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Abstract. In this paper we examine the symmetry of numerical ranges in a unital locally m-
convex C- algebra of a given element and its adjoint, with respect to a rotated real-axis, where 
the rotation angle depends on the value of the positive linear forms of the algebra (states) at 
the unit clement of the algebra. 
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0. Introduction 

Given a unital locally rn-convex *-algebra E the union of the (Bonsai!) numerical ranges 
of an element a E E and its adjoint a, V(E, a) U V(E, a*), contains a subset, symmetric 
with respect to the real axis R. In the particular case that E is a locally rn-convex C*- 
algebra (more specifically, locally C-algebra in the terminology of [81), the previous 
symmetric subset is the union itself, as before. As a consequence, one thus infers the 
symmetry with respect to R of V(E, a), for any self-adjoint element a E E, with E a 
locally rn-convex C-algebra (in this connection see, for instance, [7: Proposition 3.21). 
In this symmetry of the numerical range, a crucial role is assigned to the "normalized 
states" of the algebra (i.e. continuous positive linear forms .f of E, with f(1E) = 1). 
Thus, by changing to generalized normalized states, that is, to similar forms, as before, 
where now f(1E) = k E C, this implies the appearance of a rotation angle equal 
to arg k. So the previous symmetry properties of the numerical range are still in force, 
with respect to the new rotated axis. The justification of the latter symmetry properties 
constitute thus our main objective of this paper. 
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manuscript and the constructive remarks, that led to the present form of the paper. 
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1. Preliminaries 

Throughout this paper all algebras are complex and the topological spaces are always 
assumed to be Hausdorif. 

A locally rn-convex algebra (E, IF {pc}a€J) is a complex algebra E which is also 
a topological vector space, the topology of which is defined by an upper directed family 
of submultiplicative semi-norms 1' {pc}c,,j. If a locally rn-convex algebra E has a 
continuous involution "*", then E is said to be a locally rn-convex *-algebra, and if the 
involution has the C-property (i.e. p(x*x) = pa(x) 2 for all x E E and a E I), then we 
speak about a locally rn-convex C-algebra. At the end, a locally rn-convex Q-algebra 
is a unital locally rn-convex algebra E whose set of invertible elements is an open subset 
of E (cf. [10; p. 43/Definition 6.2]). 

On the other hand, if E is a *-algebra (i.e. an involutive algebra), then by a *-
representation of E, 0 : E — £(H) we shall always mean a *-morphism of E into 
the C-algebra £(H) of all bounded linear operators on a Hubert space H. If E is 
furthermore a locally rn-convex *-algebra, the continuity of 0 will be always considered 
with respect to the norm-operator topology of £(H). Moreover, we denote by P(E) 
the set of all continuous positive linear forms on E, that is 

P(E) = {f E E': f(x'x) ^: 0 for all x E E}. 

On the other hand, if E has a unit 'E and for an f E P(E) we have f(1 E ) = 1, then 
we speak of a normalized continuous positive linear form on E, and if there is a vector 

E H, such that {ç(x)	x E E} = H4, (the "bar" here means "topological closure"), 
then 0 is called cyclic and the vector is called a cyclic vector for q5. 

Now, let (E, I' {PG}EJ) be a locally rn-convex algebra with a unit 1E and k E C 
such that 0 < Jk 1. The family of semi-norms 171 = JJPc} El 

defines on E the 
same topology as that of the family F. In fact, if T and T1 are the topologies which are 
defined on E by the families F and F 1 , respectively, then obviously T c T1 (T1 is finer 
than T). Conversely, let 

V	Va, ,...,a,e, = {x E E q,(x)	e (1 <i <n)} 

be a neighborhood of 0 E E for the topology I'l where q,,. = p,, i or q,, = Then 
the neighborhood of 0 E E for the topology T, 

UEUa 1 a n ,e{xEE:pa(x)<eIkIe i (1in)} 

is obviously contained to V, that is T1 C T and hence T = T1 . So without loss of 
generality we may assume that the family of semi-norms F { pa}c,€J which defines 
the locally rn-convex topology on E, with every semi-norm Pa, E F contains the semi-
norm j.pa (a E I), too, where k is an arbitrary but constant complex number with 
0 < Iki	1.
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2. The k-numerical range 
Let (E, {pa}Ef) be a unital locally rn-convex algebra. Moreover, let E' be the weak 
topological dual space of E and k E C with 0 < Iki < 1. We consider the sets 

