A Kneser-Type Theorem for the Equation $x^{(m)} = f(t, x)$ in Locally Convex Spaces

A. **Szukala**

Abstract. We shall give sufficient conditions for the existence of solutions of the Cauchy problem for the equation $x^{(m)} = f(t, x)$. We also prove that the set of these solutions is a continuum.

Keywords: *Differential equations, set of solutions, measures of non-compactness* AMS subject classification: 34G20

Let *E* be a quasicomplete locally convex topological vector space, and let *P* be a family of continuous seminorms generating the topology of *E*. Assume that $I = [0, a]$ and $B = \{x \in E : p_i(x) \leq b \ (i = 1, \ldots, k)\},\,$ where $p_1, \ldots, p_k \in P$.

In this paper we investigate the existence of solutions and the structure of the set of solutions of the Cauchy problem

set of solutions, measures of non-compactness
\n20
\nconvex topological vector space, and let P be a family
\ning the topology of E. Assume that
$$
I = [0, a]
$$
 and
\n., k)], where $p_1, ..., p_k \in P$.
\nthe existence of solutions and the structure of the set
\nm
\n $x^{(m)} = f(t, x)$
\n $x(0) = 0$
\n $x'(0) = \eta_1$
\n \vdots
\n $x^{(m-1)}(0) = \eta_{m-1}$
\n \vdots
\n $x^{(m-1)}(0) = \eta_{m-1}$
\n \vdots
\n $f(t, x)) : t \in I, x \in B, i = 1, ..., k$.
\nthat $d \le a$ and
\n $\frac{d^m}{dx^m} + M \frac{d^m}{m!} \le b$ $(i = 1, ..., k)$.
\n (2)
\nc. Math. & Comp. Sci., J. Matejki 48/49, 60 - 769 Poznań,

where *m* is a positive integer, $\eta_1, \eta_2, \ldots, \eta_{m-1} \in E$ and *f* is a bounded continuous function from $I \times B$ into E. Our considerations are a continuation of Szufla's paper [8]. For other results concerning differential equations in locally convex spaces see [4).

Put

$$
M=\sup\Big\{p_i(f(t,x)):t\in I,x\in B,i=1,\ldots,k\Big\}.
$$

Choose a positive number *d* such that $d \le a$ and

$$
\sum_{j=1}^{m-1} p_i(\eta_j) \frac{d^j}{j!} + M \frac{d^m}{m!} \leq b \qquad (i = 1, \ldots, k). \tag{2}
$$

ISSN 0232-2064 */* \$ 2.50 *©* Heldermann Verlag Berlin

A. Szukala: A. Mickiewicz Univ., Fac. Math. & Comp. Sci., J. Matejki 48/49, 60 - *769* Poznañ, Poland

Let $J = [0, d]$. Denote by $C = C(J, E)$ the space of all continuous functions from *J* into *E* endowed with the topology of uniform convergence.

For any bounded subset *A* of *E* and $p \in P$ we denote by $\beta_p(A)$ the infimum of all $\varepsilon > 0$ for which there exists a finite subset $\{x_1, x_2, \ldots, x_n\}$ of *E* such that $A \subset$ ${x_1, x_2, \ldots, x_n} + B_p(\varepsilon)$, where $B_p(\varepsilon) = {x \in E : p(x) \le \varepsilon}$. The family $(\beta_p(A))_{p \in P}$ is called the *measure of non-compactness* of *A.* It is known [6] that: $J = [0, d]$. Denote by $C = C(J, E)$ the space of all continuous funct
ndowed with the topology of uniform convergence.
For any bounded subset A of E and $p \in P$ we denote by $\beta_p(A)$
 ≥ 0 for which there exists a finite subse andowed with the topology of unif
For any bounded subset A of E

² > 0 for which there exists a f
 $x_2, ..., x_n$ + $B_p(\varepsilon)$, where $B_p(\varepsilon)$

ed the *measure of non-compactne*
 1° X is relatively compact in E
 2°

 3° $\beta_p(X \cup Y) = \max{\beta_p(X), \beta_p(Y)}.$ 4° $\beta_p(X+Y) \leq \beta_p(X) + \beta_p(Y)$. 5[°] $\beta_p(\lambda X) = |\lambda| \beta_p(X)$ $(\lambda \in \mathbb{R}).$ 6° $\beta_{p}(\bar{X})=\beta_{p}(X)$. 7° $\beta_p(\text{conv } X) = \beta_p(X)$.

$$
8^{\circ} \quad \beta_p(\cup_{0 \leq \lambda \leq h} \lambda X) = h \beta_p(X).
$$

The following lemma is given in [8].

