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Abstract. We prove a theorem about existence, uniqueness and regularity of the solution to 
an initial-boundary value problem for a nonlinear coupled parabolic system consisting of two 
equations. Such a system appears in the thermodiffusion in solid body. In our proof we use 
an energy method, methods of Sobolev spaces, semigroup theory and the Banach fixed point 
theorem. 
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1. Introduction 

We consider the initial-boundary value problem for the nonlinear coupled parabolic 
system of partial differential equations

l	
02 c(9 i , 92 )a9 1 - a,,6(01, 02, Vol, V92) 89 ôx,ôx +d(91,92,V91,V92)-- = Qi (1.1) 

n(9i ,92 )äg92 —a(91 ,92 , Vol, V92) o
2 92

	

	 OOi

+d(9 1 ,92 ,V9 1 ,V92 )-- =Q2 (1.2) axoaxp

with initial conditions 
9i(0,x) = 9(x) '1 
02(0,x) = 02' (X)	

(1.3) 

and boundary conditions (Dirichiet Type) 

9 1 (t, •)I	= 0 
92 (t, •)I an = 0 f	

(1.4) 
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where Oi = 0 i (t,x) and 02 = 02 (t,x) are unknown scalar functions denoting the 
temperature and the chemical potential of the body, respectively, both depending on 
t e R and x E ci, ci C R3 being a bounded domain with smooth boundary ôci, 
VU 1 = (al 9 1 , 52 0 1 , a3 0 1 ) and V02 = ( 9' O2,5 O2,3302) are the gradients of the functions 
0 1 and 02, respectively, with t9j = - (j = 1,2,3) (analogously, ô1 =	Further, 
Qi = Q i (t,x) and Q2 Q2 (t,x) denote scalar functions depending on t E R+ and 
x E ci, which describe the source intensities of the heat and of the diffusing mass, 
respectively. At last, c and n are nonlinear coefficients depending on the unknown func-
tions 0 1 and 02 , d and a, a are nonlinear coefficients depending additionally on the 
gradients V0 and VU2. 

For 0 < in	we denote by H m (ci) and H1 '(ci) the usual Sobolev spaces with 
norm	II [1]. For 1 < p	we denote by LP (Q) the Lebesgue function space on ci 

with norm 11 LP; the norm and inner product in L 2 (ci) are denoted by II•II and 
respectively. 

We shall use the notation 3 = ( a = a +(12 +a 3 ) and denote for any 
integer N > 0 

VN u = (ôôu: j +a = N) 
Nu_(33a. j+aN) 

Du ( a.a u jal = N) 
tNU = (Ou: al < N). 

The inclusion f E X for a space X with norm 11 . lix means that each component 
fi,...,f off is in X and lifIlx = llfilIx + ... + IIfllx. For any 0 in < 00 and 
T > 0 we also use the notation kL Im,T = SU PO<j<TII U ( t )Ilm where II 11 0 denotes 11 . 

The aim of our paper is to prove existence and uniqueness (local in time) of the 
solution to the initial-boundary value problem (1.1) - (1.4) using methods of Sobolev 
spaces (cf. [6 - 8, 11, 12]) . In Section 2 we present the related main theorem. In Section 
3 we present a theorem about existence, uniqueness and regularity of the solution to 
the linearized problem associated with problem (1.1) - (1.4). Section 4 is devoted to the 
proof of an energy estimate for that linearized system. Finally, in Section 5 we prove 
the main theorem using the Banach fixed point theorem. 

2. The main theorem 

In this section we formulate the theorem about existence and uniqueness (local in time) 
of the solution to initial-boundary value problems to the nonlinear system (1.1) - (1.2). 
Before starting to formulate the main theorem we notice that under the condition 

cn—d2>O	 (2.1)


we can convert system (1.1) - (1.2) into the form 

o201 ao1	(81,02,voi,V02)53	 2, V01, V02)
axaax 

=1(01,02,V61,V02)	 (2.2)
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_______ -22 920 
a1e2 _ flog, ,02 , Vol, V92 )	-(9,,92,V91,V92)

ax, ax 
= 2 (0 1 ,02 , Vol, V92)

	
(2.3) 

11	n I	—12 - d where	=	a,fl - -a,p and 

Q i n—dQ, - -	 _______ 21	d 2	—22 - c 2	_________ 
9i -	6	,	=	a -	g2 - cQ2—dQi 5 = en - d2 .	(2.4) -	6	' 

With system (2.2) - (2.3) we associate initial conditions 

O i (0,x) = 0?(x) 
02(0,x) = 020 (X) f	

(2.5)


and boundary conditions (Dirichiet type) 

01(t,.)Ia =0 
02(t, .)	= 0	

(2.6) 

Now, we formulate the main theorem. 

