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Abstract. A nonlinear parabolic partial differential equation model describing the behaviour 
of a distributed parameter fixed-bed bioreactor is studied here. Exponential stability around 
the steady state solution for exponentially decaying deviations in the input and disturbance 
are proved via abstract formulation of the model as an evolution equation and by utilizing 
semigroup theory and asymptotic stability of the corresponding evolution operator. 
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1. Introduction 
Several different stability concepts have been developed for linear as well for nonlin-
ear partial differential equations and the corresponding evolution operators (see, e.g., 
Amann [2: p. 68], Lions [14: p. 1721, and Curtain and Zwart [5: p. 215]). As compared 
with the stability of finite-dimensional systems we are facing more complicated situa-
tions. Even in the case of linear partial differential equations the location of the poles 
of the transfer function of the distributed parameter system does not determine directly 
the stability as is the case of finite-dimensional systems. More refined funtional- analytic
and function-space tools are needed. Moreover, the variety of different partial different 
equation system models is larger depending, e.g. on the location of inputs and outputs, 
and on the corresponding operator classes defined on abstract function spaces (Banach 
or Hilbert spaces). 

Here, we consider stability properties of solutions of a nonlinear system related to 
a distributed parameter fixed-bed bioreactor. The system is a infinite-dimensional one. 
It is governed by partial differential equations of parabolic type, i.e. they are so-called 
evolution equations (c.f., e.g., Tanabe [21]). 

The distributed parameter model of the system has its background in biological 
water treatment processes [7, 8, 13]. The goal of the process is to remove harmful 
nitrogen compounds from drinking water or from communal waste water. The process 
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is modelled by two coupled partial differential equations. They describe the growth and 
substrate (nitrogen) consumption of certain microorganisms. These are immobilised 
on a fixed bed in the reactor tube. The water to be treated and which includes the 
substrate flows through the reactor. 

The spatially one-dimensional model of the fixed-bed bioreactor consists of a pair 
of nonlinear partial differential equations 

aul 
= —ku 1 +L(ui,u2)u1 at 

0u2U2 —c(t)—kijz(u1,u2)u1 }	

(1) 

at	aX2 ---	 Ox 

where the spatial variable x belongs to the interval C = (0, 1) C R and the evolving 
time t- belongs to the interval R4. = (0,) (remark that by R+ the interval [0,00) is 
denoted). The boundary conditions applied here are due to Darickwerts [6] and they 
are of the form

Ox	D 
(0,t) =	1 (u 2 (0,t) - 5(t))

 I (i e R+)-	 (2)

Ox 

In the equations the states u1 u i (x,t) and u 2 = u 2 (x,t) are the concentrations of the 
biomass of the microorganisms and the substrate, respectively. The specific growth rate 
of the microorganisms (in biomass) 

j(u1,u2) = ,c2u1+U2 

is due to Contois, 1959. 'This makes system (1) nonlinear. The input'flow c is the 
control variable and the input substrate concentration S is a disturbance variable in the 
system. They are generally smooth functions of time; i.e. c = c(t) and 'S = S(t). The 
output function y (the measured variable) is the substrate concentration at the end of 
the reactor, that is,

U2(1, t): 

The initial condition
ui(x,0)=uio(x)) 
u 2 (x,0) = u20(x)

	 (3) 

is chosen in such a way that u 10 and u 20 are the steady state solutions of problem (1) 
- (2) before the simulated step changes the input function e(t) and/or the the initial 
concentration S(t) of the substrate. In the steady state c and S are independent of time 
and in that case they are denoted by ë and S. Other parameters are positive. We do not 
list their meanings here but we refer to the contributions [7, 81, where the model and 
the parameters from the system-theoretic point of view are explained in more detail. 

Simulation studies carried out pointed out that the assumption of equally distributed 
concentrations on the constant cross-sectional area of the reactor tube was adequate (c.f.
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[17, 23]), justifying the use of the single space variable, the scaled distance from the 
input of the reactor tube (the length of which is scaled equal to 1). Boundary conditions, 
which are different from (2), have been proposed for dispersion models of our type (c.f. 
[20]), and applied in [13). 

