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On the Hubert Inequality
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Abstract. It is shown that the Hilbert inequality for double series can be improved by in-

	

troducing the positive real number 1 r(j	+	where s(x) = >I'	'- and IxII2 
x, (x = a, b). The coefficient ir of the classical Hilbert inequality is proved not to be the 

best possible if h a il or il b il is finite. A similar result for the Hubert integral inequality is also 
proved. 
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1. Introduction 

Let (a 0 ) 0 > i and (b)0 > 1 be arbitrary real sequences. Then the Hubert inequality for 
double series can be written as

ambn 00	 2	00	00

' 

\ 
te rn+n)	
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m,n1	 "n=1	"n=1  

Additionally,
00	 2	00	00 
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(2) 
Tn—n

	a 2) 

"T11	'n=1 

is also called Hubert inequality. Furthermore, if f, g E L2 (R) where R = (0, ), then 
the inequality analogous to (1) 

A f(s)g(i) 
+	

dsdt)	2( [ f2(t)dt) (1 g2(t)dt)	(3) 
\ J1R \ -'+ 

is called the Hubert integral inequality. The constant ir contained in these inequalities, 
especially in (1), was proved to be the best possible (see [3]) . However, if 0 < E00 a < 
: or 0 < b 2 < oo, then we can select a number r > 0 such that the right-hand 

side of (1) can be replaced by 

	

7r 2(l — r)	a 2)	b 2), 
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i.e. an improvement of (1) will be obtained. Similarly, an improvement of (3) will be 
established. Namely, the right-hand side of (3) can be written as 

7r2(1 - R)(j f2(i)dt) (L+ 92(t)di) 

with a number R > 0. The main purpose of the present paper is to prove the existence 
of such numbers r and R and to find expressions for them. 

We first introduce some notations and functions. 
If a and 6 are elements of an inner product space E, then its inner product is denoted 

by (a,8) and the norm of a is given by 11all =	Further, if a = ( an)n>i and

b = (b0 )> i are two real sequences, then its inner product (a, b) and the norm h a il of a 
are defined by

(a, b) 
CO

 an bn	and	h a ll =	 (4) 

Analogously, for functions f, g € L2 (a, b) its inner product (f, g) and the norm 11 f ii of 
f are defined by

= la

b 

f(i)g(t) di	and	hf ii = (
j6 

12 (1) di) .	(5), 

We next introduce a binary quadratic form F( . ,.) defined by 

F(x, y) = hlah1 2 x 2 - 2(a, fi)xy + 1I/11
2y2	 (6)


where x = ( 0, -y) and y = (a, -y) for E E. We further denote 

G(a,/3,-y) = F((/3,7),(a,7)).	 (7) 

The results involve G(a, /3, 7) with a and /3 specified beforehand, and 'y to be chosen 
for maximum felicity. It is obvious that if -y is orthogonal to both a and /3, then 
G(a,/3,) = 0. It will turn out that if (a, 7 )2

 + (/3,7)2 > 0 (see Lemma 1). Therefore, 
it is shrewd in every case to choose y not orthogonal to both a and 3. 

For convenience, we introduce yet the notations 

00
ambn	 00	 00 

u(a, b) =	+ ' v(a, b) =	ambn	 xn 
rn—n	

s(x)=-
m,n=1	 m.n=l 

We shall frequently use these notations below.
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2. Lemmas 

To prove our theorems, we need the following results. 
Lemma 1. Let G(a,13,-y) be defined as in (7). If a,/3 e E are linearly independent 

and (a,7) 2 + (,7)2 > 0, then G(a,$,7) > 0. 

Lemma 2. Let G(a,13,-y) be defined as defined in (7). If a,8 E E are linearly 
dependent, then G(a, /3, -y) = 0. 

Lemma 3. Let G(a,13,-y) be defined as defined in (7). If a,8 E E are arbitrary 
and y E E with iM = 1, then 

	

(a , 6) 2 < 11a11 2 111311 2 —G(a,fl,y),	 (8)


and equality holds in (8) if and only if a, /3, -y are linearly dependent. 

The proofs of Lemmas 1 and 2 have been given in our previous paper [1]. Lemma 3 
is actually a sharpening of the Cauchy-Schwarz inequality. This result has been given 
also in the paper [1], and in (5]. Hence the proofs of all lemmas are omitted. 

