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of 

Integral Functionals with L log L-Growth 
G. Mingione and F. Siepe 

Abstract. We consider the integral functional with nearly-linear growth fn IDizllog(1+IDuI)dz 
where 11: fI C IR" -i R' (n > 2, N 1) and we prove that any local minimizer u has locally 
Holder continuous gradient in the interior of ci thus excluding the presence of singular sets in Q. 
This functional has recently been considered by several authors in connection with variational 
models for problems from the theory of plasticity with logarithmic hardening. We also give 
extensions of this result to more general cases. 
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1. Introduction 
The aim of this paper is to study the regularity of minimizers of integral functionals of 
the form

)7(u, Q) 	/ f(Du)dx	 (1.1)
ui 

where ci is an open subset of R' and u ci	RN. This problem has been widely
investigated if the integrand f satisfies the growth assumptions 

1 z 1' < 1(z) :5 L(l + 1 z 1')	 (1.2) 

with 1 <p. In the last years much attention has been dedicated to functionals verifying 
more general growth assumptions such as 

< 1(z) 5 L(1 +	 (1.3) 

where the main point is that now 1 <p < q. The previous conditions are referred to 
in the literature as (p, q)-growth conditions and they have been extensively studied by 
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Marcellini [11 - 14]. In this paper we consider a sort of limit case of conditions (1.3); 
let us explain in which sense. If we consider the function 

1(z) = IzI"log(l + I zI), (1.4) 

then we observe that the conditions in (1.3) are verified with q = p + e for each e > 0 
(for IzI large). On the other hand, the function 

1(z) = zllog(1 + I zI) (1.5) 

does not verify the conditions in (1.3) because in this last case p = 1, for Izi large. For 
this reason a function as in (1.5) is said to be of nearly linear growth, that is 

f	 .	1(z) = hm sup	0	and	lim sup 
1.1—+. zIP -	 IzI—+oc, 

whenever p> 1. 
In this paper we study regularity for local minimizers for a class of functionals of 

type (1.1), whose energy density f is modelled by the function in (1.5). The study of 
such functionals, from the regularity viewpoint, has been faced by a few authors in the 
last years (see [ 5, 7, 8]). In particular, in the paper [7], the authors considered the 
model functional

= j Dulog(1 + IDuI)dx 

and proved C"-partial regularity for local minimizers provided n 4 and everywhere 
(in the interior) regularity in the case n = 2 (using ideas from [4, 5]). The partial 
regularity result has been subsequently obtained in [3] for any dimension n. In this 
paper we take up the problem of full regularity and we prove that any local minimizer 
of the functional F(u, ci) is in C(ci; R Th ), thus solving a problem posed by M. Fuchs 
and G. Seregin in [7]. We also give a generalization of this result to a wide class of 
functionals with so called L log L-growth (see Section 4). It is worth noticing that this 
type of functionals has been considered very recently in some papers (see [5, 7, 8]) in the 
contest of the theory of plasticity with logarithmic hardening. It also plays a relevant 
role in the study of the so called Prandtl-Eyring fluids, as pointed out in [8]. 

Now we spend a few words about our technique. The first technical difficulty 'we 
meet is that the functional .T(u, ci) has sub-quadratic growth, that is condition (1.3) 
is satisfied with p (= 1) and q that are strictly less than 2 and it is not possible to 
apply the known techniques developed for functionals with (p, q)-growth. So we take a 
different path, that is we follow a particular approximation technique and introduce the 
family of regularized functionals 

Fe,o(u, l) = j fe,a(DU) dx 

where
2 fe,c,(z) = /e -+ I z I 2 log (I + \/E -+I z I 2 ) + a( 1  + ri ) 2	 (1.6)
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with e, r > 0 and q suitably close to 1. The effect of this regularization is twofold. First 
of all we observe that the function f has now polynomial growth of the type in (1.2). 
The most important thing is anyway that now the integrand f€ depends directly on 
the quantity JDu 1 2 rather than IDuI, and this fact reveals useful when deriving estimates 
for regularity (see Theorem 3.1/ Step 1). 

