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Oscillations of Certain
Delay Integro-Differential Equations

Y. H. Wang and B. G. Zhang

Abstract. In this paper, the oscillation of solutions of certain delay integro-differential systems
are considered. Sufficient conditions for the non-existence of non-oscillatory solutions for these
systems are obtained. Comparison results are obtained also.
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1. Introduction

Recently the oscillation in systems of functional-differential equations has received at-
tention in the literature [1 - 6]. In this paper we consider the delay integro-differential
system

zﬁ(t)+Z/D;,j(t—s)mj(s—T)ds =0 =12,...,n) 1)
Jj=1 0

and

2(t) + Z/D.»,,(t —S)ri(s—r)ds = fi(t)  (i=1,2,...,n) )

Jj=1 0

with initial condition
z(s) =4é(s)  (s€[-7,0]) (3)
where 7 > 0, D; ; € C(R4+,R4) and ¢ € C([—7,0]). System (1) with n = 1 has been

considered in [7].

By a solution of (1) - (3) we mean a vector z = (z1,...,z,)7, which is continuous
on [~7,00) and continuously differentiable and satisfies (1) for ¢t > 0 and such that (3)
holds. By a solution of (1) on [T,00) we mean a vector £ € R" which is continuous on
[—7,00) and continuously differentiable and satisfies (1) for t > T. A vector z € R" is
said to be non-oscillatory, if z;(t) # 0 on [-7,00) (i = 1,2,...,n), and to be positive
if every component of z is positive on [—7, c0).
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We will reduce the non-existence of non-oscillatory solutions of (1) to the same for
the scalar integro-differential inequality

Y1) + / D(t - s)y(s — 7)ds < 0 (@)

where

Dy (2) forn=1
by = {minlSan[Djj(t) ST D@ forn>1 (E20)

By a solution of (4) on [T, 00) we mean a function y € C([—7,00),R) N C([T, 00), R)
which satisfies (4) on [T, 00) where T > 0. A solution y of (4) is called posstive, if y > 0
on [—1,+0o0).

2. Main results

Let us start with the following theorem.

- Theorem 1. If (4) has no positive solutions, then (1) has no non-oscillatory solu-
tions.

Proof. Suppose the contrary, let x be a non-oscillatory solution of (1) with z;(t) #
0 (t 2 —-7;2 = 1,2,...,n) and set §; = % Then w = (wy,wz,...,w,)T =
(6121, ..,6n0z,)T satisfies wi(t) >0 (¢t > —7) and

wi(t) + Zn: / D; j(t — s)ywj(s —T)ds =0 (t=0) (5)
Jj=1 0

where D; ; = %}FD.‘J. Clearly, D;; = D;; and |D; ;| = |D; ;| (i # 7). Define y(t) =
Y, wi(t) >0 (¢ > —7). Summing (5), we have

0= Zw:(t) + Z E / D; (t - s)w;(s - 7)ds

=1 j=17

=y'(t) + Z/Dj,j(t —s)wj(s —1)ds + E ./D.',j(t —s)wj(s —7)ds

=19 Lj=1,i#)
n t n

>y0+Y [ (D,,,.(t_s)_ ) |Di,,<t—s)|)w,~<s—r)ds
=13 Li=li

> y(t) + / D(t — s)y(s — 7)ds

which is a contradiction B
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Theorem 2. Assume that Di(t) Z0 on'[0,7]. If

2t + Z/D.,j(z —S)zi(s—T)ds <0 (i=1,2,...,n) 6)
=17

has a positive solution z(t) on [—7,00), then (1) has a positive solution z(t) with 0 <
z(t) < z(t) (t>0) and lim;—~o z(t) = 0.

Proof. Define the set
X = {:z € C([~7,00),R™)|0 < z(t) < 2(t) (¢ > —7), z(t) >0 on [T, 0]}

and an operator S on X by

(SI,)([) =
Z TO}D.‘,,‘(u — s)zj(s — 7)dsdu ift>0

=1t
n

(. :fong,j(u —s)z(s — T)dsdu) (1 - 1:;1):.'—8% + z,‘(t)]él if —r<t<0

J=1

(7

for i =1,2,...,n. Clearly, (§z;)(t) < zi(t) (t > —7) and (Sz:)(t) > 0 on [-7,0], i.e.
SX C X. Define the sequences {ym(t)},ym € R" by

Yo =2
Ym = Sym-1 (m € N).