Lemma 1. Let H be a bounded countable subset of C. For each $t \in J$ put $H(t) =$ ${u(t) : u \in H}.$ If the space E is separable, then for each $p \in P$ the function $t \mapsto$ $\beta_p(H(t))$ is integrable and *1* is given in [8].
 H be a bounded countable subset of *C*. For each $p \in$
 the space E is separable, then for each $p \in$
 $\beta_p \left(\left\{ \int_J u(s) ds : u \in H \right\} \right) \leq \int_J \beta_p(H(s)) ds.$

recall the following lemma from [0].

$$
\beta_p\left(\left\{\int_{J} u(s)\,ds:\,u\in H\right\}\right)\leq \int_{J} \beta_p(H(s))ds.
$$

Moreover, let us recall the following lemma from [9].

 $\beta_p\left(\left\{\int_J u(s)\,ds:\,u\in H\right\}\right)\leq \int_J \beta_p(H(s))ds.$
Moreover, let us recall the following lemma from [9].
Lemma 2. Let $w:[0,2b]\mapsto \mathbb{R}_+$ be a continuous non-decreasing function and let
 $0,c)\mapsto [0,2b]$ be a C^m -function satisfyin Moreover, let us recall the following lemma from [9].
 Lemma 2. Let $w : [0,2b] \mapsto \mathbb{R}_+$ be a continuous non-d
 $g : [0,c) \mapsto [0,2b]$ be a C^m -function satisfying the inequalities $g:[0,c)\mapsto[0,2b]$ be a C^m -function satisfying the inequalities

i be a bounded countable subset of *C*. For *e* the space *E* is separable, then for each
$$
p \in
$$
 and
\n
$$
P\left(\left\{\int_J u(s) ds : u \in H\right\}\right) \leq \int_J \beta_P(H(s)) ds
$$
\necall the following lemma from [9].
\n
$$
P: [0, 2b] \mapsto \mathbb{R}_+
$$
 be a continuous non-decrec
\n
$$
C^m
$$
-function satisfying the inequalities
\n
$$
g^{(j)}(t) \geq 0 \qquad (j = 0, 1, ..., m)
$$
\n
$$
g^{(j)}(0) = 0 \qquad (j = 0, 1, ..., m - 1)
$$
\n
$$
g^{(m)}(t) \leq w(g(t)) \qquad (t \in [0, c)).
$$
\nfor $r > 0$ and $\int_{0+} (r^{m-1}w(r))^{-\frac{1}{m}} dr = \infty$, t
\nulate our main result.
\n*se that for each* $p \in P$ there exists a conti
\n*the such that* $w_p(0) = 0$, $w_p(r) > 0$ for $r > 0$
\n
$$
\int_{0+} \frac{dr}{\sqrt[m]{r^{m-1}w_p(r)}} = \infty.
$$

We can now formulate our main result.

If $w(0) = 0$, $w(r) > 0$ for $r > 0$ and $\int_{0+} (r^{m-1}w(r))^{-\frac{1}{m}} dr = \infty$, then $g = 0$.
We can now formulate our main result.
Theorem. Suppose that for each $p \in P$ there exists a continuous non
function $w_p : \mathbb{R}_+ \mapsto \mathbb{R}_+$ Theorem. Suppose that for each $p \in P$ there exists a continuous non-decreasing function $w_p : \mathbb{R}_+ \mapsto \mathbb{R}_+$ such that $w_p(0) = 0$, $w_p(r) > 0$ for $r > 0$ and

and
$$
\int_{0+} (r^{m-1}w(r))^{-\frac{1}{m}} dr = \infty
$$
, then $g = 0$.
\nmain result.
\nor each $p \in P$ there exists a continuous non-decreasing
\nnat $w_p(0) = 0$, $w_p(r) > 0$ for $r > 0$ and
\n
$$
\int_{0+} \frac{dr}{\sqrt[m]{r^{m-1}w_p(r)}} = \infty.
$$
\n(3)
\n $\beta_p(f(t, X)) \le w_p(\beta_p(X))$ \n(4)

If

$$
\beta_p(f(t, X)) \le w_p(\beta_p(X)) \tag{4}
$$

for $p \in P$, $t \in I$ and bounded subsets X of E , then the set S of all solutions of problem (1) defined on J is non-empty, compact and connected in $C(J, E)$.
 Proof. 1° Put
 $r(x) = \begin{cases} x & \text{for } x \in B \\ \frac{x}{K(x)} & \text{for } x \in$ (1) defined on J is non-empty, compact and connected in $C(J, E)$.

