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On the Stabilizability 
of a Slowly Rotating Timoshenko Beam 

W. Krabs and G. M. Sklyar 

Abstract. In this paper we continue our investigation of a slowly rotating Timoshenko beam 
in a horizontal plane whose movement is controlled by the angular acceleration of the disk of 
a driving motor into which the beam is clamped. We show how to choose a feedback control 
allowing to stabilize our system (the beam plus the disk) in a preassigned position of rest. 
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1. Introduction and statement of the stabilizability problem 

In [1] we considered the following linear model of a slowly rotating Timoshenko beam 
in a horizontal plane derived in [2]: 

- w"(x,t) - '(x, t) = —(t)(r + x) 1 

(x, t) -	x, t) + e(x, t) + W, (x, t) = ö(t)	
(x E (0, 1), t > 0)	(1.1) 

C ( 
where w(x, t) means the deflection of the center line of the beam at the location x E [0, 1] 
and time  > 0, e(x,t) means the rotation angle of the cross section area at x and i, 
iii = Wt, = j, w' = w, ' = , 9 is the rotation angle of the motor disk, 9 = , and dt 
r is the radius of the disk. The boundary conditions are of the form 

w(0, t) = W, t) =0 

	

W'(1, t) + (1,t) = 0	(t 2 0).	 (1.2) 

It is assumed that the motion of the beam is controlled by the acceleration 0(i) of the 
rotation of the motor disk. The problem we deal with in [1] is to transfer the beam from 
a position of rest into a position of rest under a given angle within a given time T by 
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means of a choice of control 8( . ) E L2 [0, T]. It has been shown that such a control exists, 
if the time T is large enough. This result relies essentially on the moment method, in 
particular, we made use of [3: Theorem 1.2.171. 

In the present paper we consider another problem for this model of a Timoshenko 
beam. 

Problem of strong stabilizability. Find a linear continuous functional 

such that every solution of problem (1.1) - (1.2) with feedback control 

O(t) = p(w( . , t), tL( . , t), (., t), (., t), 8(t), 8(t)) 

tends to 0 when t - +oo in the following sense:

pI 

J
w'(x,t) 2 dx —p0,	J '(x,t) 2 dx - 0	 (1.3) 

0	 0 

fo 

1	 fo 1 
tb(x,t) 2dx-0, 	(x,tfdx—O	 (1.4) 

 
8(t)—+0,	9(t)-40	 (1.5) 

as i -+ +oo. Note that conditions (1.3) -(1.4) mean the extinguishing of the total energy 
of the beam and conditions (1.5) mean the stabilization of the disk in the position 8 = 0 
which, obviously, can be considered as an arbitrary preassigned one. In addition note 
that conditions (1.3), due to Friedrichs inequality, imply 

I0I

w(x,t) 2 dt . 0,	and	f e(x,t) 2 dt	0	(t .. +00). 
Jo	

. 
 

The main result of the paper is based on the theorem on strong stabilizability of 
contractive systems [4: p. 1324] which, in turn, is a consequence of the Sekefal'vy-Nagy 
and Foyas theorem on strong convergence to zero of powers of a contractive operator 
[5: p. 102]. 

2. The singular values of the disk radius 

Following [1] we rewrite (1.1) - (1.2) in the operator form 

(°t)\
	(-(.It)+A	 \ 

)
e() = bö(t)	(t >0)	 (2J) 

where H L2 ((0, 1),C2 ), the linear operator A : D(A) - H is defined by 

A)=(- 
!J" -z'
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on

	

D(A) =	 E H2((O,1),C2)l	i(0) = z(0) = 0 I( Y ) z	 y'(l)+z(i)=z'(i)Of 
and b= (_r_X) E H. 

In [1] we proved that this operator A is positive and self-adjoint and the smallest 
eigenvalue of A is larger than 1. 

