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Abstract. We show in a novel way that periodic pseudodifferential operators are pseudodiffer-
ential operators in Hörmander's definition. In our approach, commutators a la Beals, Dunau, 
Coifman and Meyer on R" and on closed manifolds are involved. 
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1. Introduction' 
Pseudodifferential operators are a natural generalization of linear partial differential 
operators on R'2 . These operators act on a suitable test function space by weighing the 
Fourier transform "nicely". 

In a series of path-breaking papers in the 1960's, Hörmander set the study of pseii-
dodifferential operators on a solid basis, and pseudodifferential operators on manifolds 
were defined locally using Fourier integrals on R". In 1979 Agranovich [1] proposed, 
crediting L. R. Volevich, a global definition of pseudodifferential operators on the unit 
circle S', called periodic pseudodifferential operators. Of course, the definition was 
readily generalizable for any torus V1 . Due to the group structure of T", by exploit-
ing Fourier series representation these new operators admitted globally defined symbols 
instead of mere local analysis. 

It is a non-trivial fact, however, that the definitions of pseudodifferential operators 
on a torus given by Agranovich and Hörmander are equivalent. Agranovich proved this 
in [2] in the special case of classical operators, and later without some details in [3] in the 
case of the Hörmander (1,0)-operators. Another treatise of the classical operators was 
presented in (15]. A complete proof was provided by McLean [131 for all the Hörmander 
(p, 5)-classes. McLean proved the equivalence of the global and local definitions by 
directly studying the charts of the tori. Recently, another proof of this type was given 
in (14] for the (1,0)-class. 

In this paper, we give one more approach, described as follows: 
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On a smooth closed manifold pseudodifferential operators can be characterized by 
taking commutators with vector fields, i.e. first order partial derivatives. This approach 
is due to Beals [4], Dunau [8], and Coifman and Meyer [6]; perhaps the first ones 
to consider these kinds of commutator properties were Calderón and his school [5]. 
For other contributions, see also [7, 181. The commutators provide us a new, quite 
simple way of proving the equivalence of local and global definitions of pseudodifferential 
operators on a torus, and we derive related commutator characterizations for operators 
of general order on the scale of Sobolev spaces. 

The structure of the paper is following: First, we review necessary pseudodifferen-
tial calculus on l, obtaining a commutator characterization of local pseudodiffercntial 
operators (Theorem 2.1). After that, a corresponding global characterization is given 
on closed manifolds (Theorem 3.1). Lastly, the global symbol analysis of periodic pseu-
dodifferential operators is studied in analogy with the symbol analysis on R', and these 
operators are proven to be precisely the Hörmander pseudodifferential operators on 
(Theorem 4.2). 

2. Pseudo differential operators on Euclidean spaces 

In this section we refresh some necessary background on pseudodifferential analysis on 
Euclidean spaces (see [11, 16, 17, 19] for more information). The commutator charac-
terization of local pseudodifferential operators on R provided by Theorem 2.1 is needed 
in the next section for the commutator characterization result on closed manifolds. 

Let S(R) be the Schwartz test function space of smooth rapidly decreasing func-
tions on R with the usual Fréchet space structure. Its dual S'(ll') = £(S(R'), C) with 
the weak* topology is the space of tempered distributions, and we denote (, u) = u(q) 
when 0 E S(R') and u E S'(R'). The Fourier transform .T E £(S(R")) is an isomor-
phism given by

u(e) = (u)() IR. u(x)e	dx 

where E R'. By the duality (,z) = (,u), the Fourier transform extends to iso-
morphism ..T E £(S'(R)) and we consider S(R) as a natural subspace of S'(R'2), 
so that	f,, (x)(x)dx when 0, 0 E S(R). The Sobolev space H 3 (R) C 
S'(R') (s € IR) is the completion of S(lR') in the Sobolev norm	11H(R) correspond-




ing to the Sobolev inner product (., )H-( n ), defined by 

=	j ( i + dC 

where ei ( + ... + An operator A E £(S'(R)) is said to be of order (or 
degree) m E IR on the Sobolcv scale (H 3 (R)) 3 , if it maps H 3 (R') into H3m(R') 
boundedly, for every s E R. 