Then

Yo2y1 2... 2ym(t) 2 ... (t>-7)
and hence limm—.co ym(t) = y(t) (t > —7) exists. It is easy to see that y(t) is a solution
of (1) for ¢ > 0 and y(t) < 2(t). We claim that y(t) > 0 (t > 0). From (7) and the
condition D;(t) # 0 on [0, 7] we have y(t) > 0 on [—7,0]. If £ is the first zero of y; on
[0,00), i.e. yi(t) >0 (0 <t <€) and y;(€) =0, then

0 = yi(¢€)

u

/Di,,'(u - 8)y,(s — 7)dsdu

3

=1

-

[\ I
m\g
B me— g

/D.','(u - 8)yi(s — 7)dsdu
0

which implies that fou D; i(u—s)yi(s—7)ds = 0, which contradicts the fact that Di;#£0
on (0, 7] and yi(s) >0 (s € [-7,0]). This contradiction proves the Theorem W
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From Theorem 2 we can derive a comparison theorem.

Corollary 1. If D, ;(t) < E; j(t) (t>0) and
n t
Yi() + Z/E.,,»(z —Sy(s—T)ds=0 (i=1,2,...,n)
j=1 0

has a positive solution y(t), then (1) has a positive solution z(t) with z(t) < y(t).

Proof. In fact, we have
n t n t
HOEDY / D, ;(t ~ s)y;(t — T)ds < yi(t) + Z/E,-,;(t = s)y;(t—7)ds =0.
=13 =13

By Theorem 2, (1) has a positive solution il

Corollary 2. Let d(t) = max;<i<n Z?___l D, (t). If there ezists A > 0 such that
A4 /d(s)e’\’ds <0,
0

then system (1) has a positive solution x with

0<zi(t) Se ™ (t>20,:=1,2,...,n). (8)
Proof. In fact, let z;(t) =e™* (¢ =1,2,...,n). Then

Zi(t) + Z / D; i(t —s)zj(s — T)ds

j=1 0

= zj(t) + Z/D;,,'(s)z,'(t —s—71)ds

Jj=1 0
n t
=M [ -2+ Z e / D; ;(s)e** dsJ
Jj=1 0

t

<e M [ —A4e / d(s)e'\’ds]

0
<o

By Theorem 2, (1) has a solution z, which satisfies (8) B
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Now we want to show a sufficient condition for the non-existence of positive solutions
of (4). Let

Dy(t) = /]D(u—s)dsdu

t—r
¢

D,(t) = / D(u ~ s)Dy,_1(s)dsdu (n>2)
t=r 0
and .
po = min Du(t)

Pk = Da(t) (k> 1).

min
knr<t<(k+1)nr
Lemma 1. Assume that )
Da(t) 2 —- (9
en
Let y(t) be a positive solution of (4). Then
t— .
Y= 1)  germ, (10)

y(?)
Proof. Integrating (4), we have

y(t) -yt —7)+ / /D(u —s)y(s — 7)dsdu < 0. (11)

t—-r 0

Thus

yit—71)> / /uD(u — s)y(s — 7)dsdu
2y(t—1) j ]D(u —~ s)dsdu (42

t—r 0
= Dy(t)y(t — 7).
Substituting (12) into (11) we obtain y(t — 7) > D2(t)y(t — 7). In general, we have
y(t = 7) > y(t — 7)Da(t). (13)
Assumption (9) implies that there exists t* € [t — 7,t] such that

¢ u t u
' 1
/ /D(u — 8)Dy—y(8)dsdu > % and //D(u —8)Dy—y(s)dsdu > S

t—7 0 t* 0
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Integrating (4), we have

vy =3t =)+ [ [ D= ouls - rydsdu <o (14)

In view of (13) and (14), we obtain

¢

y(t—-7)> / D(u — s)y(s — 7)dsdu
t—7 0

t*

> [ / D(u = 5)Ducis(s)y(s — 7) dsdu

t—-r 0
Syt -7)
- 2e"
Similarly, we have y(t*) > % Combining the above two inequalities we have

“;;—;;Z < (2e™)? and the proof is complete il

Lemma 2. Assume that (9) holds. Let y(t) be a positive solution of (4) and define

M= min M and N = min M
n(m—1)r<t<mnr y(t) ) ) mnr<t<(m+1)nr y(t)
Then M > 1 and
N > exp(e" ' Mppn) > exp (%) > M. (15)

Proof. M > 1 is obvious. Dividing (4) by y(t) and integrating it we have

v t s
y(t— 1) / 1 /
——— > ex —— | D(s — u)y(u — 7) duds. 16
S 2o [ o [ D= w(u =) (16)
t—r 0
Let
d = 1 n
k (mn+k—l)rzlsull$(mn+k)r{D (t)}
Nk = min y(t — T)
(matk—1)r<t<(mnsk)r  y(t)

B ) y(t—1)
1= min
(m=1)n4+l)r<t<(mn+l)r y(t)

for k,1=1,2,...,n. By definition, p, < dy (k=1,2,...,n)and N = miny <k<n Ni.
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For t € [mn7,(mn + 1)7], from (16) and the inequality e* > ez for z > 0, we have

y(t(-;)‘r) exp / /D(sl _u)y(u )d ds;

y(u)
> exp‘/: O/D(31 — u)exp / /D(s; —uy) (u(l 5 )dulds'zdudsl
> exp( ‘/r b/D(sl —u) / /D(sz —ul)y(u(1 ) )dU)dSQdudSI)
>-
> exp (e"_’ j]D(s; - u) /u 7D(sz —uy)...
/ ]"D(s,, Un-1) (;‘("u"‘ :) Y(nm1 = 7) g s .dudsl>

