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Domain Identification 
for Semilinear Elliptic Equations in the Plane: 


the Zero Flux Case 
D. D. Trong and D. D. Ang 

Abstract. We consider the problem of identifying the domain ci C R2 of a semilinear elliptic 
equation subject to given Cauchy data on part of the known outer boundary I' and to the zero 
flux condition on the unknown inner boundary y, where it is assumed that r is a piecewise 
C' curve and that y is the boundary of a finite disjoint union of simply connected domains, 
each bounded by a piecewiseC' Jordan curve. It is shown that, under appropriate smoothness 
conditions, the domain ci is uniquely determined. The problem of existence of solution for 
given data is not considered since it is usually of lesser importance in view of measurement 
errors giving data for which no solution exists. 

Keywords: Domain identification, semilinear elliptic equations, finitely many holes, zero flux 
AMS subject classification: 35 R 30, 35 J 60 

1. Introduction 
Let ci be a domain in R2 bounded by a known outer boundary r and containing finitely 
many internal holes represented by simply connected domains. Let -y be the (unknown) 
inner boundary of Q. Consider the equation 

A(x,u)u(x) = 0	(x E ci) 
where A(x, u) is a (possibly semilinear) elliptic differential operator. 

We address the problem of identifying the domain ci of the equation A(x, u)u 0, 
subject to given Cauchy conditions on an open portion F' 0 of r and to the condition 
of zero A(x, u)-conormal derivative on y. We note at once that the problem of exis-
tence of a solution is not considered here. In fact, as is often the case with inverse 
problems, the question of existence for given data is less important than that of unique-
ness. Indeed, data given by measurements are usually affected with errors leading to a 
problem without solution. As a consequence, one works with a problem that may not 
have a solution and hence has to resort to a regularization. The particular case that 
A(x, u) is the Laplacian is of special interest. The corresponding problem is related to 
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the detection of cracks by the electric method and has been considered in [6] for the 
special case of one internal hole, the boundary of which is star-shaped and with the 
condition of zero normal derivative prescribed on . In physical terms, the function u 
is the electric potential, the normal derivative	on r0 is the electric flux through F0 
(the conductivity being assumed to be 1), and the condition

	

	= 0 on -y means that
an 
the interior of the crack is filled with a non-conducting material (like air). The use of 
the electric method in crack detection was initiated in the pioneering work of Friedman 
and Vogelius [10). The method was applied by Kubo [13], McIver [11], Alessandrini [1, 
2] and others (see also [14]). It is noted that a variant of the problem corresponding 
to the condition u = 0 on -y is considered in [9] and in [17]. It was the case of the 
Laplace equation that motivated the present study since except for our recent paper [6], 
the published literature on crack detection by the electric method, to our knowledge, 
has been limited to infinitely thin cracks. However, the full strength our result is not 
utilized. In fact the result could find applications in heat conduction with temperature 
dependent conductivity and other problems in the nonlinear realm. These and related 
problems will be the object of a future study. 

Let ci be as above and let the internal holes in Q be represented by the simply 
connected domains w 1 , ..:,wm with disjoint closures, i.e., 

zn=O	(ij).	 (1) 

By our definition of , we have

= Ci	. 
It is assumed that -y is piecewise of C' type. We have in mind cracks in a solid, and 
thus, the discontinuities of aw i would correspond to crack edges. 

Before giving a precise formulation of the problem, several remarks are in order. 

First, the assumption of simply connected cracks excludes rectilinear cracks for 
which uniqueness does not hold with one boundary measurement (although it does hold 
with two boundary measurements). 

Second, the condition of disjoint closures (1) can be weakened. We still need the 
ws to be mutually disjoint, while, two distinct &, and c9w, can have an intersection 
consisting of a finite set of points. Note that if i9wi fl & ( i 0 j) contains a segment, 
then it can be shown that there is no uniqueness with one measurement. 

As a third remark, we note that the present approach does not apply to the 3-
dimensional case. For the latter case, we require the crack surfaces to be piecewise 
analytic (cf. Ang, Mennicken and Trong [51). 