The symbol 0 A of a linear operator A : S'(IR'1 ) - S'(IR'3 ) is the distribution 

=	(Ae) (x),	 (1)
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where e(x) =	and x, € R. Conversely, A € £(S'(R")) can be retrieved from 
its symbol. Indeed, the classical relation (0, V; ) =	 for the test functions 

,t/.' E S(R') extends to (,u) =	 where u € S'(IR"). Thereby the

formula

(Au)(x) - ' JRn aA(x, e)u() e' d	 (2) 
- 

is interpreted by duality, i.e.

(,Au) = (A', u) 

- - (2,r)" 
= 

where A' € C(S(R)) is defined by the duality (A', u) = (,Au). The distribution 
Au can be viewed as a ci A -weighted inverse Fourier transform of ü, as a weak integral 
of Pettis (9] in a wide sense. Unfortunately, even the algebra of the finite order op-
erators on the Sobolev scale is too large to admit fruitful symbol analysis, while the 
non-trivial restrictions by the symbol inequalities (3) yield a well-behaving algebra of 
pseudo different ial operators. 

A linear operator A : S(R") -* S(R') is called a pseudodifferentzal operator of 
order (or degree) in on R", denoted by A € OpS m (R"), if its symbol given by (1) is a 
C'-function C A : R'1 x R" -4 C satisfying the symbol inequalities 

aaaA(x,)I	C0 (1 + Iel) m_ ,	 (3) 

uniformly in x for every e and for every multi-index a, 0 € N. Here No is the set of 
non-negative integers including 0, l a l = a 1 +	+ a,	()' . . . (- 	and ati=	.. •(-)". Then 0A is called a symbol of order (or degree) in onaXn 
O4 € Sm(R'). 

Actually, if ciA is any smooth function satisfying inequalities (3), the operator A 
which it defines by (2) belongs to £(S(R')) and is necessarily of order m on the Sobolev 
scale. 

The class of pseudodifferential operators just defined contains only those of the 
partial differential operators that have bounded smooth coefficients. Therefore it is 
often more convenient to work with a less restricted class. Let Cr(lR) denote the set of 
compactly supported smooth functions. A linear operator A defined on C&'°(R") is called 
a local pseudodiffereniial operator of order m € IR on R'1 , A € OpS(R'1 ), if € 
OpSm (IR") for every 0,0 € C0°°(R"). Naturally, here ((q5A)u)(x) = q(x)A(t4'u)(x). 
In fact, it suffices to check that OA € OpS m (R") for every 0 € C'°(lR'2 ). Equivalently, 
A € OpSf(R"), if it can be presented in the form 

( Au )( x ) - ' J a(x, )ü()etz d, - " 

where the smooth function a satisfies the symbol inequalities 

:5 CO 3 R( 1 + ll)m_1O,
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uniformly in x E K, for every compact K C R" and for every E R', a,,8 E N. 

In addition to the symbol inequalities (3), there is another appealing way of char-
acterizing pseudodifferentia.I operators, namely via commutators. This characterization 
dates back to [4] by Beals, to [81 by Dunau, and to [6] by Coifman and Meyer. We 
present a related result, Theorem 2.1, about local pseudodifferential operators. 

Let us define the commutators L(A) = [O, , A) and Rk(A) [A, M,,, 1, where M1 ,, is 
the multiplication operator (M f)(x) = xkf(x). Set R =	. . . R" and accordingly 

=	.. . La" for multi-indices a and fi, with the convention L3° = I R. 
Theorem 2.1. Let deg(C) denote the degree of a partial differential operator C on 

R". Let rn E R, and let A be a linear operator defined on C'°(R'1). Then the following 
conditions are equivalent: 

(i) A E OpSj(R). 
(ii) For any q5,?b E C000(R"), any s e R and any sequence C = (C) 0 C 

OpS/0 (R) of partial differential operators, 

I Bo = çbA,b E 

B+ 1 = [Bk, Ck] E £(H(R), H_m+dc.k(Rn)) 

holds where dc,k =	- deg(C)). 
(iii) For any	E C000(R'), any s E R and every a,13 E 

Ra L$ (cbA Tl,) E £(H 3 (IR"), H3_(m_I&I)(ffr)) 

holds. 