(U. (1))o= {IEE': If( x )I <1 (xEU0 (1))}	 (2.1) 

where U0 (1) = {x E E: p(x) i}, 

D" (E, 1 E) = {f E (U0 (1))° : f(1 E) = k}	 (2.2) 

and

	

Dk(E, 1E) = U D(E, 1E)	 (2.3) 
GEl 

where 1E is the unit of E. The elements of the set (2.3) are called k-states of E. For 
k = 1 we set D(E,1 E ) = D0 (E,1E) and D I (E,1E) = D(E,1E). 

We call k-numerical range of an element a E E the set 

Vk( E , a) = à(Dk (E, 1 E)) = {f(a) : f E Dk(E, 1E)}	 (2.4) 

where
a: Dk (E,1E)cE'—C,	f—a(f):=f(a) 

is the generalization of the Gel'fand transform of a. The numbers, 

vk(E,a)=l'k(a) :=sup{IA : A  Vk(E,a)}	 (2.5) 

is called the k- numericalradius of a. For k = 1 we set V, (E, a) = V(E, a) and V, (E, a) = 
v(E, a). 

Now, if A E V(E,a) (a E E), there is an I E E' with f(1E) = 1 and 1(x)] 
PG (X) (x E E), for some a E I, such that A = 1(a). So the linear form g = kf 
belongs to the set D°(E,lE) C D,(E,1) and hence kA = g(a) E Vk(E, a), that is 
k . V(E, a) C Vk(E, a). 

On the other hand, if p E Vk(E, a), then p = g(a) for some g E E' with 9(1 E) = k 
and Ig(x)I p(x) }(x E E) for some a E I. So 1 (g) (x )I 5 Fpo (x) = p(x) (x E E) 
for some other / E I (see the comments before Section 2) which means that the linear 
form f = g E E' belongs to the set D(E, 1E) c D(E, 1E), hence 1(a) E V(E,a). So 
p = g(a) E k - V(E,a), that is Vk(E, a ) c k V(E,a). 

Now by the above we have 

k . V(E,a) = Vk(E, a)	and	Jkl . v(E,a) = zik (E,a).	(2.6) 

On the other hand, let (E0 = E/kerp0 )j be the Arens-Michael decomposition 
of E (E = lim_EG , see [10: p. 88/Theorem 3.1]). Then, D(E,1 E ) is isomor-
phic to D k (E0, 1) where 1 c, = l E + ker p,, is the unit of the normed algebra E = 
E/kerpQ (a E I), so that Dk(E, 1 E) = U0 EJDk(E0,, 1 Q ) by (2.3) and hence 

Vk(E,a)

	

	U Vk(EG, aQ)	 (2.7) 
GE! 

and .-.	 L/k(E,a)= SUP vk (EG ,aG )	 (2.8) 
aEl 

where a G = a + ker p E EG (a E I). In this respect we have the following
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Proposition 2.1. Let (E,r	{pa}a€I) be a unital complete locally rn-convex 
algebra. Then: 

(i) For each a E I, the set D(E, 1 E) c E' is convex and compact. 
(ii) For each a E E, the set Vk(E, a) c C is convex. 

(iii) For each a E E, the set Vk(E,a) 9 C is bounded if and only ifsup0J pQ (a) < 
+.

Moreover, if the family {Pa}QEJ is finite, then Vk(E,a) is a compact subset of C. 
- Proof. (i) The set D(E, 1E) c E' is convex and closed since the sets (U0 (1))° and 
1({k}) are such. Moreover, the set D(E, 1E) is equicontinuous since it is contained 
in the polar of a neighborhood of 0 E E. So by the Alaoglu-Bourbaki theorem it is 
relatively compact. Hence D(E, i E) (a E I) is a compact subset of E'. 