Then we consider the solution	E W1(BR; RN ) , BR cc R", of the regularized 
Dirichlet problem

MinI
JBR 

f,0 (Dw)dx: w E Uc + 
Wc(BR,RN)} 

where c and a are two real parameters suitably related to each other and u C W"' (BR, 
R N ) is a sequence of smooth functions such that Ue —* u strongly in W11(BR,R'). 
For the family Dv, ,, we derive uniform L°°-bounds, and, after proving that actually 
v —* u, we have the estimate

UBR
suPI Du I .e 	IDuIlo(1+I13uI)dx+1 	 (1.8) 
B  

p < f, that is the local boundedness of Du. Once proven (1.8), then we are also able 
to prove that Du E C10 for some 0 < a 1. 

2. Preliminaries and statements 

In the following B(x, R) will denote the open ball of R' of center x and radius R, 
{y E RTh : Ix — I < R}, while ci will denote an open bounded subset of R with 
n > 2. When no confusion shall arise we will just put BR B(x, R), and all the balls 
considered will have the same center. We will deal with functionals with L log L-growth 
in the sense that

log(1 + z DI z I < f(z)	L(1 + log(1 + IzI)IzD, 

so it is convenient to say something about the function space L log L(cZ;R"), i.e. the 
subset of L'(cl; RN) of those functions ii for which 

:= 
in 

J ullog(1 + I u I) dx < + 00. 

These are Banach spaces if equipped with a suitable norm related to the quantity 
(u), and for further references on their use in this contest we address the interested 

reader to [8] and the references quoted there. We will not, use topological properties 
of L log L(ci; R")' while the only result we are going to utilize is the following sim-
ple consequence of De LaValleé Poussin's theorem that we state here for the reader's 
convenience:
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Proposition. Let {u} C L log L(ci;RI ) such that E(u)(A) c < +00 where 
A is a measurable subset of Q. Then there exist a subsequence {ufl k }k C {u} n and a 
function u E L log L(A;R N ) such that U n k —k u weakly in L'(A;R"). 

In the vectorial case N > 1, for sake of simplicity, we will keep our attention on the 
model case

	

= I IDullog(1 + Du D dx = I f(Du)dx	 (2.1) 

	

in	 ill 
where u:ciCR'—R" (N>1). 

Due to non-standard growth conditions verified by the functional F F(u, ci) we 
shall adopt the following natural definition of a minimizer: 

Definition. A function u E W11 (ci; RN) is called local minimizer of the functional oc 
Fif

	

f(Du) E L 0 (cl)	and	F(u, ci) < F(u + W, ci) 

for any p E W"(ci;R"). 

Our main result is the following 

Theorem 2.1. Let u E W,'(ci;RN) be a local minimizer of the functional F. 
Then Du is locally Holder continuous in Q. 

The proof of this theorem will be given at the end of Section 3. As a byproduct 
of the arguments developed in order to prove Theorem 2.1 we will derive a point-wise 
bound for the quantity (see Theorem 3.1) sup 8 IDul with B,, cc ci, in terms of the 
quantity JBR f(Du)dx. 

After the previous result, we concentrate our attention on the scalar case N = 1. 
Here it is now useless to restrict ourselves to the model case 1(z) = IzI log(1 + z), 
because this is already treated in Theorem 2.1. From the proof of Theorem 2.1 in 
Section 3 it is clear that a crucial role is pla.ied by the fact that the function f directly 
depends on the quantity IDul. Indeed, in more general cases, where there is no such 
a direct dependence of f on the quantity IDul, the result of Theorem 2.1 is false as 
shown by counterexamples valid even in the case of functionals with usual quadratic 
growth. The only thing that can be said in the case of general structures is C1'°-partial 
regularity of local minimizers, that is the C"-regularity outside a negligible closed 
subset of ci, as shown in the papers [3] and [7]. Nevertheless, things change in the scalar 
case, N = 1. Here we are going to deal with functions f as in (2.1), not necessarily 
depending on the modulus of the gradient. More precisely, we will make the following 
assumptions:

I E C2(R") 

Izlog(l + r i) < f(z) < L(1 + jzj log(1 + i z I))	 (2.2) 

Al2 _________ v_ I	 (D2f(z)A, A) < log(l + in) IA2 

	

+i z I 2	 in 
for any A, z E R'1 where L > 1 and ii > 0. We observe that, in particular, the function 
f(z)	Izi 109(1 + i z I) satisfies conditions (2.2) for suitable L and V. 