Remark. At first sight, condition (ii) in Theorem 2.1 may seem awkward, at least 
when compared to condition (iii). However, statement (ii) does not resort to the sym-
metries of R', so that it can be applied in the pseudodifferential analysis on manifolds. 
Also, notice the similarities in the formulations of Theorems 2.1 and 3.1, and in the 
proofs of Theorems 2.1 and 4.2. 

Proof of Theorem 2.1. First, let A E OpS'(RY'), and fix 0, b E C000 (R'1 ). Then 
B0 = OAV, E OpS m (R"). Let x E C'°(R") be such that x(x) = 1 in a neighbourhood of 
the compact set supp()Usupp(')C R", so that Bk+I = [Bk,Ck] = [Bk,xCk). Notice 
that XCk E OpSd05(c)(RI). Hence by induction and by a well-known property of 
the commutators of pseudodifferential operators (see, e.g., [11]), it follows that Bk+l E 
O PS- _dc.k(1W.). This proves the implication (i) 

It is really trivial that (ii) implies (iii). Then assume (iii), and fix q5, E C000(R'); 
we have to prove that OAO E OpSm (R"). Let x E C&'°(R'3) be such that x(x) = 1 in 
a neighbourhood of the compact set supp () U supp () C IR". Evidently, OAik maps 
S'(R") into S'(lR'), and formally

= 

= e(R'L(c5Atb)(xe))(x).
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If 2s > n = dim (R') (s E N), then 

lu(x)I< —i-- I li(e)lde

	

2	 12 
I 

1 1( 1 + ICIY 2 ' dl [J (1+ lCD 2 l u (C)l 2 dl (2ir)

	

Li	.1	LIR' 

= CsllullH.()
I 

	

C;	11 a.,U2	1 llH0(lfl)1 

so that	-	 - 

C ( 1: II	 HO(Rn 

= c(	le (RaL(A)) (Xe)IIo(n))

I 
2 C

	
lle_ll(Ho())llRaL	

2 

By the Peetre inequality 

(1 + li + CD3 < 2131(1 + 11) 13I (1 + Cl) 3	(s E R; i, C E R')	(4) 

it holds that

llX e llH-I o ( n ) = (IR (1 + lI) 2 ( m_ I ()l2d) 

= (j (1+ 1,7 + C1)2(m_	I(ii)l2dq) 

21m	lIxIlH-III(n)(I + ieir'°' 

Hence 'ôô(x, C) < C0fl ,(1 + 

	

I	r	A 

- and consequently AE OpSf(Rn ). Thus (i) is obtained from (iii) I
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3. Pseudo differential operators on closed manifolds 
In this section we consider pseudodifferential calculus on manifolds [3, 11, 17, 19], and 
the main result is Theorem 3.1 about a commutator characterization (cf. Theorems 2.1 
and 4.2), which was stated by Coifman and Meyer [6) in the case of 0-order operators 
on L2 (M) (see also [8) for a kindred treatise). This will be applied to periodic pseudod-
ifferential operators in the final part of this paper. The differential geometry needed in 
the study is quite simple, sufficient general reference being any text book in the field, 
e.g. [10). 

A compact manifold without boundary is called closed, and throughout this section, 
M is a closed smooth orientable manifold. C(M) is the set of smooth complex-valued 
functions on M, and C(U) is the set of smooth functions with compact supports in an 
open set U C M. If A: C(M) - C'(M) and 0, 0 E C°°(M), we define the operator 
4'At,b: C°°(M) —+ C°°(M) by ((4'A)u)(x) = 4'(x)A(u)(x). 

If (U, ic) is a chart on M, the n- transfer 

C'(c(U)) - C°°(ic(U)) 

of an operator A : C°°(U) - C(U) is defined by 

A,u = A(u o Ic) 0 IC1


Similarly, the Ic-transfer of a function 4' is c	4' o	Notice that ( 4'Au ),c = 
(4'A),c(,c), and that the transfer of a commutator is the commutator of transfers: 
[A, B),, = [A,,B,1]. 