Proof. 1° Put

A Kneser-Type Theore
d subsets X of E, then the set
ty, compact and connected in

$$
r(x) = \begin{cases} x & \text{for } x \in B \\ \frac{x}{K(x)} & \text{for } x \in E \setminus B \end{cases}
$$

and $g(t, x) = f(t, r(x))$ for $(t, x) \in J \times E$, where *K* is the Minkowski functional of *B*. As *B* is a closed, balanced and convex neighbourhood of 0, from known properties of the Minkowski functional it follows that *r* is a continuous function from *E* into *B* and ($R(x)$ and $P(x) \leq F(x)$) for $(t, x) \in J \times E$, where *K* is the Minko anced and convex neighbourhood of 0, from onal it follows that *r* is a continuous function $r(X) \subset \bigcup_{0 \leq \lambda \leq 1} \lambda X$ for any subset *X* of *E*. *x E*, where *K* is the Minkowski functional of *B*.
 x E, where *K* is the Minkowski functional of *B*.
 x reighbourhood of 0, from known properties of
 at r is a continuous function from *E* into *B* and
 X

$$
r(X) \subset \bigcup_{0 \leq \lambda \leq 1} \lambda X \quad \text{for any subset } X \text{ of } E.
$$

Thus $\beta_p(r(X)) \leq \beta_p(X)$ for any $p \in P$ and any bounded subset X of *E*. Consequently, g is a bounded continuous function from $J \times E$ into E such that ional it follows that r is a continuous function from E into B and
 $r(X) \subset \bigcup_{0 \leq \lambda \leq 1} \lambda X$ for any subset X of E.

(X) for any $p \in P$ and any bounded subset X of E. Consequently,

inuous function from $J \times E$ into E su

$$
\beta_p(g(t, X)) \le w_p(\beta_p(X)) \tag{4'}
$$

for $p \in P$, $t \in J$ and bounded subsets X of E and

$$
p_i(g(t,x)) \le M \qquad (i = 1, \ldots, k; \, t \in J, x \in E). \tag{5}
$$

We introduce a mapping *F* defined by

$$
P, t \in J \text{ and bounded subsets } X \text{ of } E \text{ and}
$$
\n
$$
p_i(g(t, x)) \le M \qquad (i = 1, \dots, k; t \in J, x \in E).
$$
\n
$$
\text{value a mapping } F \text{ defined by}
$$
\n
$$
F(x)(t) = q(t) + \frac{1}{(m-1)!} \int_0^t (t-s)^{m-1} g(s, x(s)) ds \qquad (t \in J, x \in C)
$$
\n
$$
f(t) = \sum_{i=1}^{m-1} n_i \frac{t^i}{t^i}.
$$
\nIt is known (cf. [2]) that F is a continuous mapping

where $q(t) = \sum_{j=1}^{m-1} \eta_j \frac{t^j}{j!}$. It is known (cf. [2]) that *F* is a continuous mapping $C \mapsto C$ $x = F(x)$, then

We introduce a mapping F defined by
\n
$$
F(x)(t) = q(t) + \frac{1}{(m-1)!} \int_0^t (t-s)^{m-1} g(s, x(s)) ds \qquad (t \in J, x \in C)
$$
\nwhere $q(t) = \sum_{j=1}^{m-1} \eta_j \frac{t^j}{j!}$. It is known (cf. [2]) that F is a continuous mapping $C \mapsto C$
\nand the set $F(C)$ is bounded and equicontinuous. It is clear from (1) and (5) that if
\n $x = F(x)$, then
\n
$$
p_i(x(t)) \le \sum_{j=1}^{m-1} p_i(\eta_j) \frac{d^j}{j!} + \frac{1}{(m-1)!} \int_0^t (t-s)^{m-1} M ds
$$
\n
$$
\le \sum_{j=1}^{m-1} p_i(\eta_j) \frac{d^j}{j!} + M \frac{d^m}{m!} \qquad (i = 1, ..., k)
$$
\n
$$
\le b
$$

so $x(t) \in B$ for $t \in J$. Therefore, a function $x \in C$ is a solution of problem (1) if and only if $x = F(x)$.