(ii) For 1,9 E Dk(E,1E) there are a,8 E I such that If(x )I	p(x) and g(x) 
P,3(x) (x E E). Since the family of semi-norms I' {p}j is upper directed, there is 
-y E I such that 1,9 E D(E, 1 E) ç ( U 1 (1)) 0 . Now, if h is a convex combination of f 
and g, then by the convexity of D(E, lE) we have h E D(E, 1 E) ç Dk(E, 1 E), that is 
Dk(E,1E) ç E' is a convex subset, and by (2.4) Vk(E,a) ç C is also a convex subset. 

(iii) Let (EQ	E/kerpQ )QJ be the Arens-Michael decomposition of E. Then for 
the normed algebras E (a E I) we have 

	

zJ(EQ ,aQ ) 2 ;II aQIIQ = fpQ (a)	 (2.9)

(cf. [1: p. 34/Theorem 1j) and 

vk(EQ,aQ)	aQQ = p,, (a).	 (2.10)

By (2.9), (2.6) and (2.10) we get 

p. (a)	vk(EQ,aQ) p,(a) 

and taking the suprema we get 

1i sup pQ (a) sup vk(EQ,aQ) < sup p(a) 

so that, by (2.8),
Ii sup pQ (a) :5 z1!(E,a) 5 sup pQ(a) 

a 
which means that Vk (E,a) 9 C is bounded if and only if sup p(a) < +oo. On the 
other hand, if the family of semi-norms I' { pa}aj is finite, then the semi-norm q(x) = 
maxQ E J pa (x) (r E E) defines on E the same topology as the family r, and Dk(E, 1 E) = 
D(E, 1 E) . Since D" (E, 1E) is convex and compact one has that Vk(E,a) (a E E) has 
the same property I 

Now, let E be a unital locally rn-convex algebra and F be a subalgebra of E. Then, 
for every a E E,

Vk(E,a) = Vk(F,a).	 (2.11) 
In fact, since the map f '- hF Dk (E, i E) - Dk(F, 1 E) is "onto", by the Hahn-
Banach theorem, ( 2.4) implies (2.11).
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Scholium. From the above it follows that the numerical range of an element a E E 
does not change replacing E by its completion E. Thus, without loss of generality we 
may assume that the initial locally rn-convex algebra E is complete. Moreover, Vk(E, a) 
may be computed from the subalgebra F generated by a and 'E, or from the closure of 
F.

Proposition 2.2. Let (E, r {Po}cEI) be a unital locally rn-convex algebra. Then 
the set Hk(E) of strongly k-Hermitian elements (i.e. elements with real k-numerical 
range) is closed. 

Proof. Let (x5)6EJ c H(E) be a net of strongly k-Hermitian elements of E with 
x --x. For AE Vk (E,x) there isanaEl and anfE(Ua(1))° with f (1 E) = k such 
that A = f(x). On the other hand, the numbers A 6 = f(x 5 ) (6 E J) are reals and 

As - A I = If(xs - x)I <p& ( xa - x)	for f E (U0(1))°. 

Since pa(X6 - x) --O we have A € R, that is x € Hk(E)I 

Theorem 2.3. Let (E,r	{pa}oEJ) be a unital locally rn-convex algebra and J
a closed two-sided ideal of E. For the locally rn-convex quotient algebra (E/i,1' 
{i}EI) we have

Vk(E/J,ir(a)) = fl V,(E,a + b)	(a € E)	 (2.12)
6EJ 

where ir E -* E/J is the canonical quotient map. 

For the proof of Theorem 2.3 we need the following 

Lemma 2.4. Let (E, r {Pc}aEJ) be a unital locally rn-convex algebra and a € E. 
Then

Vk(E,a) = U (n {A € C: 
aEI zEC 

Proof. Let A € C satisfy the inequality

A - kzl <pa (a - Z 1 E)}) .	( 2.13) 

A - kzl 5 pc(a - z 1E) (z € C) (2.14) 

for some a € I. If a = zolE for some z0' € C, then fron (2.14) we get A = kzo. So for 
every f € D" (E, 1E) we have A z0f( 1 E) = 1(a) € Vk(E,a). 