Pseudodifferential operators on the manifold M in the Hörmander sense are defined 
as follows: a linear operator A : C'°(M) - C°°(M) is a pseudodifferential operator of 
order (or degree) rn E R on M, if for every chart (U, K) and for any 4', 0 E C — (U), the 
operator ( 4'A,), is a pseudodifferential operator of order m on R". It is known that 
the class of pseudodifferential operators of order m on R' is diffeomorphism invariant, 
implying that the corresponding class on M is well-defined. We denote the set of 
pseudodifferential operators of order ni on M by 'I'm(M). 

Let DO(M) be the *-algebra 

DO(M) = UDOkM) 

where DO'(M) is the set of at most k-th order partial differential operators on M with 
smooth coefficients. Here, DO°(M) C— (M), and DO'(M)\ DO°(M) corresponds to 
the non-trivial smooth vector fields on M, i.e. the non-trivial smooth sections of the 
tangent bundle TM. A differential operator D e DO(M) defines a seminorm PD on 
C°°(M) by

PD(u) = sup (Du)(-)[.

rEM 

The seminorm family {PD : C(M) - R}DEDO(M) induces a Fréchet space structure 
on C°°(M). This test function space is denoted by D(M), and the distributions by 
V'(M) = £(V(M),C).



Commutator Characterization of Operators	101 

The Sobolev space H(M) (s E R) is the set of those distributions u E V(M) 
that (cbu), E H ,1 (Rn ) for every chart (U, ,c) on M and every 0 E C'°(U) (see [11, 12, 
17]). Then equalities C°°(M) = fl, j H'(M) and V(M) = USERH3 (M) hold. Let 
U = {(U,, be a cover of M with charts. Due to the compactness of M, we can 
require the cover to be finite. Fix a smooth partition of unity {(U3 , ,)} with respect 
to the cover U. Then equip the Sobolev space H-(M) with the norm 

112 
IIUIIH(M),{(uj,M)} = (

	
II(ju) 

J 

In fact, any other choice of U, rj , çb, would have resulted to an equivalent norm. More-
over, H 3 (M) is a Hubert space. A linear operator A on C(M) is said to be of order (or 
degree) in E Ron M, if it extends boundedly between H-(M) and H5m (M) for every 
s E R. Thereby operator A has also the continuous extension AD' : V(M) - D'(M). 
As in the case of R', any of these extensions coincide in their mutual domains, so that 
it is meaningful to denote any one of them by A. 

Naturally, D e DO"(M) is of order (degree) deg(D) = k. Recall that the algebra 
DO(M) has the well-known "almost-commuting property" 

DO) (M),DOk(M)] c DO'"'(M 

which follows by the Leibniz formula. Actually, pseudodifferential operators are char-
acterized by "almost-commuting" with differential operators: 

Theorem 3.1. Let in E R and let A : C°°(M) —+ C°°(M) be a linear operator. 
Then the following conditions are equivalent: 

(1) A E 'I'm(M). 
(ii) For any .s E R and for any sequence V = (D). 0 C DO'(M), 

A = A E r(H3(M),Hm(M)) 

A	= [Ak,Dk] E 

holds where dD,k = > ( 1 — deg (D,)). 

The following auxiliary result can easily be generalized to smooth paracompact 
manifolds: 

Lemma 3.1. Let M be a closed smooth manifold. Then there exists a smooth 
partition of unity with respect to a cover U on M such that UUV is a chart neighbourhood 
whenever U, V E U. 

Proof. Let V be a cover of M with chart neighbourhoods. Since M is a compact 
metrizable space by the Whitney Imbedding Theorem 1101, the cover V has the Lebesgue 
number A > 0, i.e. if  C M has a small diameter, diam(S) < A, then there exists V e V 
such that S c V. Let W be a cover of M with chart neighbourhoods of diameter less 
than A , and choose a finite subcover U C W. Now there exists a smooth partition of 
unity on M with respect to U, and if U, V E U intersect, then diam (U U V) < A. On 
the other hand, if U fl V = 0, then U U V is clearly a chart neighbourhood U
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Proof of Theorem 3.1. (i) = (ii): Assume that A E m (M). Lemma 3.1 pro-
vides a smooth partition of unity {(U,)} 1 such that U1 U U, is always a chart 
neighbourhood, so that the study can be localized: 