In Section 2 problem (1) - (3) is put into the abstract form 

t) + A(t)v = F(t,v) 

V(0) = VC 

where A(t) is a linear unbounded operator in appropriate Banach spaces and F(t, v) 
is a nonlinear function. This enables us to consider the existence, stability and other 
issues of solutions as an application of the semigroup theory (see, e.g., [1, 2, 5, 9, 10, 
18, 21]). The existence of a positive classical global solution u = (u i , u2 ) of problem (1) 
- (3) such that 

Ui E C'((0,00),C()) flC(i+,C()) 

tL2 E C' ((0, ), C()) n c((o, ), C 2 ()) n C(R+, C()) 

was proved in [11] as an application of the semigroup theory. Numerical computations 
for the original nonlinear system in the state space seem to support analytical stability 
result obtained here, not only in the spatially 1-dimensional but also in the spatially 
3-dimensional case [17, 23]. 

In Section 3 we show that the steady state solution of problem (1) - (3) is attractive. 
The proof is based on the fact that the evolution operator U(i, r) of the operator A(t) 
can be shown to be asymptotically stable in the relevant spaces considered here. The 
asymptotic stability of U(t, r) follows from the results for quasilinear parabolic equations 
on the interpolation-extrapolation spaces studied in detail in [2]. It is well-known that 
exponential stability of the solutions both in finite-dimensional and infinite-dimensional 
cases influences on the input-output stability of the system (cf. [51). Consequently, it 
is a central issue of our system study for control. 

We give some preliminary notations applied here: 
Let C be an open set in R'. C(G) is the space of continuous functions on G equipped 

with the norm II W IIc() (= IIw IIoo) = sup €lw ( x ) I . Further, L(G) (1 < p < co) 
is the Lebesgue space of ptIpower integrable functions f : C C and W3P(G) (s E 
R, 1 $ p < oo) is the Sobolev-Slobodeckii space (see [21). 

Let A be an interval in R. Then C'(i,X) is the space of all I times continu-
ously differentiable functions I :	X, when X is a normed space. The space 
C P (L,X) (0 < p 1) is the space of Holder continuous functions f : X 
equipped with the usual norm (see, e:g., (2: p. 40]). In the product space X, x X 2 of 
Banach spaces X, and X2 we use the norm II( w 1, w2)IIx1xx2 = li w ilix, + 11w211x2.
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2. Abstract formulation of the partial differential equation 
system 

The original partial differential equation problem (1) - (3) will be converted into the 
abstract form

= F(t,v) 

V(0) = v0 

where A(t) is a linear unbounded operator and F(i, v) is quadratically bounded by 
v. This means that the linearized version of the original partial differential equation 
problem is given by

t + A(i)v = F(t,O)

V(0) = v0 

2.1 Preliminaries. Consider the problem

U2)}	

(5) 
- D5tL2 

- -

	

-	3u2 
c(t)— - kjf(ui, 

- 

for (x, t) E G x
02(0, t) - S(t) 	t) - S(t))	

(6) 
ax	D 

for t E R 4., and
u(x,0) = uo(x) = (ujO(x),u20(x))	 (7) 

for x E G. Above we denoted 

G=(0,1)	and	f(Uj,U2)=/1(UI,u2)U1='U
M U1 U2 

Occasionally we also use the notation 

	

A U ) =f(ui,u2)	for u=(ui,u2). 

Throughout the paper we assume that c and S are positive C'(+)-functions and that 
and S are locally Lipschitz continuous. In addition we assume that Uio and u20 are 

positive C' (G)-functions. 
Let i, and 92 be solutions of the steady state equations 

0=f(i1,U2)—kdiiI 

kif(iz,,ii2)}	
(8) 

aX2
522	Oi2 

0= D----- -	
-
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for S(t) = S and c(t) = Z, for x E C, with the two-point boundary conditions 

( U2 (0) ax	D	_)}	
(9) 

where Z = c(0). The solutions U and 12 can be computed in closed form and they have 
the expressions

112(x) 
5 qcosh(q(1 - x)) +psinh(q(1 - x)) el

Z 

I 

q cosh(q) + (a + p) sinh(q)

	

(10) 
- - 

Z'(x) =	
kd u 2 (x)

k2 kd 

where
P	ki(,Um - kd)	A2 

P=, p=--, a=	
k2 

The pair (U1, U2) is the equilibrium point of the dynamical system (5) - (7) when c 
and S	S. The constants P, p, a, q are positive for the original relevant parameter 
values. 