Under the previous assumptions we are going to prove the following



Full C"°-Regularity	1087 

Theorem 2.2. Let u E W1 (Q) be a local minimizer of the functional F and let 
the conditions in (2.2) being satisfied by the energy density f . Then Du is locally Hölder 
continuous in Q. 

The proof of this theorem will be given at the end of Section 4. 

3. The vectorial case 

Our aim here is to prove that any local minimizer u of F is locally of class C"°, thus 
proving Theorem 2.1. We start introducing the approximating functionals 

= fo f, , , (Du) dx 

where
f,(z) = \/E —+ I Z P log(' + v'e —+I z 2 ) + a(1 + I zI 2 )	 (3.1) 

with o e > 0 and.
' 1 <q < {	

n-2 

	

min{—!— 21 if n >2	 (3.2) 
2	 ifn=2. 

We start proving the local boundedness of the gradient of local minimizers of F. More 
precisely, we will prove the following 

Theorem 3.1. Let u E W1','.(Q,R") be a local minimizer of the functional F. 
Then Du is locally bounded. Moreover, if B R CC Q and B,, cc BR is such that p < 
then there exist constants c = c(n, N, R) and /3 = 0(n), but independent of u, such that 

UBRsuPI Du I c 	IDuIlog(1+IDuDdx+1 
B,  

Proof. Step 1: Caccioppoli type estimates. In the following the constants c and 
will freely denote two positive quantities, not necessarily the same in any two oc-

currences, while only the relevant dependences will be highlighted. We start observing 
that

fe,a(z) = ge, ,(IzI 2 )	 (3.3) 

where
g,(i) =	 log(1 + v') + cy (1 + t), 

that is f depends on the quantity 1 z 1 2. Moreover, we observe that fe,., has polynomial 
growth of order q ( < 2) and that the ellipticity and growth conditions 

c-1(,(l  + ri 2
 ) i
	1 

2 + 
1 + e + 1zi2) II2 

(D2f(z)A,A)	 (3.4) 

(i +IzI 2
) L 2 + 1	log(1 +	+ 1:12)) 

Ve1:12
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are satisfied for any z, ) E R", with the constant c < +00 independent of e and a. 
We now state the following 
Claim. Let v e W I (B 11, R N ) be a local minimizer of 

JB 
where BR cc Q Then there exist constants c c(n, N, R) < + 00 and /3 /3( n) <+oo 
but independent of e, a and v such that, if B cc BR and p < f, then 

0 
supiDvi 

<c(11B 
(fea(Dv)+1)dx) B	 R 

In other words we want to derive a priori estimates for the L'-norm of v, independently 
of e and a. We devote Step 1 and Step 2 to the proof of the previous claim. 

From now on we will omit the subscripts e and a, so that we will denote leg simply 
by f. We will then recover the full notation only in the last step of the proof. 

We are under the assumptions considered in [1] and we may use the results stated 
there. So it follows that

E C(BR,R' ' )fl W(BR,R")	 (3.5) 

for some 0 < a < 1. Therefore, we have the Euler-Lagrange system of F 

JBR 
DI (Dv)Dçc dx = fB	f(Dv)Djço°dx = 0 

satisfied for any choice of E W1(B,RN) and a E {1,... ,N}. Let us set 

= F(x + he.) - F(x) 
Lh,sF(X)	 h 

whenever F is an integrable function defined on Q and where x E ci and 0 < IhI < 
dist(x,ôZ) and {e3 } 3 < is the standard basis of R". That is, h,3 is the standard dif-
ference quotient operator. For the general properties of the difference quotients applied 
in this contest see also [10: Chapter 81. 