Theorem 2.1 (Local existence in time). Let the following assumptions be satisfied: 

10 s 2 [] + 4 = 5 is an arbitrary but fixed integer. 
20 ôQ 1 , OQ2 E C°([0, TI, H -2- '(1)) for k = 0,1,..., s-2 and ô' Qi,	'Q2 E


L2 ([o, T], L2()). 

3° There exists a constant y > 0 such that (a0seesi , ii) 2 7IeI 2 II 2	 E 
6 '.7 R ) where a 0 = [a] (z,j = 1,2), ati = a it fla , with a '.1 0fl,d	a—I E C	(R ), 3	 c,n E
00

C'(R2 ) and en - & > 0. 
40 00 ,9	H(cl)flH'(f), 9k,9 E H3_k (f)flH0l (cz) (1	k	s-2) and 

E L 2 ()) where 9 (i = 1,2) are calculated formally from system 
(1.1) - (1.2) and expressed with the initial data? and 0°. 

Then there exists a unique solution (0, 02 ) to problem (2.2)-(2.6) with the properties 

0, E n ;c k (Eo,T], H5_k (cz) n H'(cl))

 I E c°(fo,Tj,L2 (c))	 (i = 1,2). 
E L2([0,TJ,L2(cl))  

The proof of Theorem 2.1 is divided into the following three steps: 
Step 1°: Proof of existence, uniqueness and regularity of the solution to the initial-

boundary value problem for the linearized system of equations associated with system 
(2.2) - (2.6). 

Step 2°: Proof of an energy estimate for the linearized initial-boundary value prob-
lem (2.2) - (2.6). 

Step 30: Proof of existence and uniqueness of the solution of the nonlinear initial-
boundary value problem (2.2) - (2.6) using the Banach fixed point theorem.
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3. Existence, uniqueness and regularity of the solution to 
the linearized problem associated with problem (2.2) - (2.6) 

In this section we consider the linearized problem associated with (2.2) - (2.6) 

529 
a, 0, - a'1(t,x)55 

al	
5201 

- a ,,,6 (t, x)55 

with initial conditions

529 
a (t, 

ax"axp	
5 = g i (t,x)	(3.1) 

529

	

= 92(t, x)	 (3.2) 

O i (O,x) = 9? ( x ) 'I 
92 (0,x) = 020 (X) j	 (3.3) 

and boundary conditions
91(t, )Iac = 01	 (3.4) 
92(t,)Iao	0J 

We consider the solvability of problem (3.1) - (3.4). At first, introducing the vector 
V = ( Oi3 O ), we can write problem (3.1) - (3.4) in the equivalent matrix form 

52 V at  - a fl (t,x) 55 = G(t,x)	 (3.5) 

V(0, x) = V° (x), V(t,)I	= 0	 (3.6) 

where
- a l I (t ,x) a(t,z)\aft (a,/3 = 1,2,3)	(3.7) a(t,x) - \ a 9 (t,

	

	a(t,x)j
x)  

and G(i, x) = (91 ( t , x), 92 (t, x))*. 
Before proving an energy estimate to problem (3.1) - (3.4), we present two theorems. 
Theorem 3.1. Let the assumptions 

D' a E C°([0, T] x ) fl L°°([0, T], L(Q)) 

a, Va	E L(10,T],L(cl))	 I 
GE C°([0,T],L2(cl))	 I 

	

Si C E L2([0,T],H'(c?))	 ( 
V°EHl)

	

	 I 
52jO  

V, = a(0)55 + G(0) E L2(1)	J 
and

a(t, x) = a' . ' . (t, x) for (i, x) E [0, T] x 
(aQfleQ r), 11) > Y I ^121,112 for E R3 ,i7 E R2

(i,j = 1,2)
	

(3.8) 

(i,j = 1,2)
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be satisfied where -y > 0 is some constant. Then there exists a unique solution V = 
(9, 92) to problem (3.1) - (3.4) with 

9 1 E C°(10 , TI, H2(f)) n H(Q) 

are, E C°(10,T],L2(cl)) 
ôV91 E L2([0,T],L2(1)) 

92 e C°([o,T),H2(cz)n H01 (S1)) 

ô1 92 E C°([0,T],L2(c)) 

al V92 E L2 ([0, TI, L2(Q)) 

Proof. It can be done by using semigroup theory and it follows directly from con-
siderations in 31! 

Now we present a higher regularity theorem connected with the solution to problem 
(3.1) - (3.4). The existence result is a special case of a classical theorem on local existence 
for parabolic systems (cf. [91). 

Theorem 3.2 (Existence, Uniqueness and Regularity). Let the following assump-
tions be satisfied: 

10 a'.. E C O ([0 , T]xi)flL0o ([0 , T] , Lo0 (Z)) , Va E L°°([0,T],H'2(1Z)), 0a	Eaft

LOO qo, TI, Hs_I_Ic(cl)). (1	k	s —2) and ô'a ij E L2 ([0,T], L2(1)). 