Remark 1. The maximum principle for parabolic systems [19] implies the following 
comparison result for the solutions: Suppose that and S are positive constants such 
that

c(t)<)	- 

	

_	(t llLe.). 
S(i)<SJ 

Let Il be the steady state solution corresponding to constant values Z and S of the 
control c(t) and disturbance 5(t). If u 0 < Ii, then

(11) 

This result implies especially that the solutions of problem (5) - (7) are bounded when 
the control c(t) and the disturbance S(t) are bounded. In fact, estimate (11) is natural 
from the physical viewpoint. 

2.2 Linearization. The nonlinear problem (5) - (7) is linearized around the steady 
state (10). Consequently, a careful analysis for the nonlinear term f has to be carried 
out. Formally f can be linearized by using the decomposition 

	

fl+w)—f(i)=1-	
of 

au,(U)W1 + —(i1)w2 + g(w) 
0u2 

where the residual g(w) must have certain appropriate properties. From (8) we get 

	

= Pm	
122- 

= kd	 (12) k 2 tL i + 122
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which also implies the last equation in (10), i.e. U I = 112	Applying (10) and (12)
we find by a routine computation that 

of
= fJ(UI,tL2) - /imk2	- 

On 1	 (k2ui +112)2 

U 2	imkd 
=kdimk2	

k2kd	 (13) 

Ym 

k2 

=: a1. 

It cancan be seen also that
ii urn	-	Wa1.	 (14)(k2 u i + 112)2 

Similar computations show that 

of 	 1I	_(Prnd)2 — ( ti) =/imk2 - - 2 =	 a2.	 (15) 0u 2	 (k2ui+u2) 

Based on these calculations the following lemma, which guarantees a successful lin-
earization, is proved. 

Lemma 1. There exist constants C > 0 and 6 > 0 such that 

1(11 + w) - f(i) = a 1 w 1 + a2 w2 + g(w)	 (16) 
where a1 and a2 are given above and where g(w) satisfies 

IIg(w)Il C() ClIwll()Xc() 

for all w E C() x C() such that II W IIc()xc() < 6. 

The norm abbreviations Ii	ll	=	lIc() and	112 = Il	ll C() x C() are used in the 
proof, which is given in Parts A and B. 

Proof of Lemma 1. Part A: Denote u	ii + w. Then by using (13) - (15) we 
have 

IIf(11 + w) - 1(11) - (a i w i + a2w2)II1 

= urn
U11L2	U1U2	

- ( k2 u 1 + u2 - k2 111 + 112
\II 

(k2111 + ti2)2 
W1 + k2 (k2 111 + 112)2 W2 

HI 
Jll 

= urn
 

IIk2 112 u 2
WI

Ului 
(k	+u2)(k2111 +112)W2 + (k 2 u i +u2 )(k2 111 +112) 

_________ 
-	 wj+k2 

(k2 11 1 + u 2 ) 2	(k2111 + u2)2	)

(17) 

{M21

U2U2

-
U2 II 

II + u 2 )(k2 111 + 112) (k2 111 + 112) 2 Ill 

+ k2 II } (li w i Iii + 11w2111). (k2 u 1 +u2 )(k2 Ui +u 2 ) - (k2 11 1 + 122)2
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Part B: Furthermore, we have
II 

(k2u i + u 2 )(k2 11 1 + 112) - (k2 11 1 + 112)2 

1

	 Il l-
(11iU2wi+ilw2)

-	+u2)(k2111 +112)2 
(18) 

< 
{ll
	

1	II	111112 

-k21i1 +U2 1 (k2 u i +u 2 )(k2 11 1 +u2)I1 

+	III 
k2 u 1 + 2 I 1 II (k2 11 1 + 112)2 1 } (11 w 1 Iii + 11w2111). 

Suppose that
- lw1 ' + ll w2lII <	inf min{i1 i (x), 112 (x)} =:	 (19) 

zEG 

Then we find that
u, (x) = u(x) - il(x) + 11,(x)

= i1(x) - w,(x) 

^ inf 1l,(x) - 
rEG 

I inf 113(x) 2 

1 inf min {i1,(x)} 2 

=:c1 

for all x E G. Hence when (19) holds, we see that 

	

k2 u i (x) + u 2 (x) ^! (k 2 + 1)c i	(xE C) 
which implies that

	

1	 1	C	 (20) 
k2 u 1 + 112	(k2 + 1)ci 

Combining (18) and (20) we find that for 11 w 112 = lw1 Iii + I IW2111 < 

111111  

(k2 u i +u 2 )(k2 11 1 +112 ) - (k2 i1 1 +112)2 
--	 -2 1	1	U1U2	 111 

	

k2 11 1 +112	k2111 +112 1 
+C1 (k

2 11 1 +112)2 1	(21) 

