l + /3z(t)) 
P 

Proof. We have 
o z (Ar - (I)(t, A) 

/ sin h[(9'(1)_w)(A+i(+I3'(t)))j 

-	 sin  7(A+i(1+fl(i))) 
- ( sin  [( 8 (t)—r)(A+i( T, +fi (i)))] 

\	sinh ir(A+i(.+Ø'(t)))
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From Theorem 17 we deduce that

I 
sinh [(8(t) - ir)(A + i( + /3Z(t)))] 

I 
r:(Ar) =	sup	 (31) 

AER	sinhir(A + i( + /3z(t))) 

It is well-known (see, for instance, [5]) that 

sup sinh[(A + i7) - sine	(0< C <	E (0,1)).	(32)

AER sinhir(A+i-y) - sinir-y 

Hence formulas (31) and (32) yield (30) I 
Let us now consider the integral operator Br = I + Ar, corresponding to the interior 

Dirichiet problem for harmonic functions. 

Theorem 21. The operator Br : L(r,w) - L(r,) is locally invertible at a 
singular point z E F if and only if	[a,a] where 

	

a =	( + 9z() - - 
flZ(t)) 

	

=	(+ 6z(t) - - flZ(t)) J 
Proof. We have

I sinh [(Oz (t) - -)(A + i( + 19z(t)))] 2 

	

sinh(A + i( + fiz(j)))	
] 

det(Br)(t, A) = 
1 - L 

The equation 1 - sinh 2 k-I( - 0 (( = A + ill E R + i(0, 1)) has a unique solution


	

sinh 2 ir(	- 
= i Hence, if	 then condition (29) of Theorem 16 is fulfilled. 


This yields the local invertibility of Br at the point z. If E then there is 
a sequence tm - 0 such that limm_ ff+I8 rI - 

13 Z (t m ) = . Thus in this case 
condition (29) is not fulfilled, which shows that Br is not a locally invertible operator 
at the point z I 

Remark 3. The oscillations of the curve and the weight at singular points define a 
segment [at, a' ] of prohibited values of for the local invertibility of the operator Br. 
Note that in the case of an angular singular point and a power weight there is exactly 
one prohibited value of 

Theorem 22. The operator Br : L(r',w) - L,,(I',w) is of Fredholm type if and 
only if the condition of Theorem 21 is satisfied for all singular points z E F. In this 
case

Ii ifi>a 
Ind Br =	re. (P) where icz(p) = 

10 if I<ai.	 (33) 

Proof. The Fredholm criterion for Br follows from Simonenko's local principle [20] 
2 and Theorem 21. The function L(() = 1 -	1 ( = A + irj) is analytic in the
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strip Im( E (0, 1), it extends continuously onto the real axis, we have	(A + 
iij) = 1, and z(() has only one zero ( = in this strip. It is easy to check that 

= 0 because L(A) (A E IR U {co}) is a real-valued function. Thus, the 
argument principle gives

1 if>

	

______	 (34) 2ir 	 0 ifi< ir--TT 

Now formulas (34) and (30) yield (33) I 

Acknowledgement. The author is very indebted to Prof. A. Böttcher who im-
proved the English. 
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