2° For 9 1, 92 E H01 (l) and all t E [0,T] the inequality II 9 ,V + 11 110,112 <_ 72{(a-, 

+IOi 11 2 + 1182112 } is satisfied for a constant y > 0. 

	

azo

3° Fort e [0,T], —a ( t )ô	E Hk() with 9 1, 92 E H01 (l) implis that 91, 92 E CIO
H 2 (1Z) and II V lIk+2 y3(ll —a 3( t )a	IIk+II V II) where V = (8 1 ,92 ), 0	k	s-2

and 73 > 0 is some constant. 

40 o, k g, E Co ([0, 	H 2 (1)) (0< k < s-2) andô'g E L2([0,T],H—'(l)) (i 
= 1, 2), where s > [] + 4 = 5 is an arbitrary but fixed fixed integer. 

Then there exists a unique solution V = (91, 92) to the initial-boundary value prob-
lem (3.1) - (3.4) with the properties 

E C°([0, T], H 2 (?) n H (ci)) (0 <k <s - 2)) 

	

C°([0,T],L2(cl))	 (i = 1, 2). (3.10) 

	

ô'V9 E L2([0,T],L2(cl))	 J 
Proof. It is based on Theorem 2.1, the assumption of Theorem 2.2 and mathemat-

ical induction I 
Remark 3.1. In order to obtain the solution of problem (3.1)- (3.4) with regularity 

(3.10) the initial data must satisfy the compatibility conditions 

V  = ( 9 , 9 ) E (H"(ci) n H(Q)) x (H_ Ic (ci) n Hol 

- whérek=0,1,...,s-2and
= (95

1
1 '02) e L2 (ci) x L2 (ci).	 (3.11)
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We define Vk successively by 

k 1 k —i	a2vk_1_J Vk	( i )aao axax +a'c(o)	(k>1). 
i=o 

4. An energy estimate for problem (3.1) - (3.4) 

We start with the formulation of the following 

Theorem 4.1 (Energy estimate). Let the conditions of Theorem 2.2 be fulfilled. 
Then the solution V = ( 01, 92) to the initial-boundary value problem (3.1) - (3.4) estab-
lished in Theorem 3.2 satisfies the inequality 

s-2
lake, Is—k,T 

k=O 
s-2 

	

+ Ia;e 2	Ia'o 2	a'-1	2	 (4.1' 2 1,_k,T 1-	 1 Io,r + I	92I0,T 
k=O 

• I [llôVO1( r )ll 2 + 1I191V02(r)1I2]dr 
JO 

where

M0 (1+T){

	

: (119k 2	+ 119k2 
=	 1 li-k	2 us—k) + II' 112 

k=O 

+ 11029-1
 
112 + ID' 2g 1 IIO,T + IIi'2g2IILT	 (4.2) 

+ 
IT 

[IIôgi (r)I i + llô9;(T)ll2HI]dT} 

and K3 = K3 (P0 ,-y2 , 73 ), K = K4 (P,72 , 73 ) are positive constants depending continu-
ously on P0 , F, 72,73 are constants defined in the assumption of Theorem 3. 1, 

3	 2 
ii 

=sup >i: IIa(t)lIL= + i IlDXaII,_2,T O<t<T - i,j=1	 t,j=1 
s-2 2	 T 2 

+lakaij ,_l_k + I	i Iat1_1a:(T)I2dT 
JO k=1 i,j=1	 i,j=1 

2	 2 

= 	IIa(0)IIL= + i: II Dx a ( 0)II,_30,0aft
2,3=1	 i,j=1 

and
= T(1 + T).	 (4.3) 

Proof. It can be found in [7j1
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5. Proof of Theorem 2.1 

The proof of Theorem 2.1 is based on the Banach fixed point theorem. At first, we 
define Z(N,T) as the set of functions (0 1 ,02 ) which satisfy 

€ L([O,T],H'(l)) (0 < k <s —2) 1 
'It	E L°°(EO,T1,L2(cl))	 (i = 1,2)	(5.1) 

a,s- 'VOi E L2 (E0 , T] , L2 ( l ))	 J 
(s > [] + 4 5) with boundary and initial conditions of the form 

9118c10	•l
(i=1,2;0ks-2) 