X (11W1 111 + 1Iw2111) 
C211w112 

where C2 does not depend on w. Similarly we find that 
-	 -2 
112112	 U2

< C3I w 2	 (22) 
(k2 u i +u2 )(k211 1 +112 )	(k2 11 1 +11 2 ) 2	- 

for I I W I12 < 8. Hence we find from (17) that 
f(11+w)—f(11)—(a1w1+a2w2)=g(w) 

where lg(w)II i < C411
w lI for 11 w 112 < 6 which completes the proof 1



84	J. Tervo and M. NihtiI 

Remark 2. Consequently, the above considerations show that the mapping f 
C(G) x C(G) i-4 C(G) is differentiable in the neighbourhood of U. 

Denote U (U1 , U2 ) = u - i. Substracting equations (5) - (6) and (8) - (9) side by 
side we get

at I (23) 
aU2 - Da	3(U2 + u2 )	2 c(t)	 +_ —k 1 f(i+U)+k 1 f(rr)aX2

for (x, t) E G x

( 0 , t) =	2 [(U2 + l2 )(O,t) - S(t)] - 	[ U2 (0)-	

}	

(24) 
= 0 

ax 

for t E IR+, and
Ui(x,0) = U 10 (x) - ui(x) }

	
(25) 

U2 ( X , 0) = u 20 (x) - 112(x) 

for x E G. Due to Lemma 1 problem (23) - (25) can be put into the form 

au, 
at

= (a 1 - kd)Ul + a2 U2 + g(U) 

0U2	
}	

(26) aU2	a2 U2 =

	

t)— - [c(t) -	- k 1 a 1 U1 - k j a2 U2 - k1g(U) at 	 — c( ax 

for (x, t) E G  R+,

	

= 1U2(o,t) 
+	D 

c(t)—c 
U2 (0) - S(t) 	+	1	(27) Jax 

for t E
U1(x,O)=u10(x)-1(x)}

	
(28) U2 (x,0) = u 20 (x) - i2(x). 

By substituting the transformed variable v = ( VI, V2) = ( KU I ,U2 + s(t)) with k = 
(k 1 i) into system (26) - (28) and by making the definition 

	

-	c s(t)=-1 D [c(t) - U C_(0) - 
—

( t) 
ñ_S(t) + Sj	 (29) c(t)	D



Stability of a Distributed System	85 

we obtain the system 

av1 
-= (ai - kd)v I + Ka2v2 - Ka2 s(t) + Kg(v I ,v2 - s(t)) 

av2	a2 V2av2	 5112	k 1 a 1	 I - --=D----c(t)----(c(t)— ax
	K	

(30) 

1 

	

- k 1 a2 u2 + k i a2 s(t) - k i g(_vi ,v2 - S(0) + ( t)	J K 

for (x, t) E G x
5v2(0j)

	

D v(0)}	
(31) 

t3V2
(1,t)= 0 

ax 
for tE R+, and

	

vi(x,0) = K(UiO(X) - 1ii(x))	

}	
(32) 

v2(x, 0) = u20(x) - 112 (x) + s(0) 

Define a linear operator

A(t) C() x L(G) i—+ C() x L(G) 

by

(	c(t) )

	

9w2 (
i	o 

	

D(A(t)) = C() {w E W2	
5W2 

'(G)	- —— W (0) =0, --) = } 

52 W2	Ow2	k1a1	
kia2w2) - c(t)— - —Wi -

ax 

	

A(t)w = - ((a i - kd) W I +	 Ox	K 

for w E D(A(t)). Since W2 '(G) C C'() (because n = 1) for p > 1 the terms w2(0), 
W2 (1), and

	

	0) are well-defined. Furthermore, definear 

F(t,w) = (_?ca2s(t) + —w1, w2 - s(t)) 
K

1 
- [c(t) - 0112
 + k i a2 s(t) - k i g(_w 1 ,w2 - s(i)) + 

Ox K 

Then problem (28) - (32) gets the abstract form 

dv
+ A(t)v = F(t,v) 

	

dt 
	

v(0)=vo	}	
(33)

 

where
vo(x) = (K[uIo(x) — 111(x)1,u20(x) —11 2 (x) +s(0)).
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3. Stability of solutions 
3.1 The evolution operator of A(t). We use the notations and theory of 121. Let 
for s E 1- 1, 1] and p E (1,) be

	

1W P (G)	ifO<s <1 W(G) 
= (W P'(G))' if —1 S— < 0. 