2° For any $n \in \mathbb{N}$ put

$$
u_n(t) = \begin{cases} 0 & \text{if } 0 \le t \le \frac{d}{n} \\ q(t - \frac{d}{n}) + \frac{1}{(m-1)!} \int_0^{t - \frac{d}{n}} (t - s)^{m-1} g(s, u_n(s)) ds & \text{if } \frac{d}{n} \le t \le d. \end{cases}
$$

Then u_n is a continuous function $J \mapsto B$ and

$$
\lim_{n \to \infty} \left(u_n(t) - F(u_n)(t) \right) = 0 \tag{6}
$$

ion *J* → *B* and
 $\lim_{n \to \infty} (u_n(t) - F(u_n)(t)) = 0$ (6)
 $u_n : n \in \mathbb{N}$. From (6) it follows that the set $\{u_n - F(u_n) :$

a *C*. Since uniformly for $t \in J$. Let $V = \{u_n : n \in \mathbb{N}\}$. From (6) it follows that the set $\{u_n - F(u_n)$: $n \in \mathbb{N}$ is relatively compact in *C*. Since Intribution $J \mapsto B$ and
 $\lim_{n \to \infty} (u_n(t) - F(u_n)(t)) = 0$ (6)
 $= {u_n : n \in \mathbb{N}}$. From (6) it follows that the set $\{u_n - F(u_n) :$

act in *C*. Since
 $V \subset \{u_n - F(u_n) : n \in \mathbb{N}\} + F(V)$ (7)

ded and equicontinuous, we conclude that th

$$
V \subset \{u_n - F(u_n) : n \in \mathbb{N}\} + F(V) \tag{7}
$$

and the set $F(V)$ is bounded and equicontinuous, we conclude that the set V is also bounded and equicontinuous. Hence for each $p \in P$ the function $t \mapsto \beta_p(V(t))$ is continuous on *J.* Denote by *H* a closed separable subspace of *E* such that ded and equicontinuous, we concl

bus. Hence for each $p \in P$ the

by *H* a closed separable subspace of
 $g(s, u_n(s)) \in H$ ($s \in J, n \in \mathbb{N}$).

$$
g(s, u_n(s)) \in H \qquad (s \in J, n \in \mathbb{N}).
$$

Let $(\beta_p^H)_{p\in P}$ be the measure of non-compactness in H . Fix $t\in J$ and $p\in P$. From (4)' we have $g(s, u_n(s)) \in H \quad (s \in J, n \in \mathbb{N}).$

be the measure of non-compactness in *H*. Fix $t \in J$ and $p \in P$.
 $(g(s, V(s))) \leq 2\beta_p(g(s, V(s))) \leq 2w_p(\beta_p(V(s))) \quad (s \in [0, t]).$

we set

$$
\beta_p^H(g(s,V(s))) \leq 2\beta_p(g(s,V(s))) \leq 2w_p(\beta_p(V(s))) \qquad (s \in [0,t])
$$

By Lemma 1, we get

$$
\beta_p(F(V)(t)) = \beta_p \left(\left\{ \frac{1}{(m-1)!} \int_0^t (t-s)^{m-1} g(s, u_n(s)) ds : n \in \mathbb{N} \right\} \right)
$$

\n
$$
\leq \beta_p^H \left(\left\{ \frac{1}{(m-1)!} \int_0^t (t-s)^{m-1} g(s, u_n(s)) ds : n \in \mathbb{N} \right\} \right)
$$

\n
$$
\leq \frac{1}{(m-1)!} \int_0^t \beta_p^H \left(\left\{ (t-s)^{m-1} g(s, u_n(s)) : n \in \mathbb{N} \right\} \right) ds
$$

\n
$$
= \frac{1}{(m-1)!} \int_0^t \beta_p^H \left(\left\{ (t-s)^{m-1} g(s, u_n(s)) : n \in \mathbb{N} \right\} \right) ds
$$

\n
$$
\leq \frac{2}{(m-1)!} \int_0^t (t-s)^{m-1} \beta_p^H(g(s, V(s)) ds
$$

\n
$$
\leq \frac{2}{(m-1)!} \int_0^t (t-s)^{m-1} w_p(\beta_p(V(s)) ds).
$$

On the other hand, from (6) and (7) we obtain

$$
\beta_{p}(V(t))\leq \beta_{p}(F(V)(t)).
$$

Hence

$$
\beta_p(V(t)) \leq \beta_p(F(V)(t)).
$$

$$
\beta_p(V(t)) \leq \frac{2}{(m-1)!} \int_0^t (t-s)^{m-1} w_p(\beta_p(V(s)) ds \qquad (t \in J, p \in P).
$$