Up—_2~7 0

> exp <e"_’/t]}D(s]—u)/‘t]zD(sz—ug)...

t—-7 0 u—r 0
Un-2 ( )
YSn — T
/ y(sn) /D(s" Un—1)dun-_1ds, .. dudsl>
Up-2—T

where s,, € [(m — 1)n7,(mn + 1)7]. In view of the inequality exp(%) > z for z # e we

have
N, > exp (e"_l min{M, N, )dl)

> exp (¢" 7! min(M, Ny )pm)
> exp (mm(M, Nl))

€

> min(M, Ny).
Hence min(M, N;) = M. Therefore

M
Ny > exp(e” 'Mppm) > exp (—) >M
e
and M; > min(M, N,) > M. Similar to the above, we can prove that

Ny > exp(e" "' Mpm) > exp (-Aei) >M (k=1,2,...,n).
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Therefore

M
= > n-1 >
N = min Ni>exp(e"™ Mpn) 2 exp (=) 2 M

and the proof is complete B

Theorem 3. Assume that (9) holds and

i(?i—_

(17)

O
N’
I
8

—

Then (4) has no positive solutions.

Proof. Suppose the contrary, let y(t) be a positive solution of (4). Define the
sequence {N;} by

_ t —
Ni = min y(t—7) (i >0).
(k+i=1)nr<t<(k+inr  y(t)

By Lemma 2, we have N; > 1 and
Nit1 2 exp(e” ™ Nipes)
2 e (%) (5 - 1)
()

> N.’.

(18)

Therefore {N;} is increasing. On the other hand, by Lemma 1, {N;} is bounded. Hence
lim;_.oo Ni = N exists. From the last inequality, we have N > exp(8)> Nif N #e
which implies that N = e. From (18),

Nig1 2 Ni(1+ €™ Ni(payi — ™).

Hence
Nigy — Ni 2 e" ' Ni(pryi—e7")
and
Nizz = Nigy 2 "7 VN2 (Deyisr — €77) > "' N (prgigr — e ™).

Summing up the above inequality, we get

0o
e—N; > cn—lN'? Z(pk+j —e ")

i=i

for some k, which contradicts (17) B
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Corollary 3. If there ezists a positive integer n such that
_ 1
llmgf D,(t) > o (19)

then (4) has no positive solutions.

In fact, (19) implies (17). Combining Theorem 1 and Corollary 3 we have the
following result.

Corollary 4. If (19) holds, then (1) has no non-oscillatory solutions.
Now we consider the forced system (2).

Theorem 4. Let F(t) = Y I_, 6 fi(t) with & = £1 and F(t) = h'(t), hy(t) =
max(h(t),0) £ 0,-h_(t) = max(—h(t),0) # 0, and

/ D(t — s)hy(s — 7)dsdt = oo. (20)

Then (2) has no non-oscillatory solutions.

Proof. Suppose the contrary, let {z;(t)} (: = 1,2,...,n) be a non-oscillatory
solution of (2). Then we have

n

§izi(t) + Z/Di.j(t —s)b;ixj(s —1)ds = 6 fi(t)

Jj=1 0
wﬁ(t) + Z / D, ;(t - 8)6,'6]'_11‘0)'(3 — 7)ds = §; fi(1).
J=1 0

That is,
wi(t) + Z / D j(t — s)wj(s — 7)ds = & fi(t).
i=1 0

Summing the above equation, we obtain

Z wi(t) + Z / D; ;D; i(t — s)wj(s — 7)ds
=1 j=1 °

s /D,»,,»(t — s)w;(s — 7)ds = Z;&ifi(t).

=it g
Hence

v+ 3 [(Bustt=9= T 1Duste =M )us(s =r)ds < 380

i,j=1,i7#3 i=1
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and hence
y'(t) + /D(t —s)y(s — 7)ds < F(t).
0
Thus,

(y(t) = h(2)) + /D(t - s)y(s - 7)ds <0. (21)

If y(t) > 0 eventually, then y(t) — h(t) is non-increasing. There are two possible cases:
(1) y(t) — h(¢) £ 0 eventually

and
(i1) y(t) — h(t) > 0 eventually.

For the case (i), y(t) < h(t) eventually, which contradicts the positivity of y. Therefore,
the case (ii) holds. Hence y(t) > h4(t) eventually. From this and (21), we obtain

t

(y(t) — h(t)) + /D(t —s)hy(s—7)ds <0. (22)
0

This together with condition (20) lead to a contradiction and the proof is completed B
Remark 1. (2) has no positive solution, if (20) holds, where F(t) = 3", fi(t).
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