Define time-dependent Sobolev spaces W ) (G) by 

W ) (G) = {	W2'(G) D 
Ox 

(0) - c(t)w(0) 0 and Ow 
—
Ox

(1) = 0 
I  

In addition we define Banach spaces 

E(t) = C() x W ) (G)	and	E,,,+1 = C() x W"(G) 

where-i- < a < 1 . The operator A(t) can be interpreted as a bounded operator 
E0 (that is, A(t) E L(E1 ,E0 )) by 

A(t) =

	

(A 11	Al2 
A21 A22(t)) 

where for w = (w i ,w2 ) E E1

k1  A 11 w 1 = (kd — a i )w i ,	Al2w2 = —,ca2 w2 ,	A21w1 = - a1 wi 

and where
A22(t) W'"(G)	W'"(G) = (W''"(G))' 

is the operator corresponding to the antilinear form a 22 (t) W"(C) x W"P'(G)	C
such that 

a22(t)(w2,v2) 

= 	
k1a2w22 +c(t) 2 )dx + c(0w2(0)2(0), 

that is, 

	

(A22(t)w2,v2) =1 (_D2 + c(t)	+ k i a2 w2) 2 dx = a22(t)(w2,v2) 

(which follows by partial integration). 
For the definition of the (parabolic) evolution operator 

U(t,r) C() x L(G) —+ C() x L(G) 

for A(t) we refer to [2: pp. 45 - 47] . The solution v of problem (33) satisfies the 
(Volterra) integral equation 

V(t) = U(t, 0)vo + / U(t, r)F(r, v(7-)) dr.	 (34) 

For this operator the following estimates are proved.
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Theorem 1. There exists a constant S > 0 such that when [c]cp_(–+) < 5, where 

0 <p < 1, then the operator A(t) has an evolution operator U(t, r) : C() x L(G) 
C(G) x L(G) and there exist a E (, 1] and 3 > 0 such that for w E C(G) x W°'P(G) 
and for 0 < r <t

C	 11w113	 (35) IIU ( t , T )w 113 :5M fl(ti) 

IIU ( t , r )w 113	.M'(t - r)_(c_4)e_1tT) 11 w 114	 (36) 

where we use the abbreviations	113 = II IIC()XWo.P(G) and	Ili = II IIC(G)xL9(G 

For the definition of the quantity [•]c'() see [2: p. 40]. 

Proof of Theorem 1. We shall only outline the proof and omit many details. The 
proof is given in Parts A, B and C.	 - 

Part A: Let Ao(t) = A(t)I E ( j). It is well-known that the operator Ao(t) (t > 0) 
generates an analytic semigroup on E 1 with domain E(t) (see, e.g., [1, 9, 10, 18, 21]) 
and then with the notations of [2] A 0 (t) E H(E(t),E1). 

Part B: Using the relation ,c = (k 1 ) and the fact that, for w E L2 (G) x 
w2 2

D--(0)iJ2(0) = –c(t)w 2 (0)11J2 (0)	and	
9w2 

we find that, for all w E L2 (G) x W)(G), 

R(A(t)w, W)L2(G)2 

=11(kd – a,)  f w i Iiiidx+kia2 fow2iJJ2dx 
Jo  

—Ka2 I	fWIU72dx 
Jo K  

+ c(t)w2 (0) 2 (0) + D I 0w2	 '5w2 

	

dx+c(t)	—iiJ2dx I 

Jo '9x ax	10 a 
1	 1 

_–(kd –a 1 )I Iw iI2dx + k i a2 I w22dx 
Jo	 Jo 

1	 k1a1 

fo' –,ca2Rfo.w2iiTidx+__—RwiiiJ2dx 
 K  

+ c(t)1w2 (0)1 2
 + DJ ôw2thD2	' 1

—dx + c(t) 1w2 2 
Ox ax	)l 

=(kd–aI) I Iw 1 1
2dx + k i a2 I lw2I2dx 

Jo	 JO 

+D I 1ôw2 l 2	c(t) 
dx + —;— [ 1w 2 (1)1 2 + w2 (0)12 ] . 