Putting

$$
g(t) = \frac{2}{(m-1)!} \int_{0}^{t} (t-s)^{m-1} w_p(\beta_p(V(s)) ds)
$$

we see that

 $q \in \mathbb{C}^m$ $\beta_p(V(t)) \leq g(t)$ $g^{(j)}(t) \ge 0$ for $j=0,1,\ldots,m$ $g^{(j)}(0) = 0$ for $j = 0, 1, \ldots, m - 1$ $q^{(m)}(t) = 2w_p(\beta_p(V(t))) \leq 2w_p(q(t))$ for $t \in J$.

Moreover, by (3),

$$
\int\limits_{0+} \frac{dr}{\sqrt[n]{r^{m-1}2w_p(r)}} = \infty.
$$

By Lemma 2 from this we deduce that $g(t) = 0$ for $t \in J$. Thus $\beta_p(V(t)) = 0$ for $t \in J$ and $p \in P$. Therefore for each $t \in J$ the set $V(t)$ is relatively compact in E. As the set *V* is equicontinuous, Ascoli's theorem proves that *V* is relatively compact in *C.* Hence the sequence (u_n) has a limit point *u.* As F is continuous from (6) we conclude that $u = F(u)$, i.e. *u* is a solution of problem (1). This proves that the set S is non-empty.

3^o Let us first remark that the set S is compact in C. Indeed, as $(I - F)(S) = \{0\}$, in the same way as in Step 2° , we can prove that S is relatively compact in C. Moreover, from the continuity of *F* it follows that S is closed in *C.* Suppose that S is not connected. Thus there exist non-empty closed sets S_0 and S_1 such that $S = S_0 \cup S_1$ and $S_0 \cap S_1 = \emptyset$. As S_0 and S_1 are compact subsets of C and C is a Tichonov space, this implies (see [3: §41, II, Remark 3]) the existence of a continuous function $v : C \rightarrow [0, 1]$ such that $v(x) = 0$ for $x \in S_0$ and $v(x) = 1$ for $x \in S_1$. Further, for any $n \in \mathbb{N}$ we define a mapping F_n by A Kneser-Type Theorem for *x*

Putting
 $g(t) = \frac{2}{(m-1)!} \int_0^t (t-s)^{m-1} w_p(\beta_p(V(s)) ds)$

we see that
 $g \in C^m$
 $\beta_p(V(t)) \leq g(t)$
 $g^{(1)}(t) \geq 0$ for $j = 0, 1, ..., m - 1$
 $g^{(m)}(t) = 2w_p(\beta_p(V(t))) \leq 2w_p(g(t))$ for $t \in J$.

Moreover, by (3) that *S* is c
 d sets *S*₀ a

ts of *C* a

ence of a c
 $= 1$ for *x*
 $F(x)(r_n)$
 $= \begin{cases} 0 \\ t - \frac{d}{n} \end{cases}$

that: e of a cor

for $x \in$
 $\{x\}(r_n(t))$
 $\begin{cases} 0 \ t - \frac{d}{n} \end{cases}$

at:

$$
F_n(x)(t) = F(x)(r_n(t)) \qquad (x \in C, t \in J)
$$

where

$$
f(t) = F(x)(r_n(t)) \qquad (x \in C, t)
$$

$$
r_n(t) = \begin{cases} 0 & \text{for } 0 \le t \le \frac{d}{n} \\ t - \frac{d}{n} & \text{for } \frac{d}{n} \le t \le d. \end{cases}
$$

It can be easily verified (cf. $[10]$) that:

- $r_n(t) = \begin{cases} t \frac{d}{n} \end{cases}$

(i) *F_n* is a continuous mapping $C \mapsto C$.
- (ii) $\lim_{n\to\infty} F_n(x) = F(x)$ uniformly for $x \in C$.
- (iii) $I F_n$ is a homeomorphism $C \mapsto C$ (*I* identity mapping).

