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A Kneser-Type Theorem for the Equation 

X(m) = f(t,x) 

in Locally Convex Spaces 

A. Szukala 

Abstract. We shall give sufficient conditions for the existence of solutions of the Cauchy 
problem for the equation (m) = f(t,x). We also prove that the set of these solutions is a 
continuum. 
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Let E be a quasicomplete locally convex topological vector space, and let P be a family 
of continuous seminorms generating the topology of E. Assume that I = 10, a) and 
B = {x E E : pi (x) <b (i = 1,... ,k)}, where p1,... ,p, E P. 

In this paper we investigate the existence of solutions and the structure of the set 
of solutions of the Cauchy problem

(m) = f(i,x) 

1 
x(0)=O	

(1) x'(0)=q	

j x(m1)(0) = 

where rn is a positive integer, ,77m—i E E and f is a bounded continuous 
function from I x B into E. Our considerations are a continuation of Szufla's paper [8]. 
For other results concerning differential equations in locally convex spaces see [4). 

Put
M = sup {p(f(t,x)) : t E I,x € B,i = 1,... ,k}. 

Choose a positive number • d such that d a and

(i=1,...,k).	 (2) 
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Let J = [0, d]. Denote by C = C(J, E) the space of all continuous functions from J into 
E endowed with the topology of uniform convergence. 

For any bounded subset A of E and p E P we denote by fl(A) the infimum of 
all E > 0 for which there exists a finite subset {x 1 , x 2 ,... , x,, I of E such that A C 
{x 1 ,x2 ,. . . ,x,} + B(e), where B(e) = {x E E : p(x) < e}. The family (/3(A))p is 
called the measure of non-compactness of A. It is known [6] that: 

10 X is relatively compact in E	i9(X) = 0 for every p E P. 
2° X c Y	fl(X) <8(Y). 
3° /3,,(X U Y) = max{fl(X),f3(Y)}. 
40 j3(X + Y) <8(X) + f3(Y). 
50 /3()X) = I A I/9 (X) (A E R). 

6 0 13(X)=/3(X). 
70 /3p (convX) = 6p (X). 
8 0 /3p(Uo<A<hAX) = hi3(X).


The following lemma is given in [8]. 

Lemma 1. Let H be a bounded countable subset of C. For each t E J put H(t) = 
{u(t) : u E H}. If the space E is separable, then for each p E P the function t i-* 
/3(H(t)) is integrable and

usis: u e H}) <fsp (H(s))ds. 13p ({f  

Moreover, let us recall the following lemma from [9]. 

Lemma 2. Let w : 10, 2b]	R+ be a continuous non-decreasing function and let 
g : [0,c)	[0,2b] be a C tm -function satisfying the inequalities 

g(i)^O	 (j=0,1,...,m) 
(j=0,1,...,m-1) 

g(m)(t) < w(g(t))	(t E [0, c)). 

If w(0) = 0, w(r) >0 for r > 0 and f0 (rm_1 w(r))dr = oo, then g = 0. 
We can now formulate our main result. 

Theorem. Suppose that for each p € P there exists a continuous non-decreasing 
function w, :	'- IR+ such that w(0) = 0, w(r) > 0 for r > 0 and 

fdr 
=00.	 (3) 

0 

If
/3(f(t,X))	w(f3(X))	 (4)
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for p E P, t E I and bounded subsets X of E, then the set S of all solutions of problem 
(1) defined on J is non-empty, compact and connected in C(J,E). 

Proof. 1° Put
Ix	for xB 

	

r(x)=z	for xEE\B 

and g(t,x) = f(t,r(x)) for (t, x) e J x E, where K is the Minkowski functional of B.

As B is a closed, balanced and convex neighbourhood of 0, from known properties of 

the Minkowski functional it follows that r is a continuous function from E into B and


r(X) C U AX	for any subset X of E. 

Thus /3(r(X)) </3(X) for any p e P and any bounded subset X of E. Consequently, 
g is a bounded continuous function from J x E into E such that 

fl(g ( t , X))	wp (f3(X))	 (4)'


for p E P, t E J and bounded subsets X of E and 

p(g(t,x)) < M	(i = 1,...,k; t E J,x E E).	 (5)


We introduce a mapping F defined by 

1 
F(x)(t) = q(t) + 

(ni	f (i - s)m_l g(s , x(s))ds	(t E J,x E C) 
- 1)! Jo 

where q(t) = ''ii4. It is known (cf. [2)) that F is a continuous mapping C '-* C 
and the set F(C) is bounded and equicontinuous. It is clear from (1) and (5) that if 
x = F(x), then

rn-I 

p(x(t))	
+(	1)! f ( t - s)mlMds 

j=1	 0 

rn-I d	dm	 (i=1,...,k) 
^	p(t7j)-T+M-




in! 

so x(t) E B for t E J. Therefore, a function x E C is a solution of problem (1) if and 
only if x = F(x). 