OX	2

(37)
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Equation (37) immediately gives that for w € L2 (C) x W ) (G) we have the estimate 

R(A(t)w, w ) L 2 (G))2 2 min{k - a1, kIa2 }ll w ll(G)XW 12 (G) .	(38) 

Part C: Equation (38) and Part A imply that for p = 2 

	

a(Ao(t)) C {z € Cl Rz 7)	(t > 0)	 (39)

where y = min{kd - a 1 , k i a2 }. Here -y is positive since 

kd(Ilm - kd)  kd — a l =	 and	kia2 _ kim_'c4 
YM	 -	iimk2 

are positive for relevant parameter values. Since C is bounded we know (from elliptic 
theory) that inclusion (39) is valid for any p > 1 

The continuity of c, inclusion (39) and well-known estimates for elliptic operators 
(cf. [1: p. 42]) imply that for any a > --y and w > 0 

aI+A( . ) E 

where K >0. The space C(+,H(Ei,Eo,#c,w)) is defined as in [2: p. 11]. Furthermore, 
we find that (for 0 < p < 1) 

Hence when [ c]cp_(j + ) is small enough we find that [2: Assumption (II. 5.0.1)] holds. 
Choosing fi	= , [2: Lemma 11.5.1.3] implies the assertion U 

Remark 3. Based on the assumption lJlc ( k ) < 5 it can be concluded that 
[c]c,. — ) < 6 when p = 1. 

The evolution operator of A(t) - 0I is 

U(t, T)	etfhl o U(t, r) 0 

for 0 < 3 1 < fl. This evolution operator satisfies for w € C() x W'P (G) and for 0 < r < t the estimates 

II U(t, r)w113	 )(i-r) 1I
w 113	 (40) 

II U ( t , 7- )w 113 5 .A4(t - T) e_($fu)(1_T)11w114	 .(41) 

where the norms are given in Theorem 1. 

3.2. Local asymptotic stability. Here we prove a result about the long-time be-
haviour for the solutions of problem (5) - (7). The basic idea of the proof is standard 
(cf., e.g., 131). However, the verification contains some special estimates which must be 
computed. In the proof we establish the required estimates. The proof is given in Parts 
A. B, and C.
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Theorem 2. Let max{, 1 1 < ce < 1. Then there exists a constant 5 > 0 such that 
if

IIe''(c — ) II	< 5,	II e 'IIoo < 5	 (42) 

-	< 5,	ii'' S ii	< 5	 (43) 

and if
IIuo — UIIC()xWp(G) < 5,	 (44) 

then
t ) II u (,	—	IIc()xw.P ( G) = 0. tl _m, (45) 

Proof. Part A: Denote V = e$ltv. Then system (33) becomes 

dV + [A(t) — thI]V = ehtF(t,e_fhtV)
(46) 

V(0) = e 10 v0	Vo.	J 

Consider the nonlinearity	(t, V) = efhtF(t, e' t V). We find that 

(t, V) =	 Ka2s(t) + cg, —IC(t) -	+ k i a2 s(t) - k 1 g + i(t)) 

g = g (e_11tVi,e_fhtV2 — S(t) 

Since G = (0, 1) C R, the Sobolev inequality implies that 

II U II C() < C1II u IIw .,P (G)	(u E W"(G)) 

when - <ci. Hence due to Lemma 1 we find that there exists constants 0 < 5' < 1 and 
C2 > 0 such that for 11 V 113 + Il s II	< 5' (c.f. Theorem 1 for the norms) 

II( t , V )114 <c2 {ii v ii	+	e t s(t)I +	e"[c(t) —	+	et(t)	
}. (47) 

Part B: We find, by adding and substracting a term in (29), that 

S(t) ={c(t)_(0) — E1[S(t) —] —	[c(t) -?]}. (48) 

By differentiating this equality we have 

i(t) = — Dé(t) 
I c(t)—	

U2(0) —	[S(t) _3;] —	[c(t) - 

+	{	
-	S(t) — E-(t) —
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The assumptions imply that Id, and ISI, I S P are bounded from above and that c is 
bounded from below by a positive constant. Hence there exist constants C3 > 0 and 
C4 > 0 such that

C3 { IC(t) - I + IS(t) - 31)	 (50) 

Ii(t)I	c4 { Ic(t) -	+ IS(t) - I + k(t)I + I(I }.	 (51)

In addition, we find that II T'o 113 <5' if 

	