The main part of this Section is devoted to the question on the orthogonality of 
eigenvectors of the operator A to the vector b. Let () be a given eigenvector of A 
corresponding to eigenvalue A (A > 1). Bearing in mind that () € D(A), we obtain 

1'(r+x)()dx+Iz(x)dx \Z) 'H  
= 1. (r + x)(y"(x)+ z'(x)) dx +	z(x)dx 

r = (y(i)+z(1)_y'(0)_z(0))
1 

— 	+z(l) — (y(i)—.y(0)) — [ z(x)dx+ Iz(x)x 

	

+	(Y'(l)
S 

Jo	I Jo 
r 

'(0) - y(1) + A 
	
[ z(x)dx 

-	A  
1, = —y (0) - y(1) +	- z'(i) + z'(0) + y(i) - Y(0)) 

i 
=- ry'(0) + z'(0)). 

Further, we take advantage of the direct form of eigenvectors obtained in 1: Section 21: 

Y(X) = C 1 e' + C2e_01x + C3ehL3x + C4e_3z 

Z(X) = — Cl	e' + C2ex + C3 e3 x - C4 e_M3 x
 I /11	 ILl	 I13	t13 

where  
YI = i/_A + VA , IL3 = s/—A - /X, c 1 , c2 , C3 , c 

are some complex constants defined from boundary conditions. 
With the notation of this work we have from (2.2) 

- rl/(0 ) + z'(0)
(2.3) 

= —ir(C i cr i - C2 6 1 + C3 0r3 — C4 03 ) + v'(- C1 - C2 + C3 + C4) 

	

where 01 = '/A -- VA- and 03 = \/A +	Reality of the functions y and z means that 
C2 C and C4 = C3 . Let 

C 1 =o+i/3, C2 =-0, C3 =1+zS, C4=y—i6.
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Then (2.3) reads

—ry'(0) + z'(0) = 2r(/3o 1 + 6a3 ) + 2'/(-y - a). 

The boundary conditions y(0) = 0 and z(0) = 0 give 

a+y=O
(2.4) a3 /9 + U1 6 = 0. j 

Therefore,

—ry 1 (0) + z 1 (0) 2r6 (1 + aa) + 4v'y = 4 (r6_- +	 (2.5) C3 	U3 

It follows from here that the equality ((,b ) 11 = 0 is possible (for some value of the 
radius of the disk) if and only if 8 7 < 0. To analize this possibility we make use of the 
other pair of boundary conditions which with our notation reads 

a3(a sin al+ fi cosa l)+ a l(-y sin a3 +ö COS a3)=0 
a COS a 1 - /3 sin a 1 - 7 COS o 3 + 6 sin a3 = 0. 

With regard to (2.4) this gives

P7 + a i R6 = 0 '1 
a3R-y+Q8=0J	

(2.6) 

where
P = a 1 sina3 - a3 sin a1 
Q = a 1 sina 1 - a3 sin a3 
R = cos a3 + COS a1. 

It follows from (2.6) that
PQ = 0' 1 a3 R2 2 0. 

Let us show that actually

	

PQ = 0 1 a3 R2 > 0.	 (2.7)

In fact, let

R= COS a3 + COS a i =2COS	
2 

a3 +aj	a3 —a1 COS	
2	=0. 

On the other hand, from [1: Formula (2.9)] we have 

2	2 a3 —a 1	 a3+a1 (a3 —a 1 ) cos	
2'	=(a3 +ai )

2 
COS2 	

2 

and, therefore, cos	= 0. But the latter equality is impossible because it is easy to 
see that 0 < 1 <a3 - a 1	< ZE as ) 2 1. This proves (2.7).
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Remark 2.1. Note that (2.7) implies immediately that all the eigenvalues of the 
operator A are simple. In fact, since R 0, then from (2.4), (2.6) follows that the 
dimension of the eigenspace corresponding to the eigenvalue ) equals 1. 

Taking (2.7) into account we get 

P+Q al+a3

R 

=—(a3—ai)tan 
2 

Thus, 57 < 0 if and only if 

27rk <aj + U3 <ir + 27rk	(k E Z). 