On the other hand, if the elements a and 1E are linearly independent, we define the 
function

M £(a, 1 E) - C,	4ua + VIE '-I fo(,ua + VIE) : /AA + uk 

where M is the subspace of E generated by a and 1E. Then 

Ifo( pa + V10I I pA + vkl 

= lI A—k ( - /2	 (p,u € C, 1, 54 O). 
I/uIP(d1_(_)1E) 

=pQ(pa+VIE)
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Now, the Hahn-Banach theorem guarantees that there is an f E E' with [f(x)[ 
Pa(x) (x E E) and fIM = fo, so that f E D(E, 1 E) and A fo(a) = 1(a) E Vk(E, a). 

Conversely, let A E Vk(E, a). Then there are a E land f E (U(1)) 0 with f(1E) = k 
such that A = f(a). So we have JA — kz[ = f(a - zl E )I 5 p0 (a — zl E ) for every z E C I 

Proof of Theorem 2.3. Let A, z E C be such that 

A - kzl	j3(7r(a) — z1E)	 (2.15) 

for some a E I where 1 E = 1r(1E) = 'E + J is the unit of the quotient algebra E/J. 
Since the canonical map ir is a homomorphism we have 

P.(-(a) - Z1E) = j(ir(a — Z15)) := infp((a + b) - Z1E) 
bEl 

so that by (2.15) JA — kzl <pQ ((a + b) — zlE) (b E I) for some a E I. Hence, Lemma 
2.4 implies (2.12)1 

3. Geometry of the k-numerical range 

In this section we prove some elegant geometrical properties of the k-numerical range 
(see Introduction). We first have the following 

Theorem 3.1. Let (E,F {P}E/) be a locally rn-convex *-algebra with unit 1E, 
a E E, and k E C with Jkl 1. Then the set Vk(E,a) U Vk (E,a) contains a subset 
A C C symmetric with respect to the line e = {re°o r E R}, where Oo E [0, 27rJ with cos 00 = Re  and sin 00 = Imk. 

Proof. Let I E D, (E, 1 E)	D(E, i E) be a normalized state of E which is fur-



ther a positive linear form (i.e. f E P(E)). Then there is a continuous cyclic *-
representation of E,	E - £(H), and a unital cyclic vector E H 1 such that1(x) = (Of ( x )eIe) (x E E) (cf. [3, 8]). We have 

f(a) = ( j(a)[) = ((a)[) = (ej q5j(a)) = (j(a )e[) = 1(a). 

So the set
B={{f(a)}U{f(a)}: IED(E,1E)flP(E)}CC 

is symmetric with respect to the R-axis, hence the set 

A = e '°° B c e'°°(V(E,a)UV(E,a)) = Vk (E,a)U Vk(E,a) 

(see (2.6)) is symmetric with respect to the line e I 
Corollary 3.2. Let (E, F	{po}<,j) be a unztal locally rn-convex *-algebra, a E E5Plf-adjOint, and k E C with Jkl < 1. Then the k-numerical range of a contains a subset 

Of C, symmetric with respect to the line e = {re'- : r E R), where Oo E [0, 27rJ with ens 00 = Re  and sin O0 = link.
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Corollary 3.3. Let (E,r {pt}a€J) be a locally rn-convex C*-algebra with unit 
1 E, a E E, and k E C with J kl <1. Then the set Vk(E,a)UVk(E,a) cc is symmetric 
with respect to the line e = {r& 00 : r E R}, where 90 E [0,27r] with cos 9 = Re k and 
sin 00 = Imk. 

Proof. In every unital locally rn-convex C-algebra E we have D(E, 1 E) = P(E) 
(cf. [4: Theorem 3.7()(1)]). So by the above Theorem 3.1 we have what we wanted 
to prove I 

By the above Corollary 3.3 we see that the value of the states of a unital locally 
rn-convex C*algebra E at the unit element 1E determines the argument of the line, 
with respect to which the union of the numerical ranges of the elements a and a* is 
symmetric. 

Proposition 3.4. Let (E,I' {pa}nEI) be a locally rn- convex C * - algebrawith unit 
a E E self-adjoint, and k e C with 1k] < 1. Then the k-numerical range of a is a 

convex subset of the line e = {r&°° : r E R}, where 90 E [0,21r] with cos90 = Re  and 
sin 00 = Imk. 