61	 5' 
ll uo - u113 < 2max{K, 11	and	Is(0)I < -.	( 52) 

Part C: Suppose that Il VoII3 + IIIIc, < 5'. Then there exists t' > 0 such that 
V ( t )IIa + Il s ilco < 5' for t e (0,i'). Due to (47) and (50) - (52) we get for t E (0,t') 

II V ( t )113 = U(t, 0)V0 + j U(t, r)(7-, V(r)) dr 

II U ( t , 0) V 113 + f 	T)F(T, V(T))113d7- 

<Me

	

	—$,)t11 V0 + I M(t - r)__e__$t_T)IIII4dT
Jo 

	

• PJe_ U3_1)t IiVoIi 3 + I M(i - r)__e__I)(t_T)	 (53)
Jo 

X{ c2IIv(T) 
2 113 + e ' T s(T)I + e[c(r) -	+ le 1r (T)I }dT 

sup II Vr )II + Ile'slI 
• Me —8,)t11 V0 + MC2{

1(30

+ II e ' (c - ) lI	+ IleII} Te__$)TdT 

where the abbreviation IIlI4 = Il(T, V ( r ))114 was used. From (50) - (53) we are able 
to conclude that there exists 5 > 0 such that if 

II e ' ( c - ) II	< 5,	Ii e ' ): Iloo < 5 

	

- )II	< 5,	ll e ' S Iloo < 
and if

Uo - 11 3 < 6, 
then

II V ( i )113	s	(t e [0,t 1 ))	=	II v (0113 5 So < 5	(t E [0,t1)). 

	

This implies that V is bounded (II V ( t )113	Si) on	, that is, v satisfies IIv(t)113 
Cse hi for all t E fit Hence, due to the assumption, we have 

II u ( t ) - ' IPa = II U ( t )113 = 1K	, V2 - () ) I13 < C6 { II v ( i ) 113 + Is(t)I } < C7 e' . 

This completes the proof U
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4. A remark on the output tracking problem 

One of the specific questions in the controller design related to problem (5) - (7) is the 
solvability of the following output tracking problem: 

For the given reference function y E C(k+) with 0 < y*(i) < 5(t) for all t E R+ 
find the control c = c(u,y) (sufficiently smooth) such that the output 

Y( t ) := u2 (1, t) = y(t)	(i E 

at least approximately and/or asymptotically. Also, the stability (in appropriate spaces) 
of the associated closed loop system is significant in practical situations. For example, 
changes in S cause disturbances in the state and output of the system. 

In mathematical setting the producing of the prescribed reference output y(t) 
means the non-homogeneous boundary condition 

	

u 2 (1,0 = y(t).	 (54) 

From
t9u

= —kdul +f(ui,u2) 

u i (x,0) =1(x) 

we can at least in theory solve the unknown u 1 , say u 1 = O(u 2 ,t). From (6) we obtain 

D	(0, t) 
- U2(0, t ) - s(t) 

Hence we find that u 2 satisfies the problem 

0u 2 02 u	D'(0,t) 5u 2 2 =	-  
U 2(0, t ) — s(t)ax - k

i f(9(u 2 ,t),u 2 )	 (55) 

u2(1,t)=y(t), thL2---(1,0=0	 (56) 
ax 

u 2 (x,O) =i2 (x).	 (57) 

Denoting V1 = u 2 and V2 = ' problem (55) - (57) gets the form ax 

rn"1 
—=V2 

av2 - 1 ÔV1 +	V2(0,t)	
2 +	f(8(Vi,t),V1)	

(58) 

5xDOt	Vi(0,t)—s(t) 

Vi (x,O)=112 (x)	 (59) 
V1 (1,0 = y(t), V2 (1,0 = 0.	 (60)
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Furthermore, we denote W1 = V1 — i2 (x) and W2 = V2 . Then we have for W = (W1 , W2) 

ow

}	
(61) 

141(1)= (Y * ( t ) —112(1), 0) 

where A is an operator L(R+)2 - L,(R.)2 such that 

D(A) = L(1R) x W"(R),	AW = - (w2 , 1 i) 
D at 

and

/ O12	W2(0)	 k 
W2 + F(t,W) = W1 (0) +112(0) - s(t)	f(9(w1 +i2 ,t),W1 +112)). 

In this approach the existence and stability properties of system (61) would be inter-
esting. The corresponding control law is given by 

W2 (0, t) C= 
W1 (0,t)+112(0)—s(t) 

The solvability of the output tracking problem given above remains open. 