2° For any n E N put

if0<t < - -n 

u(t) - q(t - ) + (rn-i)! f(t - s) rn_l g(s , u(s))ds if <t <d.
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Then u is a continuous function J ê-4 B and 

urn (u,2 (i) - F(u)(t)) = 0	 (6) n —.00 

uniformly fort E J. Let V = {u : Ti E N}. From (6) it follows that the set fu n —F(u n ) 
Ti E N) is relatively compact in C. Since 

VC fun F(un):nE N}+F(V)	 (7) 

and the set F(V) is bounded and equicontinuous, we conclude that the set V is also 
bounded and equicontinuous. Hence for each p E P the function t '— fl,,(V(t)) is 
continuous on J. Denote by H a closed separable subspace of E such that 

g(S,Un(S)) E H	(s E J,n EN). 

Let (/3')€p be the measure of non-compactness in H. Fix t E J and p E P. From (4)' 
we have

	

(g(s, V(s))) < 20, (g(s, V(s))) < 2w(f3(V(s)))	(s E [0, t]). 

By Lemma 1, we get

=	
({ 

(m 1)!
 j ( t — s)m1 g(s,u(s))ds fl E N}) 

({m 1)! )(t _s)mg(s,u(s))ds n E N}) 

1 f8pH(rn	
({(t - S)m_Ig(S,U()): n E N}) ds —1)! 

0 

1 
= (rn — 1)! f

(t - S)m_1(g(S, V(s)) ds 

0 

2 
f ( t - 

— (rn—i)'
0 

On the other hand, from (6) and (7) we obtain 

< /3(F(V)(t)). 

Hence

I3(V(t)) <
	2	

f (t - s) m 'w(fl(V(s))ds	(t E J,p € F) 
0
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Putting

2 
(m 1)! 1

(t - S)mlw(I3(V(S))dS 
0 

we see that 

g e C. 
f3(V(t)) < g(t) 
g (i) (t)>O for j=0,l,...,m 
9 0) (0) = 0 for j = 0,1,... ,rn —1 

= 2w(I3(V(t))) < 2w,(g(t)) for I E J. 

Moreover, by (3),
Jdr 

_______ 
/rm1 2w(r) 

= 00.
 

0+ 

By Lemma 2 from this we deduce that g(i) = 0 for I E J. Thus fl(V (i )) = 0 for I E J 
and p E P. Therefore for each I E J the set V(t) is relatively compact in E. As the set 
V is equicontinuous, Ascoli's theorem proves that V is relatively compact in C. Hence 
the sequence (u n ) has a limit point u. As F is continuous from (6) we conclude that 
u = F(u), i.e. u is a solution of problem (1). This proves that the set S is non-empty. 

30 Let us first remark that the set S is compact in C. Indeed, as (I - F)(S) = {0}, 
in the same way as in Step 2°, we can prove that S is relatively compact in C. Moreover, 
from the continuity of F it follows that S is closed in C. Suppose that S is not connected. 
Thus there exist non-empty closed sets So and Sj such that S = S0 US1 and S0 nS1 = 0. 
As So and S1 are compact subsets of C and C is a Tichonov space, this implies (see 
[3: 41, II, Remark 3]) the existence of a continuous function v C [0, 11 such that 
v(x) = 0 for x e S0 and v(x) = 1 for x E S. Further, for any n € N we define a 
mapping F,, by

	

F,,(x)(t) = F(x)(r,,(t))	(x E C,t € J) 

where
=	 - —n r,,(t)	

{0	
for0<t<4


i— d for<I<d. 

It can be easily verified (cf. [101) that: 

(i) F,, is a continuous mapping C	C. 

(ii) lim,,... Fn (x) = F(x) uniformly for x E C. 
(iii) I - F,, is a homeomorphism C '- C (I - identity mapping). 

Fix u 0 € S, u 1 E Si and n E N. Put 

	

e n (A) = A(u i - F,,(u i )) + ( 1 - A)(uo - F,,(uo))	(0 < A < 1). 

Let u,,.i = (I Fn)_'(en(A)). As en(A) depends continuosly on A and I - F,, is a 
homeomorphism, we see that the mapping A '-p v(u,,A) is continuous on [0, 1]. Moreover,
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U nO = u 0 and u,, = u 1 , so that v(uo) = 0 and v(u1) = 1. Thus there exists A n E [0,11 
such that

v(uA) =	 (8) 

For simplicity put v = U nA. and V = {v,, : n > 1}. Since	e(A) = 0 uniformly

for A E [0, 1], we get 

lim (v - F(v)) = urn (e n (A)+ Fn(vn) - F(v)) = 0	 (9) n—. 00	 n—.00 

and therefore the set (I—F)(V) is relatively compact in C. Using now a similar argument 
as in Step 2°, we can prove that the set V is relatively compact in C. Consequently, the 
sequence (va ) has a limit point z. In view of (9) and the continuity of F, we infer that 
z E S, so v(z) = 0 or v(z) = 1. On the other hand, from (8) it is clear that v(z) = 
which yields a contradiction. Thus S is connected I 
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