A =
1=1 j=i 

Let (U1 U U,, K 1 ) be a chart. Now çb 1 , Oj E C(U1 U U3 ), so that (q5 1 Aç), ,, is a pseu-
dodifferential operator of order m on R', hence belonging to £(H3(Rt),H3_m(Rv)). 
Thereby cbA =	 belongs to £(H(M), H 3 (M)), and consequently 

ii 

A e £(H3(M),H3_m(M)). Thus we have the result 'P m (M) C £(H3(M),H3_m(M)). 
In order to get (ii), we must also prove the inclusions 

['I'm(M),DO'(M)l C I' tm (M)	and	[4m(M)DOO(M)] c m_l(M). 

Let A E 'IJrn (M) and D E DO'(M), and fix an arbitrary chart (U, r,) and arbitrary 
functions 0, 0 E C000 (U). By a direct calculation, 

[A, D14' =	D] - A[ ' , D] - [, DJAb, 
so that

([A, D1). = [(A7), D] - (A[, D]) - ([, D1A),. 
Because A E 'I' tm (M), Theorem 2.1 implies that the operators on the right-hand side of 
the previous equality are pseudodifferential operators of order rn - (1 - deg (D)) on R'. 
Therefore [A, DI E am_(l_des(D))(M) proving the implication (i) =. (ii). 

(ii) = (i): Let A : C(M) - C'(M) satisfy condition (ii), and fix a chart (U, c) 
on M and 0, b E CO—(U). To get (i), we have to prove that (cbAT,b),c E OpSrn(R") 
which by Theorem 2.1 follows, if we can prove the following variant of condition (ii): 

(ii)' For any s E IR and for any sequence C = (C), 0 C OpS,'.,(R") of paFtial 
differential operators, it holds that 

J B0 = (AT,b) E .C(H 3 (ilr), H'm(R)) 
j Bk+I = [Bk,Ck } e 

where dc,k =	- deg (C,)). 

Indeed, B0 = (cbA?,b),. E £(H 3 (lR 1 ) , H 3_m (Rt)) by (ii). Let x E C000 (K(U)) such that 
x(x) = 1 in a neighbourhood of the compact set supp() U supp() C R". Then 
define V = (D)L0 C DO'(M) so that DjIM\u = 0 and D,Iu = (xC,)-i . Then 
dp,k ^! dc,k, and due to condition (ii), we get 

Bk+l = [Bk,Ck] 

= [Bk,XCk] 

= 
E £(H'(R), H3_m+dv,k (lR')) 

C £(H(1R), Hsm+ cic,k (Rn)) 

verifying condition (ii)'. Hence A E 41m (M) I
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The pseudodifferential operators on M form a *-algebra. 

'I'(M)= U tIIYn(M). 
MER 

where 'I' tm (M) C £(H3(M),H3_m(M)). It is true that DOc(M) C Ji c (M) , and 'I'(M) 
has properties analogous to those of the algebra DO(M). Especially, pseudodifferential 
operators "almost commute", EI1m1(M),41m2(M)] c pmI+m2_I(M). 

4. Periodic pseudo differential operators 

On the torus T'1 = R'/Z" one has a well-defined global symbol analysis of so called 
periodic pseudodifferential operators (see [20 --221). As it was mentioned in the intro-
duction, this set of operators is known to equal 'I'(T"). In this section, we provide a 
new proof of this fact by applying Theorem 3.1. To get a good comprehension about 
the periodic pseudodifferential calculus, it is advisable to compare the material in this 
section to the pseudodifferential calculus in Section 2. 

Let

{ e	: T , -4 C e Z", e21(x) = &21 

be the basis of the space of trigonometric polynomials, Pol(T"), which is dense in the 
test function space C°° = D(T Th ) with the usual Fréchet space topology. The Fourier 
transform of a test function u E C 3 is the function ü: Z" -* C defined by 

u() = J u(x)e24(x)dx. 

The Fourier transform is generalized to the distribution dual, and the inner product for 
the Sobolev space H3 (T") (s E R) is 

(u,v)H.() = > ( 1 + IeI)23u(3(e). 
tEZ-

The associated Sobolév norm is II U IIH . ( T . ) = (u,u),.(). 