In the Euler system we choose the test function 0a = L_ h, j(71 2 HDa v0) where 
O,aE{1,..., NJ, se{1,...,n},qEC°(BR)is such that 0<<1,,)1on 

B, p < R0 , i 0 outside BR,,, R0 < 11 and IDiI <c(& —p)'. Furthermore, we have 
set H : 1 + e + JDvJ 2 . It is easy to see that, by (3.5) and choosing h small enough, 

is an admissible test function for the Euler system of F. With this choice we have, 
using Einstein's convention on repeated indexes, 

J 
X2?lDi1iHDSVa + 27H_ I Dj(iDvi 2 )Da v0 + 2 HD31 va]dX = 0.
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Now we recall that under our assumptions	f(Du) E W"(BR ) and D2 u E LC(BR, 
i	 10C

R') follow (see [1: Lemma 2.5]) so that we may let h -p 0 in the previous formula 
obtaining 

ID..,P
 BR	 (3.6) 

x [21Djl7HtD5vc +1J 2 7HD(IDvI2 )D3 v 0 +Tl2HD3v]dx 0. 

Now we use the Cauchy-Schwartz inequality in order to estimate 

2 f R D 0 ' f(Dv)D3viD1rjHD5v°dx 

- <2fH1 

< dx	 (3.7) 

LR 
+ Cf 

where we used also the Young inequality in a standard way. Connecting (3.6) and (3.7) 
and adding up over s we obtain 

JBR DZZ1(DV)DjSV$DiSVO7i2HdX 
R

+
 y f

D 0 f(Dv)D 3 vij 2H' D (I Dv I 2 ) D,vdx	(3.8)
BR 

<cfBR 
for a suitable constant C independent of e and o. 

Now we proceed estimating the three terms in (3.8). The first one can be easily 
estimated from below using the ellipticity condition in (3.4), obtaining 

ID^. ',o f (Dv)Dj,v'6Di, V,T,2 H"dx > c-1 
JBR

7l2Hr_ID2vI2dx 
BR  

where we dropped from below the non-affecting term c— I a fBR 7 2H - 'I D2 v l 2dx. The 
third term in (3.8) can be also easily estimated from above, by roughly using the growth 
conditions in (3.4): 

- LR
cf Dij2H+ [log(1 +	IDvI2) + aH'i ] dx.
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In order to estimate the second integral in (3.8), we keep into account the particular 
structure of f	(see (3.3)). Indeed, the identity 

D	 = 4g (IzI 2 )zz + 2g(Iz 2 )8jj 6' ii 

is easy to verify so that 

'BR

 D. 	 dx 

= 4iJ 

+ 2yf 

= 
f R 

[2ghl(Dv2)DvaD,v + 
g'(IDvI2)6138] 

x D(IDvI2)D(IDvI2)ij2Hdx 

LDzozf(Dv)D1(IDvI2)D3(IDvI2)ti2H'dx 

^ C17f 

where once again we used the ellipticity condition (1) within the particular structure 
of f and we dropped the non-affecting term containing o. Connecting the previous 
estimates we finally obtain 

LR 
2 H l- ID(IDvI 2 )I 2 dx + 

fR 

<Cf DI 2 H	[log(1 + e + IDvI 2 ) + H]dx. 

Observing that

JBR 
2H-1_ ID(IDvI 2 )I 2 dx <c 

JBR 

2jp_ 
ID2vI2dx 

we finally deduce that 

( + 1)
1B

 
R 

C fBR IDI2H	[log(1 + e + Dv 1 2 ) + aH 2 ]dx. 

Now we introduce the positive quantity x in such a way that 

2	n
ifn>2	and	1<q<ifn=2.
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By the Sobolev embedding Theorem, for n 2, we may estimate 

JBR 77 2xJJ(2-+I)dx
) 

cJBR 
ID(H77)I2dx
 (3.9) cf ID77I 2 Hdx + c(-y + 1 )2 1 772H1_ID(IDvI2)I2dx 

	

i ) J ID77I 2 H 4 [log(1 +	+ I Dv I 2 ) +	+ 1]dx 

and, obviously,

(2-,+I)I 772XH	 1) [ IDi7 I 2H 4- dx	(3.10) ()BR
dx) <c('y+ 

where the constant c is independent of E,o7 and v while we have set p := 

Step 2: Iteration. Our next aim is to iterate formula (3.10) using a modified version 
of Moser's iteration technique in the case of non-standard, sub-quadratic growth. First 
of all we define inductively the sequences of exponents 

171 = 0 
7k-fl =(2-yk+1)—(2p -- 1) (k>1) 

and
1. 

o k = ( 27k+ 1 ) (k>1)	so that fai=2 
af = akX - p (k > 1). 