Lemma 2.1. For a given eigenvector (), A() = A(), there exists a value r of 
the disk radius such that ((), b) H = 0 if and only if

(kEZ).	 (2.8) 

As follows from (2.5) - (2.6) the corresponding value is given by 

a1 Sinai - 0`3 Sfl 0`3 
(cosa3+COS	

(2.9)

ai)  

We call all such values of the disk radius the singular ones. It is-shown in [l] 
that for every k E N there exists exactly one eigenvalue \ = 1\2k+l of the operator A 
satisfying (2.8). Therefore, (2.9) defines a sequence {rk}k>I of the singular values. Let 
us determine the asymptotic behaviour of this sequence. To this end we use the next 
two properties of the eigcnvalues Ak [1]: 

	

i)	f + 7rk if k -	and, as a consequence,

1 (k)	I 
a3	 7rk 

(k)	I 
a 1 =VA2k+I_\/ +7rk_ 

1 

	

if k -	. 

	

(a	+ 
0,1(k) )2 

(i + cos(a' + o1)) = (a	- a l(k) )2 (i + cos(a ' - a ' )) and, as

a consequence, taking into account of (2.8), 

(k)	(k)	 (k)	- (k) 
(Ic)	(k))	a3 + a 1	(Ic)	(k)	a3 - a1 

	

(a3 +a 1 cos	=(a3 —a 1 )cos 
2	 2



136	W. Krabs and G. M. Sklyar 

Applying i) - ii) we obtain from (2.9) 

	

- (
(k)	(k)	.	(k)	(k)	.	(k)	.	(k) a - O3 ) sin a3 + a 1 (sin a 1 — Sifl


	

rk —	 (k) (k)
\/A2k+l(COs73 + Cosa 1	) 

(
(k)	(k)	.	(k)
a 1 —a3 )sina3


	

=	(k) 2	(k) 2	(k)	(k)	(k)	(k) ((a3 ) — (a ) ) COS a3 — a 1 2 cos 03 + a 1 2 
(k)	(k) 

	

+V	tan 	—a1 

	

sink	1 —tan-- 

	

cos2	2 

= — Cos tan

as k —, oo. 
Lemma 2.2. The set of the singular values of the disk radius is given by a sequence 

r k } 1 which is convergent to (1 - cos ) tan 1 as k —i oo. 

Obviously, in the case when the disk radius has a singular value there exists a 
fundamental frequency of the beam which is invariable under the influence of the control, 
i.e. system (2.1) is not controllable. So later on we shall assume the disk radius to be 
of a non-singular value. 

3. The operator equation of motion 

For our further purpose it will be necessary to describe the motion of the system (the 
beam plus the disk) by means of a single operator equation of first order in a Hubert 
space. 

In [1] we have shown that the operator A in (2.1) is strictly positive and self-adjoint. 
Further, we have shown that A has a complete orthogonal sequence of eigenfunctions 
(') E D(A) (j E N) and a corresponding sequence of eigenvalues A3 E R of multiplicity 
one (see Remark 2.1) such that 0 < A3 T oo as j —+oo. We even know that ) > 1. All 
this implies that

D(A)={(Y)eH>((Y) 
(yj ))

 

j=1 

and

A(Y)=A((Y)/1hi"' (y)\\ 
j=1	 zJ))Hzj) 

on D(A). Further, there exists a "square root" A of A which is also a self-adjoint 
linear operator with domain

2
00D(A)= {() EH	A((Y) (yj))



On Stabilizability of a Timoshenko Beam	137


and given by

(Yj)) H ( yj\VAj ^( Y ) ' 
A4 

( Y ) j= 1  

on D(A4). It is easy to see that 

	

(( Y)A(

MH
 =(A '2' (,A4(

z   	z)	z)/H 

) E D(A) and all () e D(A4). If we introduce vector functions for all (Y  

	

Y(x, t) = (w(x,t), (x, t), t(x, t), e(x, t))T 
	 0) 

b(x) = (0,0,b(x)T)T 

and define a matrix operator by 

(0 i
D(A)=D(A)xD(A), 

then (2.1) can be rewritten in the form 

k( . , t) = AY( . , t) +b( . )u(t)	 (3.1)


for t > 0, where u(t) = 0(i). 