Using the inner product defined by (5) and Lemma 3, we have the following result. 

Corollary 1. If f,g E L2 (a,b), then 

(f )2
	11111 2 11 9 11 2 - F(x, y)	 (9) 

where F(x,y) = 11f11 2x2 - 2(f, g )xy +11 g 1 j2y2 with  =(g,y) and  = (f, -y), E L2(a,b) 
with IH = 1. 

3. Main results 

In this section we will combine the two forms (1) and (2) of the Hubert inequality into 
one similar form, and make inequalities (1) - (3) relaize significant improvements. The 
following theorems are the main results in this paper. 

Theorem 1. If a = (an ) and b = (ba ) are real sequences with non-negative terms, 
with 0 < h a il < oo or 0 < ii b iI <, then 

u 2 (a, b) + V2 (a, b) < 7r 2 (1 - r )ii a ii 2 11 b 11 2	 (10) 

	

_1( 32 (a)	2(5) 
where r =	+ 

Proof. Let us define two real functions 1, 9 : (0,27r) - R by 

00	 00 

	

f(t) =	an sin(nt)	and	g(t) = >bnV'cos(nt). 

It is easily to deduce that, with the notations of the space L2 (0, 27r), 

iu(a, b) + v(a, b)i = i(f g )I .	 ( 11)
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According to (5) and (6) we have (f,g)2 < 11111 2 11 9 11 2 - F(x,y) where 111112 = 7r2llaI12, 11 9 11 2 = 2 II b Il 2 and 

	

F(x, 1/) = Ill ll x - 2(f, g)xy + 11g112y2 > (111h z - II g lk')2 =	- hIbIIy)2. 

Hence
(f	

)2	
11 a 1I 2 1I b 11 2 - .2(hIaII - II b II y )2	 (12) 

where x = (g, y) and y = (f,), -y E L2 (0, 27r) with 11711 = 1. We can choose = 
Then z = 0 and y = — v'> = —V's(a). Hence 

(Il a lI x - hI b hI y ) 2 = 2 11 b 11 2s2 ( a ) .	 (13) 

In virtue of (11) - (13) we obtain 

Iu(a, b) + v(a, b)1 2	2 II a II 2 II b hI 2 - 2 11 b 11 2s2 ( a ) .	 (14) 

Since the vectors f, g, are linearly independent, by Lemma 3, it is impossible to take 
equality in (14). Hence we have 

lu(a, b) + v(a, b)1 2 < ir2 lI a hI 2 II b II 2 -211bII2s2(a).	 (15) 

Notice that u(b,a) = u(a,b) and v(b,a) = —v(a,b). Interchanging a and b in (11), 
similarly we obtain

Iu(a, b) - v(a, b)12 < ir 11 a 11 2 11 b 11 2 - 2 11 a 11 2s2 ( b) .	 (16) 

Adding (15) and (16), inequality (10) is yielded after some simplifications. Thus the 
proof of the theorem is completed 

Remark. Since a = (an) and b = (ba ) are real sequences with non-negative terms, 
with 0 < liall < oo or 0 < II b II < c, it follows that r > 0. Hence inequality (10) is a 
significant refinement of the paper [4]. 

Corollary 2. If a (an) is a real sequence with non-negative terms and 0 < h a ll < 
, then

u2(a, a) + V2 (a, a) < 7r 2 (1 - ) II a II 4	 (17) 

where F — 2 32(a) -	
110112 

If v2 (a, b) in (10) is replaced by 0, then we have the following 
Corollary 3. With the assumptions of Theorem 1, then 

u2(a, b) < 7r2 (1 - r)IlahI2 11 b 11 2	 (18) 

where r = 
( 32

W+ j). 
We see from the above Remark that inequality (18) is a significant improvement of 

(1). According to Corollary 2 we obtain at once the following
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Corollary 4. If a = (an ) is a real sequence with non-negative terms and 0 < h a il < 
, then

u2(a,a) <	-	)ll a ll 4 (19) 
-2	32(a) where r 

= 

Similarly, we can establish an improvement of the Hilbert integral inequality. For 
this we need the integral

e(t)_—fds	(teR) 

called exponential integral with parameter t. 
Theorem 2. Let f,g E L 2 (IR+) be positive. Then 

Af(s)g(t) dsdi)	<2(	- (20) 

where R 
=	- j)2 with x = (24 4 (g,e) and y = (2 7r)(f,e'), e being the 

exponential integral with parameter. 