Moreover, we introduce a sequence of radii 

Pk = p + (.Ro - 

where p <	and a sequence of cut-off functions 71k such that 

0	71k 15 1, 71k	ion Bpk+I , 77k	0 outside Bp,,, ID77kI < c2'(R - 

Note that with this choice pa = R0 and that Pk - p. Finally, we define 

Ak = ( 1 H P )	.	 ( 3.11) 
\JB,k 

Writing (3.10) with this choice of 77k and 7k, by (311) we easily obtain 

Ic y1k 1 ; 
Ak+1	[(Rp)21	A'



1092	G. Mingione and F. Siepe 

By induction it is possible to derive the representation formula 

k+i	 (k^1). 

We observe that, in view of (3.3) and the choice of v	- 1. > 0 follows. Moreover, it 
"2 2x 

is also easy to check that 

- (-k+ /1)x = urn ir	+ ,u)x = q	______	x - 1 
lim	=q—<oo. 

	

ck+1+11	k—+cc1-1 & i+1 +f2	2k—ooak+1+p	x — q 

Iterating (3.11) gives (without loss of generality we may assume that A 1 ^! 1) 
o 
k=1 k <H ca21 Ak+1 	A	c2 

[(R0 p)2]	
A	

(&	
A	(3.12) 

1=1 
[R0 —p)2 

since (we recall that a	xk) 

C2  

	

00	 00

	

 
1	4 

<+oo	and	-	<+00. 

a 	x — q 
k=1 k=1 

We stress the fact that the constants appearing in (3.12) are still independent of E,U 
and v. If we let k - 00 in (3.12), we get 

sup(1+e+Dv2)= urn 
(401Hdx 

B
) 

<lirn sup Ak 

CA '	
(3.13)

(Ro—p)/3

(41	

p
C

	
Hdx"(Ro—p)$	 ,0	J 

with 3 independent of E and a. 
Now let us take R0 in such a way that 4R0 < R and consider ij E Co— (B20 ) such 

that i 1 on BR0, i 0 outside B2R0 and jDi7j cR. If we put -y = 0 and this 
function z in (3.9), we obtain 

.1.	 .1. 

(f
x) X 

<c(fBR(,

 
 
H f dx

 

4R H+[log(1+ve+IDvI2)+aHi +1]dx 
CO  

cL (f, , , (D,,) + 1) d,
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where c = c(Ro) is independent of c,a and v. Combining this last estimate with (3.13) 
easily gives

SUP IDVI	(fe,a(Dv) + 1)dx)	 (3.14) 
B,	( J'B R 

with p < f and c c(n, N, R) and 6 3(n) but independent of a,e and v. The claim 
at the beginning of Step 1 is finally proved. 

Step 3: Approx imation. Now we want to apply a-priori estimate (3.14) to a se-
quence of approximating minimizers and recover the same estimate for the original local 
minimizer u of the functional F. 

In the following, e and a denote two sequences of positive real numbers such that 
- 0. We will sometimes pass to subsequences that will be still denoted by e and 

o. Let us define
ue(x) (u * )(x) in u(y) e (y - x)dy 

where { W, } is a family of smooth and positive mollifiers such that supp C B, (0) and 
JB,(o) pdx = 1. The functionals .7	are coercive, convex and therefore weakly lower 
semicontinuous in the space W l (B , R N ) , and so Direct methods of the Calculus of 
Variations allow us to define

	

Ue,a E u +	RN) 

as the (unique) solution to the Dirichlet problem 

mm {JB f,,(Dw)dx: w E u + 

where BR CC ci and we took c mini 1,2'dist(Bft,ôci)}. 
Now let us choose

a =a(e)= (1 +c +IIDu 2q	'—I
eIILq(B)) 