Finally, we remark that in the case of elastic solids, stresses and displacements 
measured on the outer boundary uniquely determine the locations and shapes of internal 
cracks (Ang, Trong and Yamamoto [7,8]). We also refer to the paper of Andrieux, Abda 
and Bui [4] dealing with the problem of rectilinear or planar cracks in elastic bodies 
from boundary measurements in terms of a functional introduced by the authors.
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We now-give a precise. formulation of our problem. Let A(x,u) be a differential 
operator of the form

A(x,u)u	D(a1(x,u)Du) - c(x)F(u)	 (2) 

where F E C'(R), a, 3 e C 1 (1R2 x R) and (a,,) satisfies the ellipticity condition, i.e. 
there exists a constant co > 0 such that 

a(x,a)	^co(+e) 

for all C	(1,e2), (x,u)E R2 x R. Consider the equation 

A(x,u)u = 0
	

(3) 

subject to the boundary conditions

ulr,,f	 (4) 

a 1 (x,u(x))n(x)D1 u(x) = g(x) (x E Fo)	 (5) 
i,_1 = I 

where r0 is an open subset of r, n(x) = (ni(x),n2(x)) is the unit vector normal to ru-y 
at'x and

a(x,u(x))n5(x)Du(x)=0	(xE7.=7\{y,,...,yk}),	(6) 
1,2=I 

where {y,, ..., yk} is a finite subset of y such that 'y = 'y\{yi, ...,y} is of C' type. The 
functions c and F are assumed to satisfy 

cEC(1R2 ), c(x)>0a.e.orc0in Q	 (7) 
f,g E C(t'0 ), F(0) = 0, F'.(v) >, 0 for all v 54 0.	 (8) 

The remainder of the paper consists of two sections. In Section 2, we state the main 
result of our paper and give a counterexample. Section 3 is devoted to the proof of the 
main result.
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2. Main result, counterexample, and preliminary lemmas 

We assume that ci is in a family of plane domains with outer boundary r, and containing 
finitely many holes w (i = 1, ..., m) such that 

r, ow 1 are piecewise C' Jordan curves in R2	 (9) 
(10) 

Then we have 

Theorem 1. Let (1), (2) and (7) —(10) hold. If we have either f 0 const or g 0 0, 
then there exists at most one pair (Q, u), U E C(ci)flC 2 (ciur0 u-,)nH'(ci) for which 
(3) - (6) hold. 

We shall give a counterexample to show that condition (7) on the coefficient c is 
essential. Indeed, concerning the coefficient c in equation (3), it would intituitively 
seem that the condition c(x) 2 0 a.e. alone would ensure uniqueness. However, it is 
a classical result that this is not true. For the reader's convenience, we nevertheless 
include a counterexample. 

Counterexample. Let E e C(R) be a function satisfying 

- I>o for all x1>0 c(xi)	for all x,	0,	 (11) 

Put c(x i ,x2 ) = (x,) for all (x 1 , z2 ) E R2 and let z be the solution of the Volterra 
equation

zi 
Z(x i ) = a +fJ Z(T)z(r) drde	(a > 0).	 (12) 

Then clearly z E C2 (1R 2 ) and in view of (11), (12) we get 

z(x j )=a (x, <0)	 (13) 
z"(x 1 ) = ( x 1 )z(x 1 ).	 (14)


Put v(xi,x2)=z(x,) and e(x i , x 2 )=r(x 1 ). In view of (13) and (14) we have 

Lv—cv=0	for all zR2	 (15) 
v(x i ,x2 ) = a	for all x 1	0.	 (16)


Now, let w be any simply connected domain satisfying 
(i) CV c (-1,0) x (-1,1) 

(ii) -y = Ow is a C' Jordan curve. 
Put

= (-1,1) x (-1,1) \ 
I'o = {(x,,1): —1 <x 1 <1}.
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By (15) and (16), v satisfies

Lv - cv = 0 on a., 

vIr 0 = z(x1), on r0 
=	1 

19V	
0. an J 

So (Li , v) is a solution of problem (3) - (6), but clearly uniqueness fails in this case. 

We now state some lemmas that will be used in the proof of Theorem 1. 