The symbol of a linear operator A: Pol(T') --+ C°° is defined by 

UA( X , ) = e- i21	(Ae27 )(x).	 (5) 

The mapping a can be viewed as an additive group homomorphism: aA+B = Cr A + o, 
but usually aAB o• Conversely, a smooth function a : x Z" --+ C defines a 
linear operator Op(a) : Pol(T') -+ C°° by 

Op(a)u(t) =	 (6) 
-	EZ 

By (5) and (6), a is the symbol of Op(a).
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A function or : Tn x Z' - C is called a symbol of order m E R, a E Sm (T'), if it 
is a C°°-smooth function in the first argument and if it satisfies the following symbol 
inequalities for every x E T' 2 and E Z": 

V,J3 e Nn 

	

0 3C. ,3 ER:	j Laa (x ,e)I ^ C.'6 (1 + II)m_ 1 0 1 .	(7) 

	

The partial difference operator A' 	
.•• 

L" is defined by 

(Af)() = f( + ,) - f() 

where S = (jk)1 E Z', and 5jk is the Kronecker delta. The corresponding operator 
Op(a) given by (6) is then called a periodic pseudodifferential operator of order m, 
Op(a) e OpSm(T). 

Difference operators resemble differential operators closely. For instance, the dis-
crete Leibniz formula holds:

+ -y )	 (8) 

where u, v : Z" - C. Notice the shift by 7 in the argument of V. 
We are going to prove that OpS rn (T l ) = W m (T Th ). We start by showing the con-

tinuity of the periodic pseudodifferential operators between Sobolev spaces, without 
resorting to pseudodifferential calculus on lR'. This is a piece of folk-lore in the field, 
but since we cannot give any reference other than [22] or [20]; we present a proof here. 
The proof in [22] is of another type. The reader should notice the similarities between 
our treatment of Theorem 4.1 on T' and the corresponding proof on R" in [19]. 

Theorem 4.1. Let A E OpS m (T") and s E R. Then A E £(H3(T),H3_m(r)). 

First, we state two lemmata. They are easy to verify and thus the proofs are not 
presented. 

	

Lemma 4.1 (Discrete Young inequality). Assume that h : Z' x zn	C is a

function satisfying 

	

Cj = sup	I h(7,e)I <oc	and	C2 = sup	I h(7,e)I <cc. 

	

eEZn	
TIE

Zn
 

For any sequence f E e = £P (Z') (1 5 p 5 oc) let us define the function g : Z" - C 
by g(ii) = > h(ii,)f(e). Then

Li 
11911" C' C If IIe 

where q is the conjugate exponent of p. 

Lemma 4.2. Assume that a E S m (T"), and let be its Fourier transform with 
respect to the first argument. Then, for every a E Nn and r E N0, 

(1)I 5cr(1 + ,I)(' + IeI)mIaI



Commutator Characterization of Operators	105


Proof of Theorem 4.1. First we calculate the Fourier coefficients of Au, where 
u E C°°:

Au(x) =	a.4(x, e)u(e)e12' C 
C 

=	i [	
&A (77, Ue 2'ti ] 2()et27r'C 

= >i- ,	c2 t1. 

In the subsequent estimation process for the following steps are taken: 
we move the absolute value under the summation over , and then we successively 
apply the inequalities of Peetre (4) and Young (Lemma 4.1 with p = q = 2, h(i7 ,) = 
(1 + l - j)I3mI( - II)_ m l A( -	and f() = (1 + lI)'I()l) and Lemma 4.2 

(with jal = 0), in this order, yielding ll AU llH ._ m(l) :S C ujj.(1Jn), i.e. 

llAu 2 
llH-"'(T") 

= I(' + ID2(3m)IA)I2

2 
=	(1 +	 -

2 

10 + ll)' -m l &A( -	)llü()ll 
j

2 

:5 2	I	(1 + l - 1)1 3m (1 + lel) m l &A( - ,e)1( 1 + ll)lu()ll 
'lte	 J 

sup(1 + l - el)''( 1 + lel) m I &A( -	) l 1 
1j 

X ISUP	 (1 + 177 	l)(l + lel) m l aA( - ee)ll I(1 + lel)23lul2l 
Le 17 iL 

22 1 3_m i SUP	Cr,00 + l - 
L'l	e	 ] 

x ICr,0(1+l -eI)13_mI_nl IlUIlH.() 
I

2 
= 22 1 3_m i {0	(1 + ll)13_m1_T] lulI.(). 

