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A Kneser-Type Theorem for the Equation
™ = f(t,x)
in Locally Convex Spaces

A. Szukala

Abstract. We shall give sufficient conditions for the existence of solutions of the Cauchy
problem for the equation z{™) = f(t,z). We also prove that the set of these solutions is a
continuum.
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Let E be a quasicomplete locally convex topological vector space, and let P be a family
of continuous seminorms generating the topology of E. Assume that I = [0,a] and
B={z€ E:pi(z)<b (i=1,...,k)}, where py,...,px € P.

In this paper we investigate the existence of solutions and the structure of the set
of solutions of the Cauchy problem

2™ = f(t,2))
z(0) =0
2'(0) =m (1)

I(m—l)(o) =TNMm-1 )

where m is a positive integer, 7y1,72,...,7m—1 € E and f is a bounded continuous
function from I x B into E. Our considerations are a continuation of Szufla’s paper [8].
For other results concerning differential equations in locally convex spaces see [4].

Put
M=sup{p,~(f(t,:z:)) :tel,z € B,i= 1,...,k}.

Choose a positive number d such that d < e and

mz_lp;(n~)d—j+Mﬂ<b (i=1,...,k). . (2)
= 7 m! ~ R
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Let J = [0,d]. Denote by C = C(J, E) the space of all continuous functions from J into
E endowed with the topology of uniform convergence.

For any bounded subset A of E and p € P we denote by (,(A) the infimum of
all € > 0 for which there exists a finite subset {z1,22,...,2n} of E such that A C
{z1,22,...,2a} + By(e), where By(e) = {z € E : p(z) < €}. The family (Bp(A))pep is
called the measure of non-compaciness of A. It is known (6] that:

1° X is relatively compact in E <= f,(X) = 0 for every p € P.

2° X CY == Bp(X) < Bp(Y).

3° Bp(X UY) = max{B,(X),5,(Y)}.

4° Bp(X +Y) < Bp(X) + Bp(Y).

5° Bp(AX) = [AIBp(X) (M €R).

6° Bp(X) = Bp(X).

7° Bp(conv X) = B,(X).

8° Bp(Vo<aghAX) = hfy(X).
The following lemma is given in [8].

Lemma 1. Let H be a bounded countable subset of C. For each t € J put H(t) =

{u(t) : v € H}. If the space E is separable, then for each p € P the function t —
Bp(H(t)) is integrable and \

By ({/Ju(s)ds: u € H}) < /Jﬂ,,(H(s))ds.

Moreover, let us recall the following lemma from [9].
Lemma 2. Let w : {0,2b] — Ry be a continuous non-decrecasing function and let
g :(0,¢) — [0,2b) be a C™-function satisfying the inequalities
gty >0 (G=0,1,...,m)
g ) =0 (G=0,1,...,m—1)
g'™(t) Sw(g(t))  (te[o,c)).

Ifw(0) =0, w(r) >0 for r >0 and f,, (rm"lw(r))__'l'“dr = 00, then g = 0.
We can now formulate- our main result.

Theorem. Suppose that for each p € P there ezists a continuous non-decreasing
function wy, : Ry = Ry such that wy(0) = 0, wy(r) >0 for r > 0 and

dr .
ok @

If
By (£, X)) < wy(By(X)) @)
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for p€ P, t € I and bounded subsets X of E, then the set S of all solutions of problem
(1) defined on J is non-empty, compact and connected in C(J, E)
Proof. 1° Put

z forz € B
r(z) = YO «for:z:GE\B
and g(t,z) = f

(t,r(z)) for (t,z) € J x E, where K is the Minkowski functional of B.
As B is a closed, balanced and convex neighbourhood of 0, from known properties of
the Minkowski functional it follows that r is a continuous function from E into B and

r(X)c |J-ax

for any subset X of E.
0<A<1
Thus Bp(r(X)) < Bp(X) for any p € P and any bounded subset X of E. Consequently,
g is a bounded continuous function from J x E into E such that

Bp(g(t, X)) < wp(Bp(X)) 4)
for p€ P, t € J and bounded subsets X of E and

pi(g(t,z)) <M (z L kite J,z € E). (5)

We introduce a mapping F' defined by

F(z)(t) = q(t) + ﬁ/; (t =)™ 1g(s,z(s))ds (teJ,zeC)
where g(t) = Z;n 1l 771 T

It is known (cf. [2]) that F is a continuous mapping C — C
and the set F(C) is bounded and equicontinuous. It is clear from (1) and (5) that if
z = F(z), then

P:(:l:(t)) < Z Pt("h 1)' /(t s)'" "M ds

=1
= d
<b

so z(t) € B for t € J. Therefore, a function z € C is a solution of problem (1) if and
only if z = F(z).
2° For any n € N put

t { | o<t
Ut = gt = &)+ o 7 E (2= )™ g5, un(s)) d <

d
n
e d
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Then u, is a continuous function J — B and
lim (u,,(t) - F(u,.)(t)) =0 (6)
n—oo

uniformly fort € J. Let V = {u, : n € N}. From (6) it follows that the set {un—F(un):
n € N} is relatively compact in C. Since

V C {un — F(un) : n € N} + F(V) )
and the set F(V) is bounded and equicontinuous, we conclude that the set V is also

bounded and equicontinuous. Hence for each p € P the function ¢ — Bp(V(2)) is
continuous on J. Denote by H a closed separable subspace of E such that

9(s,un(s)) € H  (s€J,n€N)

Let (8] )pe p be the measure of non-compactness in H. Fix t € J and p € P. From (4)
we have

By (9(s,V(5)) < 2B,(9(s, V(5))) < 2wp(Bp(V(s))) (s € [0,4]).