Moreover, we set
ye = Ve(c)	and	f = fe,a(e) 

Estimate (3.14) is of course valid for v, and using the minimality of v we get 

sup IDv, I <c U(f, (Dv,) + 1) d) 

-
	UBR f(Du)dx + 

=C 
UBR 

Ve + Du-l 2 log(1 + E + lDuI2)dx
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p  $ \ 
+ 1 +cr J (1 +IDuel2)dx) 

BR 

(j	e + iDui 2 log( 1 +	+ lDul 2 )dx + 1 + o( e )	(3.15) 
J 

<c(J	f (Du) dx + 1 + o(e) 
\ BR.4- 

provided p <. Indeed, if h: IR N - R is a convex function such that fBR+. h(Du)dx 
< +, using the Jensen inequality it is possible to estimate 

< f 
f

h(Du)dx =
 "IR 

h 
	

Du(y)(x - )d) dx 
BR 	B(z,e) 

f	h(Du(y))(x - y) 
R B(x,e) 

=

 

4" 4  h(Du(y))ç(x -y) dydx 
R+. 

=1 J BR+ BR 

h(Du)dx. 
BR+ 

Therefore, applying the previous argument to the convex function 

Z	\/E + z 2 log (i + \/C + 1zl2) 

we obtain

113 R 

V"T+ Due l 2 log (1 + e + lDul 2 ) dx 

IBR+. 

that is the inequality used to derive (3.15). 
We remark that p < f and that the constants e and 0 still do not depend on e and 

a. In a similar way, by using the minimality of v, we deduce that 

(Dv)(BR )	 f(Dv)dx cI	f(Du)dx + 1 + o(e),	(3.16) IB R	 R+. 

therefore, by (3.15) and (3.16) and using Proposition 2.1, we may assume that 

ye
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weakly in W"(B R ,R') and weakly* in W"(B,R ' ). Letting e - 0 in (3.15) we 
therefore easily obtain

sup IDwI <c UP
f(Du)dx + 1) 

Now we conclude the proof showing that actually 

U W. (3.17) 

Using the minimality of v and the Jensen inequality in the way exposed above we 
obtain

1B  f(Dv)dx	f(Dv)dx 

f(Du)dx 

JB	{Du2 log (1 + e + Du I 2 ) dx + o(e) 

I
VE + IDuI 2 log (1 + e + 1Du1 2 ) dx + o(E). 

BR+. 

By the lower semicontinuity of the convex functional v - fBR f(Dv) dx with respect to 
the weak convergence of the gradients in V we have, letting E —i 0, 

I
f (Dw) dx <liminfJ 

BR	 C-0 BR 

<lim
JBR+C

e + IDuI 2 log (1 +	+ IDuI 2 ) dx + o(e) 
cO 

= J f(Du)dx. 

Finally, the minimality of u implies 

JB R 
f(Dw) dx = 1B  f(Du) dx. 

The strict convexity off and the fact that u - w E WI. (BR ,RN ) implies (3.17). This 
concludes the proof of Theorem 3.11 

Using the previous result we are now able to prove C'°-regularity of minimizers of 
.T. Indeed, we come to the proof of the main result of the paper: 

Proof of Theorem 2.1. We keep the notation used in the proof of Theorem 3.1. 
Let us consider the C 2 -convex function 4' : R - R defined by 

= (max{(t - 4M2),0})3.
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where M > 0 is such that SUPB, I Dv, I :5 M (p < ). We consider the functional 

= JBP J(Dw)dx	where /e(z) = f(z) + $( 1z12). 