Acknowledgement. Part of this work was supported by the Academy of Finland, 
Research Council for Natural Sciences and Engineering (Project no: 37462, 1997) which 
is greatly acknowledged. 

References 

[1] Amann, H.: Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value 
problems. In: Function Spaces, Differential Operators and Nonlinear Analysis (eds.: H.-
J. Schmeisser and H. Triebel; Teubner-Texte zur Math.: Vol. 133). Stuttgart-Leipzig: 
Teubner 1993, PP . 9 - 126. 

[2) Amann, H.: Linear and Quasilinear Parabolic Problems. Vol. I. Basel: Birkhäuser 1995. 
[31 Banks, S. P.: State-Space and Frequency-Domain Methods in the Control of Distributed 

Parameter Systems. London: Peter Peregrinus Ltd. 1983. 
[4] Curtain, R. F.: Equivalence of input-output stability and exponential stability for infinite-

dimensional systems. Math. Systems Theory 21(1988), 19 - 48. 
[5] Curtain, It. F. and H. J. Zwart: An Introduction to Infinite-Dimensional Linear Systems 

Theory (Texts in Applied Mathematics). Berlin: Springer 1995. 
[6] Danckwerts, P. V.: Continuous flow systems. Chem. Eng. Sci. 2 (1953), 1 - 13. 
[7] Dochain, D., Babary, J. P. and N. Tali-Maamar: Modelling and adaptive control of non-

linear distributed parameter bioreactors via orthogonal collocation. Automatica 28 (1992), 
273 - 283.



Stability of a Distributed System	93 

[8] Dochain, D.: Contribution to the analysis and control of distributed parameter systems 
with application to (bio)chemical processes and robotics. Thesis. Louvain (Belgium): 
Universite Catholique 1994. 

[9] Friedman, A.: Partial Differential Equations. New York: bit, Rinehart & Winston 1969. 
[10] Goldstein, J. A.: Semigroups of Linear Operators and Applications. Oxford: Univ. Press 

1985. 
1111 Goldstein, J. A. and J. Tervo: Existence results of solutions for a system of nonlinear 

partial differential equations related to bioreactors. Dyn. Syst. Appl. 5 (1996), 197 - 210. 
[12] Isidori, A.: Nonlinear Control Systems. Berlin: Springer 1989. 
[13) Julien, S., Babary, J. P. and M. T. Nihtilä: On modelling of boundary conditions and

estimation for fixed-bed bioreactors. Math. Modelling of Systems 1(1995), 233 - 243. 
[14] Lions, J. L.: Optimal Control of Systems Governed by Partial Differential Equations. New 

York: Springer 1971:	- 
[15] Logemann, H. and H. Zwart: On robust P1-control of infinite-dimensional systems. SIAM 

J. Contr. Optim. 30 (1992), 573 - 593. 
[16] Logemann, H. and S. Townley: Low-gain control of uncertain regular linear systems. 

SIAM J. Contr. Optim. 35 (1997), 78 - 116. 
[17) Nihtilã, M. T., Tervo, J. and J. P. Kaipio: Simulation of a nonlinear distributed parameter 

bioreactor by FEM approach. Simul. Practice and Theory 5 (1997), 199 - 216. 
[18] Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equa-

tions. Berlin: Springer 1983. 
[19] Protter, M. H. and H. F. Weinberger: Maximum Principles in Differential Equations. 

Englewood Cliffs: Prentice-Hall 1967. 
[20) Salmi, T. and J. J. Romanainen: A novel exit boundary condition for the axial dispersion 

model. Chem. Eng. and Proc. 34 (1995), 359 - 366. 
[21] Tanabe, H.: Equations of Evolution. Pitman, 1979. 
(221 Tervo, J. and M. T. Nihtilä: Stability for linearized control system related to a fixed-

bed bioreactor. Summary in paper form: J. Math. Systems, Estimation, and Control 8 
(1998), 483 - 486; full paper (pp. 1 - 24) in electronic form: ftp://trick.ntp.springer.de/  
pub! jmsec/49864.ps.gz. 

[23] Tervo, J., Vauhkonen, M., Ronkanen, P. J. and J. Kaipio: A three-dimensional finite 
element model for the control of certain nonlinear bioreactors. Report. Ruopio: Dept. 
AppI. Phys. Univ., Report 4, 1996. 

Received 27.02.1999