Proof. Define functions F and G by 

F(s t) =	f(s)	(4	and	G(s t) =	g(t)	(t* 
(s+t)4 \t/	 (s+t)s \sJ 

Using inequality (9) we have in L2(R3) 

ARf(s)g(t) dsdt
	 (F G)2 

!^ . 11 F ii 2 ii G lI 2 - F(x, i,,) (21) 

11 F hl 2 1l G 1i 2 - (lIF hi x - llGhiy)2 

where x = (G, -y) and y = (F, 7), 7 E L2 (1R) with 11711 = 1. We can choose 

2	e3	s 
7(s, t) 

= ()	(s + t) 
Hence we get

X = ()(g,e)	and	y = (27r)4(f,e). (22) 
It is easy to deduce that 

hi F li 2 = 7Tihfhl 2	and	uGh 2 = 1rh1 9 hi 2 . (23) 
Substituting (22) and (23) into (21) we obtain 

(F,G)2	2 lhf 11 2 11 9 11 2 - 7r (hlf li x - II g Iki) 2. (24) 

Since F, G,7 are linearly independent, it is impossible to have equality in (24). Con-
sequently, inequality (20) is obtained from (24) after some simplifications.	Thus the 
theorem is proved I
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Corollary 5. If  e L2 (R+) is positive, then 

A f(s)f(t) 
dsdt 

2 

) <2( - ) IIfU4 s+t 

where i 
=1_ (,_,,)2 

with x = ( ) e) and  = (2r)(f,e), e being the exponential 
integral with parameter. 

Obviously, this is an immediate consequence of Theorem 2. 

4. Conclusions 

Some classical reasults concerning the Hubert inequality show that the constant ir in 
(1) is the best possible (see, i.e., [1, 2, 5, 6]). We see from (18) that inequality in (1) 
can be obtained only if r = 0. However, to change r into 0, it is necessary to take both 

[ a ll and Il b Il infinite. Therefore, generally, the constant ir in (1) is not the best possible 
because the constant r contained in (18) is not equal to 0 if h a lt or hi b hi is finite. In other 
words, the factor ir in (1) can be decreased if 0 < h a il < oo or 0 < hl b il < oo. 

Similarly, we see from (20) that strong inequality in (3) can be obtained only if 
R = 0. In other words, the factor ir in (3) is also not the best possible if 11111 or 11g1l is 
finite. 
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Abstract. Using elementary approach and mathematical induction, several recursion formulae 
for Sk(n) = m" are presented which show that Sk+I(n) could be obtained from Sk(n). 
A method and a formula of calculating Bernoulli numbers are proposed. 
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1. Introduction 
By definition and geometric meanings of the definite integral, it is well-known that the 
area under the curve y = x over the closed interval (0, 1] equals 

1 ( mk	1 /n	' 
Jim V' - -) = Jim  n-.oc> L_... ,,....00nk+I .	I 

M=1	 \m=I / 

To complete the solution of this and many similar problems, it is then necessary to find 
the sums

Sk(n)=>712k.	 (1) 

For small integer k > 0, the sums always appear in many calculus courses.. For example, 

S7 (n) =2 + 1)2 (3n4 + 6n3 - n2 - 4n + 2) 

and the like [6: p. 11]. Such sums are usually proved by induction or derived from 
simple geometric pictures. For arbitrary k, unfortunately, the standard closed forms 
involve Bernoulli numbers or Stirling numbers of the second kind [4: p. 1191, which 
come from reasonably complicated recurrence relations. 

H. J. Schultz [10] derived a procedure for finding Sk(fl), k a positive integer, that 
is easy to remember, arises naturally, and can be used with very little background. 
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However, he only illustrated the method by finding S6 (n). According to [10], if one 
wants to compute, in general, 

	

Sk (rl)=Ak+ I fl+...+AIfl+AO ,	 ( 2) 

a system of k + 1 equations 

k+1
(_1) i ()A=0	(0j k) 

i=j+I 

must be solved. 
Let B be the n-th Bernoulli number defined in [6: p. 6481 and [9: p. 6321 by 

n 

ez	B—	(l x i <2ir).	 (3) _1
nrO 

Then A 1 obtained from the formula for Sk(n) is the k-th Bernoulli number Bk (for details 
see [11: p. 320)). It is noted that the concept of Bernoulli polynomial is generalized in 
[8] by the second author. 