Easy computation show that there is a constant ii = u(M) < 00 ( in particular, ji is 
independent of e) such that

v ' 1 z 1 6 <J(z) <u(1 + 1z16) 

V_ 1(l + 1 z 1 4 ) 1 A l 2	(D2 !(z) A , A) <v(1 + 1z14)1Al2	
(3.18) 

for any z, A E RnN. Note anyway that the ratio between the highest and the lowest 
eigenvalue of the matrix D 2f€ ( z) is bounded by the constant zi2 V2 (M) depending on 
M but independent of E. Moreover, we observe that L(z) = fe(z) whenever Izi <2M. 
Then, for any V E C(BP, R N ) we have 

'B, 
Dh(Dv)Dccdx = fB, D fc(Dve)Dc dx = 0 

since ye is a minimizer of .rc. Therefore, v, also solves the Euler system of .F and so is 
also a local minimizer for .T (recall that .T is a strictly convex functional). Keeping into 
account the growth and ellipticity conditions (3.18) we have that the standard regularity 
theory for non-degenerate functionals having the structure as in (3.3) applies for Ve (see 
[9] and the references quoted therein), and it follows that there exist c c(M) < 00 

and a a(M) > 0 such that 

IDv(x) - Dv (y ) I cx -	 ( 3.19) 
whenever x, y E BL. Now using the Ascoli-Arzelà Theorem, we may let e - 0 in (3.19) 
obtaining IDu(x) - Du (y) I c Ix — y I' in BL. From this inequality the assertion of the 
theorem easily follows by a standard covering argument! 

Remark. The approximation method used in order to prove Theorem 3.1 is flexible 
enough to allow more applications. In particular, it can be applied to integral functionals 
with more general growth assumptions. Results in this direction are in preparation and 
will appear later. 

4. The scalar case 
In this section we turn our attention to the scalar case, i.e. we consider u : ci —+ R, and 
a more general class of integral functionals. 

We shall consider variational integrals of the type 

F(u,cl) = jf(Du)dx 

where ci C R" and the energy density f satisfies the growth and convexity conditions 
stated in (2.2). So we are going to prove C' , '-regularity in the interior of ci, for local 
minimizers of F. The scheme of the proof is the same of Section 3, so we will follow it 
giving only the relevant modifications. 

We start with the L'-bound:
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Theorem 4.1. Let u E W,'(cl) be a local minimizer of the functional F. Then 
Oc Du is locally bounded. Moreover, if B R CC 1 and B CC BR with p < f, there exist 

constants c = c(n, L, ', R) and 6 = 3(n) such that 

(JaR
sup Dul c 	f(Du)dx + 1) .	 (4.1) 
B,  

Proof. Step 1: We consider here a simpler approximation. We shall put 

f(z) = 1(z) + a(1 + IzI') 

with the same choice of q as in Theorem 3.1. Also, this time f has polynomial growth 
of order q and the ellipticity and growth conditions 

-1	 2	___________	2 
C 7(1+z)2 + ____ A 

vIzl2 

< (D2f0(z)A,A)	 (4.2) 

i + Izl2)i + log(' + IZD] 
A l 2 [  

are verified whenever z, A E R" and where c is independent of a. We then consider the 
functionals =

 JB'
fa(DW)d, 

5 
where BR cc Q, and a local minimizer v E W"(BR) of .F,. Also, this time we will 
derive a priori estimates for the L°°-norm of Dv. Moreover, let us set 

H := 1 + lDvl2 

and choose, for h small enough, as for the proof of Theorem 3.1, the test function 
= L_ h ,(?1 2 HDsv), with y > 0 for the Euler equation of .Fa: 

JBR 
Dz,fa( Dv ) D i pdx = 0. 

We remark that this choice is admissible because also in this case the function v enjoys 
the same regularity properties as described in (3.5) (see, for instance, [2] or [10: Chapter 
81 for a simple proof). The same computation of Theorem 3.1/Step 1 give 

IB

+ 77 27H' D ( l Dv I 2 )Dv + 2 HD13 v] dx = 0 

so that, proceeding as in Theorem 3.1, we arrive at the estimate 

IB R

+ IBR	

fa(Dv)DjsvDj(lDvl2)D3vn12 H' dx	(4.3) 

<c 
JBR 

Dz,zj
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That is the analogous of (3.8) in this case. The first and the last term in (4.3) can be 
estimated just as the corresponding terms in (3.8). Indeed, 