Fix $u_0 \in S_0$, $u_1 \in S_1$ and $n \in \mathbb{N}$. Put

$$
{}_{n\to\infty}F_n(x) = F(x) \text{ uniformly for } x \in C.
$$

\n
$$
F_n \text{ is a homeomorphism } C \to C \text{ (}I \text{ - identity mapping)}.
$$

\n
$$
u_1 \in S_1 \text{ and } n \in \mathbb{N}. \text{ Put}
$$

\n
$$
e_n(\lambda) = \lambda(u_1 - F_n(u_1)) + (1 - \lambda)(u_0 - F_n(u_0)) \qquad (0 \le \lambda \le 1).
$$

Let $u_{n\lambda} = (I - F_n)^{-1}(e_n(\lambda))$. As $e_n(\lambda)$ depends continuosly on λ and $I - F_n$ is a homeomorphism, we see that the mapping $\lambda \mapsto v(u_{n\lambda})$ is continuous on [0, 1]. Moreover,

 $u_{n0} = u_0$ and $u_{n1} = u_1$, so that $v(u_{n0}) = 0$ and $v(u_{n1}) = 1$. Thus there exists $\lambda_n \in [0,1]$ such that

$$
v(u_{n\lambda_n}) = \frac{1}{2}.\tag{8}
$$

For simplicity put $v_n = u_{n\lambda_n}$ and $V = \{v_n : n \ge 1\}$. Since $\lim_{n \to \infty} e_n(\lambda) = 0$ uniformly For simplicity put $v_n = u_{n\lambda_n}$ and $V(u_{n0}) = 0$ and $v(u_{n1}) = 1$. Thus there exists $\lambda_n \in [0,1]$
such that
 $v(u_{n\lambda_n}) = \frac{1}{2}$. (8)
For simplicity put $v_n = u_{n\lambda_n}$ and $V = \{v_n : n \ge 1\}$. Since $\lim_{n \to \infty} e_n(\lambda) = 0$ uniformly
 for $\lambda \in [0, 1]$, we get

$$
\lim_{n \to \infty} (v_n - F(v_n)) = \lim_{n \to \infty} (e_n(\lambda) + F_n(v_n) - F(v_n)) = 0 \tag{9}
$$

As $v_1 = u_1$, so that $v(u_{n0}) = 0$ and $v(u_{n1}) = 1$. Thus there exists $\lambda_n \in [0, 1]$
 $v(u_{n\lambda_n}) = \frac{1}{2}$. (8)
 $u v_n = u_{n\lambda_n}$ and $V = \{v_n : n \ge 1\}$. Since $\lim_{n \to \infty} e_n(\lambda) = 0$ uniformly
 $v_n = \lim_{n \to \infty} (v_n - F(v_n)) = \lim_{n \to \infty} (e_n(\lambda$ and therefore the set $(I-F)(V)$ is relatively compact in C . Using now a similar argument as in Step 2°, we can prove that the set *V* is relatively compact in *C.* Consequently, the sequence (v_n) has a limit point *z*. In view of (9) and the continuity of *F*, we infer that $z \in S$, so $v(z) = 0$ or $v(z) = 1$. On the other hand, from (8) it is clear that $v(z) = \frac{1}{2}$, which yields a contradiction. Thus S is connected \blacksquare

References

- [1] Hukuhara, M.: Théorems fondamentaux de la théorie des équations différentielles ordinaires dans l'espace vectorial topologique. J. Fac. Sci. Univ. Tokyo (sec. I) 8 (1956), 111 - 138.
- *[2] Januszewski, J. and S. Szufla: On the Urysohn integral equation in locally convex spaces.* Publ. Inst. Math. 51 (1992), 77 - 80.
- [3] Kuratowski, K.: *Topologie, Vol. II.* New York . London Warszawa 1968.
- *[4] Lobanov, C. C. and 0. G. Smolianov: Ordinary differential equations in locally convex spaces.* Uspekh. Mat. Nauk 49 (1991), 3(297), 93 - 168.
- [5] Millionschikov, V.: A contribution to the theory of differential equations $dx/dt = f(x, t)$ *in locally convex space.* DokI. Akad. Nauk SSSR 131 (1960), 510 - 513.
- [6] Sadowskii, B. N.: *Limit- compact and condensing mappings.* Russian Math. Surveys 27 $(1972), 85 - 155.$
- [7] Schaefer, H.: *Topological Vector Spaces.* New York London: The Macmillan Company 1966.
- [8] Szufla, S.: On the equation $x' = f(t, x)$ in locally convex spaces. Math. Nachr. 118 (1984), 179 - 185.
- [9] Szufla, S.: On the differential equation $x^{(m)} = f(t, x)$ in Banach spaces. Funkcial. Ekvac. 41(1998), 101 - 105.
- [10] Vidossich, G.: *A fixed point theorem for function spaces.* J. Math. Anal. AppI. 36(1971), $581 - 587$.

Received 28.10.1998