There are many inequalities related to the sum Sa(n) =ma, where a is an 
arbitrary real number. For instance, 

na-fl <(a + 1)Sa(n) <(n + 1)'	- 1


(a + 1)[S0 (ri) - 1] <na+l - 1 <(a + 1)S0 (n - 1)


	

(n + 1)' - n1 <(a + 1)[S0 (n) - S(n —1)] <n	- (n - 1)1 

for a > 0, a < —1 and —1 < a < 0, respectively. The proofs of these inequalities could 
be found in [7: pp. 84 - 85]. 

In [5, 12, 13] the relationships between Bernoulli numbers and the sum (1) were also 
studied using the Euler-Maclaurin formula and other devices. It is worth noting that 
a fascinating account of the early history of the problem above and standard recursion 
formulas for Sk(n) as originally stated by Pascal are given in [3]. 

In this article, we prove that Sk(n) is a (k + 1)-th degree polynomial for n with 
constant term 0 (that is, formula (2) is valid) and 

Sk+1(72)(k+1)(fl2+fl1+...+ A2 fl 3 + 
A1 
-_n 2 )+b i n	(4) 

k+1 

where

	

b1={? k+'
	for odd k>0.


for even k> 0 
'L.i=1 i+I 

Formula (4) shows that we can use the coefficients A1 (1 < j < k + 1) in Sk(n) to 
get the expression of Sk+i(n). In fact, it also gives a method of computing Bernoulli 
numbers Bk+I. At last, other formulae for calculating Bernoulli numbers and m 
are given.
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2. Lemmas 

To obtain our main results, the following lemmas are necessary. Moreover, these lemmas 
also give some recursion formulae for Sk(n). 

Lemma 1. For any integers k > 0 and n > 0, we have 

k 

	

(1 +n)k+1 = i + 2 (k ')Si (n).	 (5) 

	

Proof. Recalling the binomial expansion (1 + rn)	=	(-')m1 we obtain 

7 

(1 + n)' + Sk+I(72) —1 =	(1 + m)k+l 
M=1

1k-fl k+1 

=>:	( 
m=1L=o	2 / ) 

k+ 

1=0	\m=l 
k+ =( 4 1_S;(n). 
1=0 

This is equivalent to
k 

	

(1 + n)	= 1 +	
(k1)s() 

1=0 

The proof of Lemma 1 is completed I 

Lemma 1 shows that Sk( ri) could be deduced from So(n), S, (n),... , S_ 1 (n). Using 
Lemma 1 we can get 

Lemma 2. For arbitrary integer k > 0, 

1 

	

Sk(n ) =	flk+1 + flk +	Ai n'.	 (6) 

Proof. By mathematical induction on k, the result that Sk(n) is a (k+1)-th degree 
polynomial with constant term 0 follows straightforwardly. Equating the coefficients on 
the two sides of (5), it is deduced easily that the coefficients of fl' and flk in Sk(n) 
are	and 1, respectively. This completes the proof of Lemma 21 

Since Sk(1) = 1, formula (6) implies 

A, = 12 -	 (7)
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For any integer k > 0, let (k) stand for the largest odd number less than k. Then 

k(k) - { 1 for any even k


	

-	2 for any odd k. 

For example, (2) = 1, (5) = 3, and so forth. 

Let A ( ' ) denote the coefficient of nP in Sq (n). Then 

Lemma 3. For any integer k > 1,

(k)1

	

k	(2i) 
Sk(fl) =	

1 + flk +! E (2i 
-	flk2,	(9) 

k+1	2	2 

that is,
(k)1	k 

	

=	(2i -
	 (i < < (k)+i \ 

	

—i--)	 (10) 

where A2t) is the coefficient of the term n in S2(n). 