Let fl = D(A4) x H. Then ii is a Hubert space with scalar product 

2	2 ( Y2 

z)	Z2)/H \zi)	z2H ( ^' 

for all v1 = (yi, Z1 ,	)T and V2 = (y2, Z2, 92, 
2)T in H. Further, it follows for every


V = (y,z,,)T E D(A) = D(A) x D(A4) that 

Y\ fY 

(Avv)=(°) 

	

=	 ()> 
(A'2- (	A(	—(A(Y ),(V
 .\•	 z 	\ZJ/H 

=0



138	W. Krabs and G. M. Sklyar 

which implies that A: D(A) x D(A) - N is monotone. Let v 1 = ( y i, z i, y i, z i )T and 
= (y2,z2,2,2)T in D(A) be given. Then it follows that 

(Av l ,v2 )n = (A (^—'), A '- (
2

Y
))H

 - (A () 
(Y::)) 

(Al2-( ^-2,A5Y'	+A(ZY2,(1
 ZJ	\Z1) )H \	 J \Z1J/H 

= —(vi,Av2), 

which implies that A is skew-adjoint, i.e. A = —A where .4* : D(A) - N denotes 
the adjoint operator. Since D(A) = 7-1, it follows that A is maximal monotone. This 
in turn implies that (A,D(A) x D(A)) generates a C°-semigroup {T(t)I0 t < oo} 
on N which is a contraction, i.e. IT(t)II < 1 for all t > 0. For every vo E D(A) = 
D(A) x D(A) the unique solution Y: [0,00) - D(A) x D(A4) of the problem 

Y( . ,i) = AY( . ,t) (t> 0)
 Y(. ,0) = V0 

is given by Y(-, t) = T(t)vo for t > 0. Now let us define a linear operator A: D(A) x 
C2 -* N x C2 by 

/Y\	(Al)
A ( 01 J = 0	for all Y E D(A) and (01,02)T E C2. 

\ 02J	 0 

Then A turns out to be an infinitesimal generator of a C°-semigroup {()I 0 t < oo} 
on N x C2 which is given by 

7Y\	
/ '1 (t 

\ 
T(t) ( 0 ) = ( 0 +t02 )	for YEN and (0i3O2)TEC2. 

\ 02J	\ 0	I 

If we introduce a vector function Z: [0, 00) - D(A) x C2 by 

Z(It) = ( 0(i) I	(t>0) 

\ 62 ( t ) I 

and define= (bT,O,l)T, then (3.1) with u(t) = O(t) can be rewritten in the form 

±(t) = AZ(t) +bu(t)	(t > 0).	 (3.2) 

Let p E (N x C2 ) = N x C2 be an arbitrary continuous linear functional. Then the 
operator A + bp is a finite-dimensional perturbation of A and consequently (see [6])
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generates a strongly continuous semigroup which we denote by {7,(t), t > O}. Thus the 
problem of strong stabilizability as formulated in Section 1 turns out to be the problem 
of existence (and construction) of a functional p E (7-1 x C2 ) such that T,(t)Z - 0 as 
t - +oo for every Z E 7-1 x C2. 

It is easy to show that the operator A: D(A) x D(A) - 1-1 = D(A4) x H has an 
orthogonal complete sequence of eigenelements 

	

1Y) \	 fyi	\ 

	

Yj = I z 1	and	Y_ = I	i 1	(j E N) 
IjYj J Pi


	

\uz3 J	 \—,tz 

with corresponding eigenvalues ij = ±z ,.,/	(j E N). This implies that the operator 
A : D(A) x C2 - 7-1 x C2 also has an orthogonal sequence of eigenelements Zk = 
(Yk ,0,0)T (k E Z\{0}) with corresponding eigenvalues = /1k (k e Z\{0}) and in 
addition an eigenelement Zo = (0,1,0)T with eigenvalue io = 0. For all k E Z\{0} it 
follows that

(b,Zk)C. = (,Yk) = Ilk (
b, (:: ))H	

(3.3)


This leads to the following 

Theorem 3.1. If the radius of the disk is of singular value, then strong stabiliz-
ability is impossible. 