Lemma 1. Let C be a piecewise C' Jordan curve. Then there is a homeomorphism 
h : R2 -i 1R2 such that h(C) = oB(0,1), h(Ui ) = B(0,1) and h(U2 ) = R2 \ B(0,1) 
where U, is the simply connected domain of R2 bounded by C, U2 = R 2 \ U, and B(O,r) 
is the ball of radius r > 0 centered at 0 E R2. 

Figure 1 

Lemma 2. Let C,U 1 ,U2 be as in Lemma 1, C, an arc of C and C an open neigh-
borhood of C, in R2 . Then there exists a neighborhood U of C 1 in R2 , U C C, such that 
U is of the form (see Figure 1)

U = V1 U V2 U S


where V, = UflU,, V2 = UflU2 , S = UnC are connected and furthermore SC OV,flOV2. 

The proof of Lemma 1 which relies on the Riemann mapping theorem is omitted. 
Lemma 2 is a direct consequence of Lemma 1. 

3. Proof of Theorem 1 

Let (',u') and ( 1 2 ,u2 ) be solutions of problem (3) - (6). We claim that Q 1 = Q 2 and 
U' =U2. 

We first set some notations. Let (i = 1,2) be the holes in Q' and put 

Mi

(z=1,2).
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By assumption, y is C'-smooth except at a finite number of points {y, ..., y. } C v'. 
Put

=	\	 (17) 
We denote by W the (connected) component of 1?' n l2 such that r c W. For 
x  72 nQ', let m be the index in the set {1,... ,m2 } such that x E ôw,, and let C 
be the maximal arc of aW2 such that x E C and C C & fl ' .M. 

With these notations, we begin the proof of Theorem 1. The proof is by contradic-
tion. If Q'\ ç2 = 0 and f22 \ çi = 0, then Il' = Q2 Thus we can assume, for example, 
that Q' \ 0. The proof is divided into several steps. The crucial one is Step 3 
which establishes the existence of an open subset U0 of 9 1 such that 9U0 is piecewise 
of C' type and that 0U0 C y' U (.9W \ ). Note that 

a(c' \ W) \ 1 = .9W \ (-y' U 1').	 (18)

Step 1. u I = u 2 on W. 

Proof. We have

Dj(aj(x,u' )Du') - c(x)F(u') = 0	 (19) 

D(a1 (x,u2 )Du2 ) - c(x)F(u 2 ) = 0.	 (20) 

Letting v u2 - u 1 , one has

—(x, a ij 	- aij 	= v	 +t(u2—u'))dt f OaR, 
u 1 

au 
0 

F(u2 )—F(u 1 ) V/F 1 (u 1 +t(u 2 —u'))dt. 

Substracting (19) from (20) and using the latter relations, we get after some computa-
tions

(aij 	-	D(v b) - c(x)(x)v 0	 (21) 

where
b1(x)	b1j(x,ui(x),u2(x)) 

E(x) = 4x,u,(x),u2(x)). 

On the other hand, on ro one has
vIr0 = 0	 (22) 

a(x,u'(x))n(x)D1v(x) = 0 (x E 0 )	 (23) 
ij=1 

where we have used the condition u 1 = u 2 on 1's. By uniqueness of the Cauchy problem 
for elliptic equations [15] we have v = 0 on W, i.e. u 1 = U on W, which completes the 
proof of Step 1i
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Step 2. Let x E OW \ (-y' U F). Then x E 72 fl ci' and C C ow \ ('v' U F) = 
O(ci' \W)\y'. 

Proof. Noting that Oci' = Fu-y' and W C ci', we have OW\(7' Ui') C !' \oci' = 
W. On the other hand, since W is a component of ci' n Q2, we have 

	

ow c o(cl' n ci 2 ) c Oc?' u 0c12 c y' u 72 u F.	 (24) 
It follows that OW \ (-y' U F) c 72 Hence OW \ (-y' U F) c 72 ci' 

We now show that 
C C OW \ ( -i' U F)	for x E OW \ (-y' U I').	 (25) 

Let c, be a subarc of c satisfying C, C c. By Lemma 2, there exists a neighborhood 
w of c, such that

Cci'	and	wfl(\w)=0 

being of the form
w=U,UU2US,	ScOU,flOU2	 (26) 

where U, w fl w, U2	fl ci 2 , S	n c1 are connected.