Proof. We will use mathematical induction on k. It is clear that formula (9) is 
true for k = 2. Suppose the result is true for 3,. . . , k - 1. From Lemma 2, we have 

k-i 
Sk(n)	 + 

flk +	A21nhv_l 
i= 1 

Equating the coefficients of	for j = 1, 3,. .. , (k) in (5) gives us 

	

- 1	1(k+1\	1 ' k+1 
k_ik+12k_j) k—jk—j-1

(11) 
V' A 

	

-	i21 (	
k + 1 

k-j	k—j+2i+1 

By the inductive assumption, we have

1	k—j+2(i+1) 

	

A3+2+1) =	
k - j + 2(1 + 1) (	2(i + 1)	)	(12) 

for 0 i	Combining (11) and (12) yields 

A	
111/k+1	1	k+1 

	

k-j - k+ 1 [2k_j) -	 - 

2	 1	k—j+2i	k+1	
(13) 

_A2t)kj+2.(	2i	)(k_+2i_1)J



Recursion Formulae for	 1127 

From (7) and the inductive assumption, it follows that 

L 
- 1	1 

2 j+2 (' 2i+1 

and
=	 / j +2))  	(0 < i < 

j+22(i+1 	- - 2 ) 

Substituting (15) into (14) produces 

k+1	1 [1( k+l)	1	k+1

k+1(j+1)k.12j+1j+2(j+1) 
L

A21 1	+2)(k+ 1 1 

	

2i	 +)j 
= I 

1 [l'k+l	1	k+1 
-	i[k _,) -	 —1) 

L=i 

— A
1	(k—j+2i /	k+1	\1 

.	k—j+2i	2i	)k—+2-1)j 

From (13) and (16), 

A(k)-
	

k+1 
k-j	k+ 1 ( + 1)A1)

	(j = 

is obtained. Similarly, by mathematical induction, we can prove that 

A2 =0	(i = 2,4,6,...,(k) +1). 

The proof of Lemma 3 is completed U 

Note Lemma 3 shows that the coefficients of the term n in S2 (n),... , S2 _ 2 (n) can 
be used to calculate S2 . 1 (n) and S21(n). 

3. Main results 

Now we use Lemma 3 to prove 

Main Theorem. For any integer k > 1, let

(14)

(15)

(16)  

Sk(fl) = ____flk+1 +	+	Ak21+ln2.
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Then
(A:)+ I 

1 2	Ak_2R+1	k_2(i-1) + bin 
k+2 

k+2+lnk+1+(k+l) Sk+l(n) = -n E k-2(i—l) 

where
10	 for even  

b1 
=	-	+(k+ 1)i2	 for odd k.	 (17) 

	

Proof. From (10) we know that the coefficients of	(j = 1, 3, . . , (k)) in Sk(n) 
are

A	
- 1 (k+l)A(j+1) 

Therefore

	

A	
k+1	 1 1k+1' k+1 

k_ik_j+1	1	k-l-1"j+l)k—j+l


—A' 
1 (k+2 

- 1	k+2j+1 
A('c+I) 

- k-i+1 

is the coefficient of fl k+1.1 (j = 1,3,.. . , (k)) in Sk+I(n). If k is even, since k - (k) + 1 = 
(k + 1) - (k + 1), then b 1 = 0 follows from (9). If k is odd, formula (17) follows from 
(7). This completes the proof I 

Corollary. Let A i be the coefficients of the terms n t (1 S i k + 1) in Sk(n) and 
let B (i > 1) be the i-th Bernoulli numbers. Then 

B21 0 

	

1	1	1	''	A2(_) 
B2J=_[2.+l+2J2(.i)+l 

for every integer j > 1, 
Remark. By Lemmas 1 - 3 and Main Theorem, calculating directly we obtain 

10	9	 1 
S i o(n) = 1	

1 
+	

5 
+ n - n + n - n 3 + 

5
n il

1	12	1	10	8	6	4	2 
12	2 Sij(n)=n +n +j fl	jfl +fl --r +jTl 

	

1 13	1 12	11	 22	33	5	691 
13	2 

S12(n) = -n +	+ n - -b -n + -v-n -	+	-3	2730 

	

1 21	' n 	s	19	1292 15	13	41990 
S2o(n)=n +n +n ---n + — --n —323n +	Ti j  

223193	 68723	219335	174611 
- 63 

Ti +6460n - 10	+ 63	- 330 
1 	' n 	7 20	133 18	323 16	969 14	146965 12 

S21 (n) = n 22 +	+	-	+	- -j —n + 66 

223193	33915 8 481061 6 219335	1222277 2 
- 30	+ 2	20	12	220
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From here the Bernoulli numbers

691	 174611 

	

B 10 =566,	B12=-----	B20=— 
2730'	 330 

are obtained. 