Proof. By assumption there is some k E N such that (b, ( Yz kk ))H = 0 which implies 
because of (3.3) that

(b,Z±k)c. = 0.	 (3.4) 

From here we infer

-	 f—AYk\ 
(A+ WP) *Zk = A' Zk +(bp)Zk = A* Zk + ( 6 , Zk) XC2 p = ( 0 ) = / kZk. 

\0J 
=0 

This implies 7 ,*(t)Zk = e'Zk and therefore 

2 cos /X.t (:) 

7(t)(Zk + Z_k) = 21Xsin1Xt 
( )zk
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This, finally, leads to 

(r(t)(Z,, + Z_ k), Zk + Z_k)c2 

- (Z +Z_k,Tp*(t)(Zk +
Z_k))c. 

	

I12(Yk\i] [ 2cos
	

(Zk)\Zk)  

=	 o)	
2 sj	

zk) 

/	/o\	
nt(YkJ) 

0 
o)	 ()	 xC2 

= 4cos 

which implies 7,(t)(Zk + Z_k) 74 0 as t - oo and shows that strong stabilizability is 
impossible U 

4. Construction of the stabilizing control 

In order to prove stabilizability of (3.2) we make use of the following theorem on the 
strong stabilizability of contractive systems [4: Theorem 5]. Consider a system of the 
form

dx
=Ax+Bu	(XEH,UEU) dt 

where H and U are Hilbert spaces, the operator A generates a strongly continuous 
contractive semigroup {T(t) : t 2 0} and b E [U, Hj. Let there exist to > 0 such that 
the set o(T(to)) fl {z E C : Izi = 1} is at most countable. Then in order that the 
system is strongly stabilizable it is necessary and sufficient that there does not exist an 
eigenvector xo of the operator A corresponding to an eigenvalue.\ (Re \ = 0) such that 
xo E Ker B*. At the same time notice that this theorem cannot be applied directly, 
because the semigroup {T(t) : t 2 01 is not contractive. Therefore, first of all we find a 
perturbation A+ bp of the operator A such that the generated semigroup {7,(t) : t 0) 
is contractive in a suitable norm of fl x V. 

Let ,u > 0 be given. Then we define p,. E (fl x Cl)*= (71 x C 2 ) by 

AU ( Z ) =	 (4.1) 

where 20 = (O,o,i)T Then 

(A+p,)Zo = 0 

(A+p)Zk =AZk —L (Zk,Zo)xc2b=(zkZk (kEZ\{0})}
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follows. Further, one can show that - is a simple eigenvalue of A + bp, whose corre-
sponding eigenelements are multiples of 

2 (A + p2 1)'b

(—y(A+.u2I)_ib).

1
JU 

With the aid of this eigenelement we define a scalar product in 11 x C2 by 

(Z', Z 2 ) 1. = II Z,1IIc2 (Z' , . 0)xC 3 (Z 2 , Zo)c2	
(4.2)


- + (z' - (Z',Zo) xc2Z, z2 - (Z2,20)Xc2Z1) 

for Z', Z 2 E ?I x C2 which leads to the norm

I71 XC 
II z II, =	 + Z - (Z,Zo)1xc2Z,4I2) 2 

for Z e x C2 . It is easy to see that I1 Z II7<c7 - 0 as II Z II, - 0 and vice versa. Thus 
these two norms are equivalent to each other and, therefore, stabilization in one of them 
implies stabilization in the other. 