From (24) one has w fl (Oci' U OW) 54 0. The relation w C Il' implies w fl Oci = 0. 
Hence Lo nOW 54 0, i.e.

wflW0.	 (27) 
On the other hand, we have 

U 1 =wfl	cci' \Q 2 c ci'\W.	 (28) 
Hence (26) and (27) together imply that U2 n w 0. The connectedness of U2 and the 
maximality of W as a connected subset of ci' fl ci2 imply that 

U2 C W.	 (29) 
From (26) and .(29) we get c, .c OW \ (-y' U F). Since C 1 is any arc of c such that 

C c, one has S = Lo nc C OW\(7' Ui'). This establishes (25) and thus completes 
the proof of Step 2 1
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Step 3. There 13 an open subset U0 of ' such that 5110 C -y' u (SW \ F) and that 
OU0 is piecewise of C' type. 

Proof. We have the following two cases. 

Case (i): There is an x 0 E SW \ (I' U -y') such that awl fl y' = 0 (see Figure 3), 
i.e. 5w,,,	flOw,' = 0 (Z* = 1,...,m,). 

CIO 

MO

Figures 3 and 4 

Then put U0 = w,,, flci'. We have 5L10 = 5w	U(U€iSw,') where I is the set of

the i's in {l,...,m,} satisfying w, C w,,,. Hence U0 is the required set. 

Case (ii): 3w,,, 2 fl 7' 54 0 for all  E OW\(I'U7'). 

Then for each x E SW \ (F U v'), the Jordan arc C. (cf. Step 2) has its edge points 
(i.e. the points in 01 \ C1 ) in 3w, and 3w	where w' , and w	are holes in ci i . To 
fix ideas, we assume that m	m. The following three situations are to be considered: 

(ii), m . =	for some x 0 E OW \(I' U 

(u)2 m	m for all x € OW \ (F U-y') and there exist Yo, z0 E OW \ (F U-y') such 
that (m' ,rn2 ) = (rn , m 0 ) and C,,0	C10. y 0	y0	:0 

(u)3 m	m 2 and C,, = C. or (m,,m) (m,m) for all x,y,z € SW\(FU71). 

If (ii), holds, the set of end points of C10 has at most two points and, moreover, by 
the maximality of C00 , these points are in 5w, C	If the end points of C1 ,, are 
distinct (see Figure 4), then 5w, is the union of two Jordan arcs 1,,, and 1,6 such that 
1, fl1 = {a,/3}. Note that both sets CO3, ui,,, and CO3, U 1 ,6 are Jordan curves and that 
one of them, say 7° = C1 ,, U 1,,, does not contain the other in its interior. Call U, the 
domain interior to o and put 110 = U01 fi ci'. Then clearly U0 is the desired open set. 
This proves Step 3 in the case a 0 3. If a /3, i.e. if C10 is a Jordan curve, the proof 
is similar as (in fact easier than) for the case of distinct end points. 

If (u)2 holds (see Figure 5), we denote the end points of C,,,, and CO3, by c,.8 and c, 0', respectively. As in the proof for the case (ii),, we choose U, as the domain interior 
to the Jordan curve C,,,, U 1 U CO3, U 1 (cf. Figure 5). Put U0 = U01 fl ci'. Just as for the
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case (ii), we get that 0U0 is piecewise of C' type. This proves Step 3 for the case 0)2. 

0

Figure 5 

Finally, we consider the case (u) 3 . We shall prove that Step 3 holds for Uo = ' \W. 
Letting XE ÔW\(FUy'), Step 2 gives C. C ÔW\(ru7 1 ) = a(cl' \ W)\-y'. Hence 

a(cl' \W)\7' =	U	C1.	 (30) 
z€&(1' \W)\-' 

For each pair (p, q) with p,q E {1,...,m,} and p < q, by assumptions (1) 3 there is 
at most one Cr such that p = n4 and q = m. Hence, there are at most in0 arcs 
Ci ,, ...,	in 3(1' \ W) \ -y' such that 

	