By Lemma 1, we get
FV)(t) = Sy -1 ds:n€N
BUEVO) = By § sy [0 9 gl unls))ds i m e
0

< By ({ﬁ/“ — )" g(s,un(s))ds :n € N})
0 .

s (71—1), / By ({(t = )" g(s,un(s)) : n € N}) ds
= oy [ I Ve s

< gy [ O w8V () s

On the other hand, from (6) and (7) we obtain

Be(V () < Bp(F(V)(2))-

Hence

BV (O) € s ] (=" wp(By(V(sNds  (t€ Lpe P)
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Putting
= —2 —~ )" tw B,(V(s))ds
g(t) ( 1)| o/(t 5) P( P( ( ))

we see that

gecm

Bp(V (1)) < g(t)

gV (t)>0for j=0,1,...,m

¢ (0)=0for j =0,1,...,m—1

9™(e) = 2wy(By(V(1))) < 2up(g() for t € J.

Moreover, by (3),

dr '
/ VGO

By Lemma 2 from this we deduce that g(t) = 0 for t € J. Thus B,(V(t)) =0 for t € J
and p € P. Therefore for each t € J the set V(t) is relatively compact in E. As the set
V is equicontinuous, Ascoli’s theorem proves that V is relatively compact in C. Hence
the sequence (u,) has a limit point u. As F is continuous from (6) we conclude that
u = F(u), i.e. u is a solution of problem (1). This proves that the set S is non-empty.

3° Let us first remark that the set S is compact in C. Indeed, as (I — F)(S) = {0},
in the same way as in Step 2°, we can prove that S is relatively compact in C. Moreover,
from the continuity of F' it follows that S is closed in C. Suppose that S is not connected.
Thus there exist non-empty closed sets Sg and S; such that § = S;US, and $oNS; = 0.
As So and S) are compact subsets of C and C is a Tichonov space, this implies (see
[3: §41, II, Remark 3]) the existence of a continuous function v : C' — [0,1] such that
v(z) = 0 for z € Sp and v(z) = 1 for z € S;. Further, for any n € N we define a
mapping F, by

Fo(z)(t) = F(z)(rn(t)) (z€C,teJ)

0 for0 <t
Tn(t)z{t_i

It can be easily verified (cf. [10]) that:

where

(1) F, is a continuous mapping C — C.
(1) imp—oo Fu(z) = F(z) uniformly for z € C.
(iii) I — F,, is a homeomorphism C — C (I - identity mapping).
Fix ug € So, u; € S: and n € N. Put

en(A) = A(ur = Fa(w1)) + (1 = A)(uo — Fa(uo)) (0 A <),

Let unay = (I — Fu)7'(en(A)). As e,()) depends continuosly on A and I — F,, is a
homeomorphism, we see that the mapping A — v(una) is continuous on {0, 1]. Moreover,
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Uno = g and U,y = uj, 50 that v(ung) = 0 and v(un;) = 1. Thus there exists A, € (0,1]
such that 1
' v(una,) = 5 (8)
For simplicity put v, = una, and V = {v, : n > 1}. Since limp oo en(A) = 0 uniformly
for A € [0, 1], we get

Jim (v — F(va)) = lim (ea() + Fa(vn) = F(va)) = 0 (9)

and therefore the set (I—F)(V) is relatively compact in C. Using now a similar argument
as in Step 2°, we can prove that the set V' is relatively compact in C. Consequently, the
sequence (vn) has a limit point 2. In view of (9) and the continuity of F, we infer that
z € 5,50 v(z) = 0 or v(z) = 1. On the other hand, from (8) it is clear that v(z) =

1
2
which yields a contradiction. Thus S is connected B

References

(1] Hukuhara, M.: Théorems fondamentauz de la théorie des équations différentielles ordi-

naires dans l’espace vectorial topologique. J. Fac. Sci. Univ. Tokyo (sec. I) 8 (1956), 111
- 138.

(2] Januszewski, J. and S. Szufla: On the Urysohn integral equation in locally convez spaces.
Publ. Inst. Math. 51 (1992), 77 - 80.

[3) Kuratowski, K.: Topologie, Vol. I1. New York - London - Warszawa 1968.

(4] Lobanov, C. G. and O: G. Smolianov: Ordinary differential equations in locally convez
spaces. Uspekh. Mat. Nauk 49 (1991), 3(297), 93 - 168.

[5) Millionschikov, V.: A contribution to the theory of differential equations dz/dt = f(z,t)
in locally convez space. Dokl. Akad. Nauk SSSR 131 (1960), 510 - 513.

(6] Sadowskii, B. N.: Limit- compact and condensing mappings. Russian Math. Surveys 27
(1972), 85 - 155.

[7] Schaefer, H.: Topological Vector Spaces. New York - London: The Macmillan Company

1966.
(8] Szufla, S.: On the equation z’ = f(t,z) in locally convez spaces. Math. Nachr. 118 (1984),
179 - 185.

(9] Szufla, S.: On the differential equation z'™ = f(t,z) in Banach spaces. Funkcial. Ekvac.
41 (1998), 101 - 105.

[10] Vidossich, G.: A fized point theorem for function spaces. J. Math. Anal. Appl. 36 (1971),
581 - 587. \

Received 28.10.1998