	

4. Another formulae for	m  and Bernoulli numbers 

In this section, another formulae for computing Bernoulli numbers and " in k will Tn 
be given, from which we can get the Bernoulli numbers more easily (see [1] and [2: pp. 
246 - 265)). 

	

Define functions Bn by	 - 

	

ze	=	B, (x) z
	( I z i < 2ir) 

n!e z - n0 

and write B,, = B,,(0) for the Bernoulli numbers. Then formula (3) follows by putting 
x = 0. We can equate coefficients of z" in 

00 I
ezz

 Bn(X) 
Z0 

=	
= (	

Bn	
/ 00

Zn)	x 

n=o	 \,,=&	
(_zn)

nt E n!	ez_1 n0 

to get
n 

	

B(x) =	(Bkxn_1c).	 (18) 
k=O 

Also, since

	

(1+1)z	 exx  -	- ZC', 

	

e 2 -1	ez_1 - 
we have

CO Bn (x + 1) - B,,(x)	=	n+i 

	

n0	 n0 
and by equating coefficients of z we get 

B,,(x+1)_B,,(X)flXfl_i.	 (19) 

So putting x = 0 we have

	

B,, = B,,(0) = B,,(1)	(n 54 1).	 (20) 

Thus for n > 2 we can put x = 1 in (18) and use (20) to obtain 

BnBn(1)()Bk.
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This is a much simpler recursion formula for computing Bernoulli numbers. 
Result (19) can be used, taking x = 1,2,... , k - 1, k and adding, to give 

B(k + 1) - B(1) = E [B(k + 1 - i) - B(k - i)] 

= n -	k	+ n(k - 1)' + ... + n 2' + n . in—I 

= n 

that is,

k m1 
= B,(k + 1) - B 

	

M=1
	 77 

References 
[11 Apostol, T.: Mathematical Analysis, 2nd edition. New York: Addison-Wesley 1974. 
[21 Apostol, T.: Introduction to Analytic Number Theory. Berlin: Springer-Verlag 1976. 
[3] Boyer, C. B.: Pascal's formula for the sums of powers of the integers. Scripta Math. 9 

(1943), 237 - 244. 
(4] Brualdi, R.: Introductory Combinatories. Amsterdam: North-Holland 1977. 
(5] Jing-Tian Cao: A method of summing series and some corollaries (in Chinese). Mathe-

matics in Practice and Theory 20 (1990)2, 77 - 84. 
[6] Group of Compilation: Handbook of Mathematics (in Chinese). Beijing: Higher Education 

Press 1979. 
[7] Ji-Chang Kuang: Applied Inequalities, 2nd ed. (in Chinese). Changsha: Hunan Education 

Press 1993. 
[8] Feng Qi: Generalized Bernoulli polynomial. Mathematics and Informatics Quarterly (to 

appear). 
[9] Mitrinovié, D. S., Pearié, J. E. and A. M. Fink: Classical and New inequalities in Anal-

ysis. Dordrecht - Boston - London: Kluwer Acad. PubI. 1993. 
[10] Schultz, H. J.: The sums of the k-th powers of the first n integers. Amer. Math. Monthly 

87 (1980), 478 - 481. 
[11] Struik, D. J.: A Source Book in Mathematics 1200 - 1800. Cambridge (Mass.): Harvad 

Univ. Press, Cambridge 1969. 
[12] Bi-Cheng Yang: Formulae related to Bernoulli number and for sums of the same power 

of natural numbers (in Chinese). Mathematics in Practice and Theory 24 (1994)4, 52 - 
56 and 74. 

(13] Nan-Yue Zhang: Euler's number and some sums related to Zeta function (in Chinese). 
Mathematics in Practice and Theory 20 (1990)4, 62 - 70. 

Received 10.12.1998