50(0,x) = 9(x) J 
and the inequality

s-2
ao 2	5s_29 2 1 Is—k,T +	1 lOT 

l=0 

+ 
j ak 2	+ 5s_29 2	 (5.2) 021 	2 Io,T 

l=0
T • I [IIa' v9i( r )II 2 + IS'V92 (r)I1 2 ]dr <N 

Jo 

for N large enough. Now, we consider the system of equations 

o20	12 5292
= 91	 (5.3) S9i —as 55 —a035 

5291	22 a2 02 (5.4) 3102 —a,'153 —a 33 = 92 

with initial and boundary conditions (2.5) and (2.6) where 

a'p	aallflRl, 	 12	Zj12  
:=(8i,92,V9i,V82) 

and
9'	 (55) 
92 :=2(01,92,V0,,V92,t,x)J 

Applying Theorem 3.2 to problem (5.3) - (5.5), (2.3) - (2.4) we can see that there exists 
a mapping a such that 

a: Z(N,T) 3 (9,,) - a(,, 2 ) = (01,02).
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Next we prove that a maps Z(N, T) into itself under the conditions that N is large 
and T small enough. For this we introduce the notation 

s-2 
E0 -	

2 -	I 113_k + Il	112 + >i: ll 
k 2 11 23—k + II 9 ' 112 

k=o	 k=O 
1-2 s-2 •

	3(91 ,2 )1_2_k,T + :ii: Io(Q 1 , Q2)I_2_k,T	(5.6) 
k=O	 k=O 

+I
T

lla:'(Qi,Q2)II2dr. 

After some calculations and taking into account inequality N(t) = N(0) + f1' a, N( ,r) dT 
we get 

s-2	 s-2	 T 
j2 l 3 l 132_k,T +	O2I3_2_k,T 

+ f (II a:'1 ll- + Hal	i2	dt 2113-1 
k=0	 k=O	

) 0	 (5.7)

C(E0 ) + C(N)T(1 + T). 

Taking into account that

K3, K4 C(E0 )+C(N)T(1 +T)	 (5.8)


and putting (5.6) and (5.7) into the energy estimate, we obtain 

0e1 Is_kT +	I192j_k,T + i:° o,T + I5'62I0,T 

T 

+ / (lI 0v91II 2 + IIôv92II)dr	
(5.9) 

:^ K(Eo, 72 , 73 )(i + C(N)T(1 + T))e1)T(1+T1T). 

Now we choose N such that K(Eo,-y2 ,.y3 )	. Then we can notice that 

o(T) = (1 + C(N)T(1 + T)2)eC(N)T(1+T4+T+T) <2 

and for T small enough (a(0) 1) we conclude that 

a(Z(N,T)) C Z(N,T).	 (5.10)


Now we prove that
a: Z(N,T) —* Z(N,T)	 (5.11) 

is even a contraction mapping. For this we define the matric space (complete) (W, p) where 

W = {(oi,o) :0 1 ,92 E L([O,T],L2(cl)), V9 1 , V92 E L2([0,T],L2(c))}	(5.12)
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and

= 1 4 1 —6,k,i-+ 92 —9210,T 
-	 -	 (5.13) 

+ 

IT

	

 IIV(91- 6I)(r)II2dT 
+ 	

II V (62 - 62)r)lI2dr.  0 

The set Z(N,T) is a closed subset in (W, p). Let (O 1 ,62 ),(9,6;) E Z(N,T) and let 

	

= (61,92) E Z(N,T)	
(5.14)


= (6,9;) E Z(N,T) J 
Subtracting by side the corespoding system for 01, 02  and 6, 6 we get 

- 9) - 

=
ô	r	

(5.15) 

—g1(,2,V,V2)(x,t) 
for i = 1, 2. Using the fact that 

sup	 CN and	
(6 —°)Iaci = 0 } 

0<t<T	 (9 - 6 )(0, x) 0

and taking into account the mean value theorem 

C(6 1 ,62 ) - c(6,62*) = c(6 + (6 - 9),6 + (92 —6;)) - C(6,6) 
= VC() . (9 6*) 

after multiplying equation (5.13) by 6— 9 and intergrating on [0, t] x Q we get 

11 9 i - 61*1I2 + 
j II

V ( 6 1 - 6 flhI 2dr + U92 - 6112 + 
j IIV (92 - 82*)1I2dr 

<C(N)(1 +	) j (11 9 ' - 6 fl1 2 + II 6 - 62*112)dr 

	

+ (T(1 + T)[ 1 9 , - ilOT + 162 - 9;loT]	 (5.16) 

+ f (11
V(1 -	) I1 2 + II V(2 - ;)ll2)dr 

+ (1+	)	(11v61 - 6 flh1 2 + II V ( 62 - 9;)112)drdt. 

Applying to (5.14) the Growall inquality we get 

I Oi - 6flOT + 162 - °;Io,T +
fT

V(Il6 - 9 fl11 2 + II(62 - 02* )112 

T	 (5.17) 
e	-

 

	

1 1
0
2
,T + 162 - ;Io,T + f (llV(1 -	) I I 2 + II V(2 - ;)II)dr] 

where e = C(N)T+(1 + T)eC()(T+T). So choosing T small enough we obtain e < 1. 
So it means that the mapping a is a contraction. This ends the proof of Theorem 2.1.
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