Proof. Since the locally rn-convex *-algebra E has the C-property, we have D(E, 
1E) = 2(E) (cf. [4: Theorem 1.7()() ]). Now, having in mind the proof of Theorem 
3.1, we have 1(a) E R for every f E D(E,1E) = 2(E). So V(E,a) C R, hence 
Vk(E, a) = e'°°V(E,a) is a convex subset of the line e  

Corollary 3.5. Let (E, I' {Pn}nEJ) be a unital locally rn-convex Q-*-algebra with 
the C-property, a E E self-adjoint, and k € C with 1k] 1. Then the k-numerical range 
of a is a line segment of the line e = {r&°° : r E R} where 90 € (0, 27r] with Cos 00 = Re  
and sin 00 = Im k. 

Proof. The proof is a consequence of Proposition 3.4, Proposition 2.1 and [8: The-
orem 7.6 (j)(3) j I 

Now, let M(C) be the *-algebra of all ri x n complex matrices with an involution 
defined by A 0 = 'A (A € Mn(C)), where t means transpose and overline means complex 
conjugation. If £(C') is the C 0 -algebra of all (bounded) operators on the numerical 
space Cr', with inner product (alb) := 'ba ba (a,b € C"), then by considering each 
n x n matrix A E M(C) £(C") as an operator on C" (i.e. A : C" - C", x -* 
A(x) := Ax, x = (x 1 ,... ,x)' € C") and taking k = 1, the classical numerical 
range of the matrix A is a (convex) subset of the k-numerical range Vk (Mn(C), A) E 

V1 (M((C), A) V(M(C), A) of the element A € M(C) £(C") (Cf. [7: Comments 
after Theorem 2.11 and [6: Theorem 2.1]). So by the above Corollary 3.5 we have that 
the classical numerical range of a Hermitian matrix A is a line segment of the line lit 

On the other hand, if A € M,,(C) is an n x n matrix such that the matrix 
e'°°A ( Oo € [0, 27r]) is Hermitian, thexi by Corollary 3.5 the classical numerical range 
W(A) of A is a line segment of the line E = { r . e' 00 : r € R}, since W(A) is a bounded 
convex subset of C and 

W(A) = c'°°W(e'°°A) c e'°°V(M(C),c'°°A) = Vk(M((C), e'°°A) c 

where k E C is such that Re  = Cos 00 and Imk = sin 9.
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Now, if A E M(C) is an n x n matrix with elements on the line e = {r . e°' : r E R}, 
90 E [0, 27r], then by Corollary 3.3 and the relation W(A) = W( t A) (see [12: p. 7]) 
W(e°°A) is symmetric with respect to the R-axis, hence W(A) = elO0W(eOoA) is 
symmetric with respect to the line e. That is we take [11: Proposition 2.1 and its 
Corollary]. 

4. The k-spatial numerical range 

Let (E, r { p }j) be a locally convex space, T E £(E) a continuous operator on 
and k E C with 1k] :^ 1. For p, E r and x E U.(1) (x E E: p0(x) 1) we consider 
the sets

Da(E,x) = {f E (LTa(i))° : 1(x) = k}	 (4.1) 

Vk°(T,x) = {f(Tx): f E D' (E, 	 (4.2) 
V(T)= U V(T,x).	 (4.3) 

zE S, (1) 

where S,,(1) = {x E E : pa(X) = 11. Applying an analogous argument as in the proof 
of Proposition 2.1, we can prove that for each x E U,,(1) the set D(E,x) c E is 
(weakly) compact and convex. 

Definition 4.1. Let (E, IF	{Pa}aEJ) be a locally convex space and T E £(E).
We call k-spatial numerical range of T the set 

Vk(T) = U Vka (T).	 (4.4) 
uEl 

In this regard, we have the following 

Lemma 4.1. Let (E,r {pa}aEf) be a locally convex space, T E £(E) and x E E 
with pa(x) = 11 for some a E I. Then 

V,'(T,x) = fl {A E C: J A - k(] pa((T - (IE )x)}	 (4.5) 
(EC 

where kEC with ]k]<l 

Proof. We apply an analogous argument as in the proof of Lemma 2.41 
Theorem 4.2. Let (E, r	{ pa}c€i) be a locally rn-convex algebra with unit 1E,

such that pa(1E) = 1 (a E I). Moreover, for some a E E consider the operator 

T0 : E - E,	x	Ta(X) := ax.	 (4.6) 