'1 

The desired extension on H 3 (T'1 ) is obtained by boundedness I
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In analogy with the pseudodifferential analysis on R", let us define the transforma-
tions L = L' L" and R' = R" ... R" acting on the periodic pseudodifferential 
operators by L,(A) = [a . j , A] and Rk(A) = [A, Cl2k I]. The symbols of these operators 
are

c7L(A)(x,) = 19 , 7A( X ,e)	and	uRk(A)(X,e) = eA(xe) 

respectively. The minor asymmetry in the latter symbol caused by el2rk is due to the 
nature of (forward) differences. The commutators are applied in the proof of the main 
theorem about the periodic pseudodifferential operators: 

Theorem 4.2. The classes of periodic pseudodifferential operators and pseudodif-
fereniial operators on T' coincide. More precisely, for any m E R it holds that 

OpSm (T") = 
Proof. Let us first prove the inclusion OpSm (T") C 'I m (T'). We know by Theo-

rem 4.1 that OpSm(T') C £(H(T'), H 3_m (T Tt)) . Therefore by Theorem 3.1, it suffices 
to verify that

[OpSm(T") DO'(T')j c OpSm(r), 
[OpSm (T'), DO°(T')] C OpSml(T12). 

This is true due to the asymptotic expansion of the composition of two periodic pseudod-
ifferential operators (see (211). However, we present a brief independent proof of the in-
clusion [OpS m ('IFn ) , DO' (Tn)] c OpSm('r). Let  E OpS m (T'3 ) and let X e DO' (T"), 
X = qf (x)ôX k (1 <k n). Now 

a[AX](x,e) = z2ek E[aA(x , + 77) - A(x, e)] q5( ij )et 2lnx ? - 

Notice that

S('lj )+t n j—	2 

E=	 sgn(1j)A(x,+77lI +•••+lJj_18j_1 +wo) 
j=1	gn(,)_I 

where

	

1	when i>O 

	

sgn(ij,)= . 0	when i,=0 
—1 when i<O 

and there are at most E, 1 ,7j I < /( 1 + Ii() non-zero terms in the sum. Hence, applying 
the ordinary Leibniz formula with respect to x, the discrete Leibniz formula (8) with 
respect to , the inequality of Peetre (4) and Lemma 4.2, we get 

[Aô[A,x](x, 0

	

+ Ifl)	(1 + lCl) m 1II+ 1 )v/1 + 17I)Im_(101+1)I+I$I+1_t. 
'7 

+ Ca0 + ICI)'°.
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By choosing r > im - (l a l + 1)1 + 1,3 1 + 2, the series above converges, so that 

zaC[AX]( x ,e)I < Cap(1 + Ieu)m_I0 

Hence [A, X] E OpSm (T'2 ). Practically similarly, but with less effort, one proves that 
[OpSm (T'), DO°(T)] c OpSm_l(T). Thus A E tFm(T"). 

Now assume that A	I' m (T'1 ); we have to prove that O'A satisfies inequalities

(7). Let us define the transformation Rk by Rk(A) = e 21r1 Rk (A) , and set R 
R"---R 	so that

fôJA(x,) = 

By Theorem 3.1, RL(A) E £(Hm_kI(Thl),Ho(lr)). Notice that 

u(x)I	: Iu()I 

[1 + IIY23]2 [Di + II)2Iü()I2] 

= CsIIuIIn.()

IIHC(Tn) 
i-i<

) 

where .s E N satisfies 2s > n = dim (T'1 ). Using this we get

I 

oUA(x,e) :5 c(
IyI<

I 

= c(	1Ic_2R0Lfl(A)e2 2	
\ 2


IlH0(T)) 

IIe_2III(Ho()) 

2	 2	
)) 

x	
4 

Cc, 13 (1 + II)m_101 

yielding A E OpSm(T')I 
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