JBR Dzz1fcy(Dv)DjsvDisvi2Hdx >	

'BR 17
2H_+ID2vI2dx 

and

'B 
Dzzfg(Dv)DjiiDsvDii1D,vHdx 

Cf IDrI 2 H	[log(1 + Dv i) + aH]dx

while for the second one we have, in a simpler way, 

'BR	
f0(Dv)D3vD(iDvi2)D,vi2 H dx 

f
'BR 

as in Theorem 3.1. If we connect the previous estimates we finally arrive at 

( + J
BR 

H_iD(iDvi2)i22dx 

C / IThi 2H	[log(1 + Dv i) +	+ 1] dx 
J BR 

that is just (3.9) in the scalar case. 
From this point on, the iteration works exactly as in Theorem 3.1 and the whole 

procedure, using growth condition (2.2), leads us to get for Dv the a priori bound 

sup I Dvi (I H[log(1 +IDv I)+ uH	+ l]dx) 
B	 R R 

<cUBR  
(fa(Dv )+ 1 )dx

) 

with p < j, c c(n, L, ii, R) and /3 0(n) but independent of a and v. 

Step 2: Approximation. Also, this time we follow the proof of Theorem 3.1. We 
define yea E tz + W'(BR) as the unique solution to 

	

mm { 
fBR 

ía	dx: to E u + Wd(BR)}
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with BR CC Q (as usual, we denote by u a sequence of smooth functions obtained 
mollifying u). Let us define now a = a(e), v and f in a similar fashion to Theorem 
3.1/Step 3. By the minimality of ye and the Jensen inequality we obtain 

fl 

URsup Dv€I c 	(f(Dv ) + 1)dx 
Bp  

UR f(Du)dx + i) 

(JBR
(4.4) 

cf(Du)dx + 1 + a(e) 
JBR
 (1 + IDUcI2)dX) 

<c
 (J

f(Du)dx + 1+0(e)). BR+ 
Then we have also, using (2.2), 

(Dve)(BR) <cIBR+c f(Du)dx + 1 +o(e) 

and, as before, v - w E u + W"(BR) weakly in W"(B) and weakly in W"(B). 
From these facts and the proof of Theorem 3.1 easily 

UBIRsupDwIc 	f(Du)dx+1 B  
follows where e depends only of n, L, v and R. Finally, it can be proved that w = u 
exactly as in Theorem 3.1 I 

Also, this time the upper bound for Dv implies C' , '-regularity in the interior of Q. 
Indeed, we are now able to prove Theorem 2.2. 

Proof of Theorem 2.2. We consider again the approximating sequence v con-
structed in Step 3 of the proof of Theorem 4.1 and keep the notations introduced there. 
Under our hypotheses, the local minimizer v of .1 is as regular as in (3.5) and, in 
particular (see again [1: Lemma 2.5]), turns out to be W(cl), and so, differentiating 
the Euler equation of T in a way similar to the one in Theorem 3.1/Step 1, we obtain 
the second variation equation for J 

J	= 
satisfied for any p E C000(B) and s = 1,. . . ,n. We pick M < oo in such a way that 
sup 8  JDv, I < M (p < f) are satisfied for any e > 0 (see (4.4)). With this notation 
we observe that, if we set a(x) = D ,f(Dv (x)) for x E B,,, then the ellipticity and 
growth assumptions

IAI	a7j (x)Ai j	L2 1-M 
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are satisfied for each A € IR". Note that also this time the ratio between the highest 
and the lowest eigenvalue of the matrix a7, is independent of e and only depends on ii , L 
and M.Moreover, the coefficients a are bounded (independently of e) and measurable 
and the function Dv, is a weak solution of the elliptic equation -div (aeDu) = 0, for 
each s € 11,.. . , n}. So by the De Giorgi-Nash-Moser Theorem we have that there exist 
two constants E < oo and a E (0, 1) depending of n, M, L and ii but not on e, such that 

D3v(x)-D3 v(y)j	Ix_yI a	 (4.5) 
whenever s = 1,...,ri, E >0 and x,y € B. Letting e -+0 in (4.5) as done in the proof 
of Theorem 2.2, we obtain ID,u(x)—Dju(y) <SIx —yI° for each s € {1,...,n}. The 
assertion of Theorem 4.2 follows by a standard covering argument U 
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