Then

Vk(E,a) = Vk(Ta) .	 (4.7)



Geometry of Numerical Ranges	11 

Proof. The operator Ta is clearly continuous since pa(Tax) = pa (ax) pa(a)pc,(x) 
(x € E). Now, for A € Vk(Ta) there is an a € I such that IA - k(I p((T0 - (I)x) for 
all  C. But

(I)x) =	- ( 1E)x) <p(a - (1 E )p0 (x) = pQ (a - (1 E )	(4.8) 
for all C E C, so that IA - k(I p(a - CIE) for all ( € C. Thus Lemma 2.4 implies 
that A € Vk(E,a). 

On the other hand, if A E Vk(E, a ), relation (4.8) is true for some a € I and for 
all ( € C. So the equality pc,(a - ( 1E) = po((Ta - (I)1 E ) and Lemma 4.1 imply that 
A € V°(T0 , 1E), hence A € V°(Ta) c Vk(T0)I 

For convenience, we recall the definition of an upper semi-continuous map. 
Definition 4.2. Let E_and F be two topological spaces and let 2' be the set of all 

subsets of F. A map q5: E -* 2F is said to be upper semi-continuous if for each x € E 
and each neighborhood U of (x), there exists a neighborhood V of x such that y € V 
implies q(y) ç U. 

In this regard, we now have the following 
Lemma 4.3 (see (5: Lemma 3.6]). Let E and F be topological spaces with F 

compact. Let 0: E -+ 2F be a map such that for every x € E the set O(x) g F 
is closed. Then is upper semi-continuous if and only if for any nets (x6) c E and 
() C O(x 6 ) with limo x = x and lime 116 = y one has y € O(x). 

Theorem 4.4. Let (E, r {pa}a€i) be a locally convex space and suppose that for 
some a € I the set S(1) = {x € E : pa(X) = 1} is bounded. If T is a continuous linear 
operator on E, then the map 

x -* Vk?(T,x),	S(1) -	 ( 4.9) 

is upper semi-continuous and sends S(1) (a € I) into non-void compact convex subsets 
of C.

Proof. Let x € S(1) and A € V(T,x). There is an f € D(E,x) c (U(l))° 
such that A = f(Tx), so that JAI p0 (Tx) (x E E) and by the continuity of T there 
are /3€ land p >0 such that p(Tx) pp(x) (x €E)	- 

On the other hand, since S 0 (1) is bounded there is a > 0 such that S(1) c V, 
where V = {x € E : p(x)	11 (cf. [9: p. 109]). So for , x € S,,(1) we have 
p(x)	, hence JAI	p, that is V(T,?r) C {A € C JAI	p}	S(C) for every
x € S(1). Moreover, the sets Vk°(T,x) (x € Sa(1)) are compact and convex since 
the sets D(E,x) (x € S,,(1)) are such (see the comments before Definition 4.1). Now 
we complete the proof by applying Lemma 4.3: Consider nets (xb)OEJ c S(1) and 
(A 6 ) C C with A 6 € V,(T, x) 9 S(C). If lime xo = x and limã A 6 = A, we have to prove 
that A € V°( E , x ) . In fact, there is a net (fo) C E' with fo € D(E,x 6 ) ç (U(1))° 
such that A 6 = fo(Tx) (5 € J). On the othei hand, by compactness of (U0 (1))° C E, 
there is a subnet (f6)o€i with lim b f,,6 = f € (U,,(1))°. Thus, one obtains 

1k - f(')I

	

	1k - f,, 6 (x)l + If,,( x) - 1(x)
= 1fn6( x n6 - x)I + l(f6 - f)(x)I
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which yields 1(x) k. Finally, we have 

A - f(Tx)I :5 JA -A,,, I  + I'fl 6 - f 5 (Tx)[ + If. , (Tx) - f(Tx) I 
= IA - A 6 I + If., (Tx n6 - Tx)I + I(f - f)(Tx)I 
—1-90 

which gives A = f(Tx) E V(T,x). So, by Lemma 4.3, the map (4.9) is upper semi-
continuous U 
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