U	c=Jc,	..	. (si) 
;=1 

where in	m,(m, + 1) (= the number of pairs (p,q) above). Combining (30) and

(31) gives

MO 

	

O(' W ) 	LJC	 (32) 

Let z, and z, be the end points of C, i.e. {z,', z,} =	\C1, ( i = 1, ...,mo), and put 
B = {z 11 ,z	1 i M O 1. For x E ((l' \W)fl'y')\B we denote by D. the maximal

arc of ' \ B such that x E D1 . By the same arguments as for Step 2, we get 

	

D. ca(cl'\W)fl 7 '	for xEa(l'\W)fl7 1 \B.	 (33) 

Since (33) holds, the set ô(l' \W)n 7 ' \B can be divided into equivalence classes with 
respect to the equivalence relation 

Xy 

- (note that the maximality of D. gives D. = D or D1 flD = 0 for all x,y E a(cl'\W)n 
' \ B). We claim that the number of -.-equivalence classes is finite. We fifst note that, 

for a couple x, y in a Jordan curve C, there are only two Jordan arcs of C having x, y as
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its edges points. From the maximality of D (x e 8(11' \ W) fl -y' \ B), its edge points 
(i.e. the points in V. D) are in B. Hence for z, z' E B there are at most two point 
x 1 ,x 2 E 8(11' \W)n-' \B such that D, 0 D 2 and D, \D 1 {z,z'} = D 12 \D2. 
On the other hand, B is finite. Hence the set of --equivalence classes is finite. 

From the foregoing arguments, we can find y,, ..., Yr E 8(11' \ W) fl -y' \ B such that 

8(cl'\W)n-y'\B=UD..	 (34) 

From (32) and (34) one has 

8(11 1 \W)= Bu(8U0 \7 1 )U((3U0 fl 7 1 )\B)= Bu ([Jc) u (UD). 

Here we recall 1J0 = ( 111 \ W). This completes the proof of Step 31 

Summarizing, we have shown that in our proof of Theorem 1 by contradiction, the 
assumption Il' \ Q2 54 0 led to the existence of an open set U0 as in Step 3. 

Step 4. Using the latter result we will show in this final step that u 1 = const on 
Il'.

Proof. By Step 3, there is an open set Uo C Il' such that 3U0 is piecewise of C' 
type and that Wo C 7' U (SW \ ). Hence, there is a finite set B, C 7' U 72 such that 
8U0 \ B, is a finite union of C'-smooth Jordan arcs and that {Y, Y : 1 <i k,, 1 
j < k2 ) C B, where y and Y are as in (17). One has 8U0 = B, U (c9Uo \ B,). For 
x E SU0 \B1 , the following two cases are to be considered: 

(b) x e SW \ (y' U ) c 72 

For the case (a), we have

aj(x,u'(x))n(x)D1u1(x) = 0.	 (35) 

For the case (b), since x E OW \ (' U ) C 72, (6) gives 

aj(x,u'(x))n(x)Du'(x) =	ajj(x,u2(x))nj(x)D1u2(x) = 0.	(36) 

From (35) and (36) we conclude that (35) holds for all x E 81.J \ B,. Multiplying (3) 
by u 1 , integrating on U0 and using the divergence theorem we get in view of (35) and 
(36)

J a j (x,u'(x))Du'(x)Du'(x)dx + fu.c(x)F(u'(x))u'(x)dx = 0.	(37) 
ij=1 
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Now, if c(x) > 0 a.e., then (37) implies F(u'(x))u1(x) = 0 a.e. on.Uo. From (8) 
it follows that u 1 (x) = 0 for all x E U0 . By Pederson's theorem on the uniqueness 
of elliptic continuation [15], the above equality gives u 1 = 0 on 1k', which implies 
jr = g 0, which is a contradiction. 

If c(x) = 0 for all x e R2 , then we get in view of (37) and the ellipticity of the 
operator A(x,u) (cf. (2)) that Vu'(x) = 0 a.e. on Uo. If wo is a component of U0, 
then the latter equality gives u 1 = c 1 (constant) on ceo. By uniqueness of elliptic 
continuation, we have u 1 = c 1 on '. Hence f c and g = 0, which is a contradiction. 
This completes the proof of Theorem 11 
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