Lemma 4.1. The eigenvectors Zk (k E Z) and Z, of the operator A + bp form a 
complete orthogonal system in 'H x C 2 with respect to the scalar product (4.2). 

Proof. Let lc,j E Z be chosen such that k 54 J. Then 

(Zk , Z) = I Z II2 (Z, Zo)?xc2 (Z3 , ZO)xC2 

+ (Zk - (Zk,o)c2 Z, Zj—(Zj,o)xc2 Z) 
=0	 =0 

= (Zk,Zj)xc2 

= (Yk,Y 

= 0. 

Let k E Z be chosen arbitrarily. Then 

(Zk, Z,),4 = I1 ZpIIxC2 (Z, ZO ) lx c? ( Z 1 , 4)xc2 
=0	=0 

+ (Zt (Zk ,Zo) x c2Z, ) Z,4 _Z,Zo)xc2Zp) 

Z=
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which shows the orthogonality of the system {Zk : k E Z} U{Z} with respect to the 
scalar product (4.2). 

Now let Z E I x C2 be chosen arbitrarily. Then one calculates 

(Z,ZM ) l. = IIZpIIXc2(Z,Zo)nxc2 

(Z,Zk ) p =	- (Z,4)xc24 1 zk) NXC2 (k e Z). } 

Now let
(Z' Z,. ) ,. =0 
(Z,Zk)=0 (kEZ). 

Then (Z,20)c2 = 0 and (Z,Zk) 1. = (Z ,Zk) X c2 (k E 7L) follow, hence (Z,Zk)xc2 
= 0 for all k E Z. Let Z = (Y, al, a2)T. Then this implies (Y, Yk)fl = 0 for all k E Z\{0}, 
hence Y = 0. 

From (Z, Zo)nxc 2 = 1 we obtain o = 0. Finally, (Z, Zo) = 0 implies 2 = 0. 
Therefore, assumption (4.3) implies Z = 0 which shows that the system {Zk : k E 
Z }U{ Z,} is complete and concludes the proof U 

Next we prove 

Theorem 4.1. 

(i) The semigroup { 7 L, (t)I t > 01 which is generated
-

eneratedby A+ bp, is contractive with 
respect to	. 	i.e. II 7 , j t )II. < 1 for all t > 0. 

(ii) For every n E N the spectrum a(T(n)) of the operator 7(n) is an at most 
countable set. 

(iii) Under the assumption of non-singularity of the disk radius there does not exist 
an eigenvector Z 0 0 of A + bp, such that (Z, b),	0. 

Proof. (i) Let Z E D(A) be given. Then by Lemma 4.1 Z = aZ,1 + > cZ 
(in the sense of	11,1 -convergence) which implies 

z	 00 
(+p,1 )Z = —iaZ,1 + 

k=-c 

Since {Z,1 , ZkI k E Z} is an orthogonal system with respect to (,	and Re(p k ) = 0 for 
all k E Z, it follows that 

Re((A+p,1)Z,Z) =	 1 11 —,Ial2iiZ 2 +	IC' k I 2Re(p k)II ZkII ,1

-00 =0 

	

= — d a I 2 ii Z,1 1 112	 (Z E D(A)). 
z

(4.3)
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This implies Re((A+bpp )tZ, Z) 5 0 for all Z E D(A) = D(A). Hence (A+bp, is 

a monotone linear operator. This implies that (A + bp,) is accretive, i.e. 

- .\I)ZII 2 .X II Z II	for all .A > 0 and Z E D(A). 

In turn this implies that the range R((A+bp,)—\I) = 7ixC2 for all \ > 0, since A+ bp, 

is closed. Hence A + bp, is maximal monotone and therefore generates a contractive 
semigroup {7(t)It 2 0}. 

(ii) Let us define Z, = II Z II' Z and Zk = IZk Il'Zk for k E 7L. Then, for every 

Z = (Z,Z,A ),Z. +	 E -( x C2 

we obtain

= e(Z,),Z,L 
+ k-oo 

for every n E N. From this we infer that the eigenvalues of 7, M (n) are given by e" 
and ezl (k E Z), with corresponding normalized eigenelements Z and Zk (k E Z). 
By the spectral mapping theorem [7] it follows that 

a(T(n)) = {e i ",e" (k E Z)} 

where M denotes the closure of the set M. Since ,uk = ±i/X for k E No and (see [11) 

A 2	 ((2 -	as £ .• 

it follows that r(7(n)) can only have a finite number of accumulation points and is 
therefore at most countable. 

(iii) From (4.2) it follows that 

i.	'	2 i' - L 71 C2 

(Zo,b)	— (Zo,Z)=	o. 
IU 

Therefore it remains to prove that (Zk,b)	0 for k E Z\{0}. From (4.2) it follows 
that

IIZIIxc2 (Zk, ZO)lxC2 (b, Zo)c2 

+ (Zt - ( Zk ,2o)xc2 Z—(,o)cz z) 
-	 XC2 

= 0 -  

= (Zk,b) . c2 - (Zk,Z)c2.
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From (3.3) (Zk,b)xc2 = 1k((iki ), b) H follows. Further we obtain 

 /Y,\
( Zk,ZP ) X C2 =I (Azk,z XC2=((

AYk )
	

9I	xC2 
Il k	 Pk	0 	92p/ 

= 1 (AYk ,Y)n	(Yk,AY) ?j= ---(4AZc2 
11 k	 1k	 /1k 

=
/2k

-p 

This implies

(/2k - /2)(Zk, Zp)nxc2 = —/2(Zk,)Xc2, 

hence
(Zk,Zp)Xc2 =

	/1 

11k	
(Zk,)Xc2 

- /2 

since /2k j4 jt for all k E Z\{O}. Summarizing we obtain 

Z	 y2 k	(IkI,b\ =-	/IkIb\ 
pk)\zIkI) 'H	/2—/2k\zkI) 'H 

Because of-- 0 and "::: ), b)H	0 for all /c Z\{0} (due to the non-singularityJA J,

of the radius of the disk) it follows that (Zk , b) 0 0 for all k E 7L\{0}. This concludes 
the proof of Theorem 4.1 I 

Thus all assumptions of [4: Theorem 51 are satisfied, if the radius r of the disk is 
non-singular. This leads to the strong stabilizability of the system 

Z = (A+&p)Z +;:u. 

According to the proof of [4: Theorem 51 this can be achieved by the control u = 
Z, b),. Hence, system (3.2) is strongly stabilizable with the aid of the control 

U = — 11 ( Z,0)Xc 2 -	 (4.4) 

On using Z(t) = (Y1 (t), Y2 ( t ), 01(t), 92(j))T and b = (0, b, 0, 1)T we obtain (Z, Zo)c2 
= 02. 

Further, it follows from (4.2) that 

(ZM = 92 II z IlL2 + (z - 

	

= (Z,) X c2 - (Z,Z)c2 —02(Z,b),c2	 7iXC2.
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Let Z, =(Y*,_uY,_.,l)T where Y* = —1z(A+1i 2 1)'b. Then we obtain 

(Z,b) = (_Y*,b)H - (Z,Z IZ ) X C2 + 292IIZp[[xC? 

=	"'D(A) + (
Y2 ,b+ pr) j - 191 

+ (	1 + /i(Y,b)H + 2IIZIIXc2)92 

where
Z2 = (Y,	

>D(A) + 
i2(Y*, Y )H +	+ 1.	 (4.5) 

If we put Y1 V and 9 = 9, then V2 = V and 92 = 9, and summarizing we obtain 

U =
	""D(A) 

+(Y,b+ PY)H _19
(4.6) 

+ (-1 + ,1(Y*,b)H + 2IIZMIIxc2 

Theorem 4.2. If the radius of the disk is non-singular, then system (3.2) is strongly 
stabilizable with u given by (4.6), (4.5) which is a real function. 
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