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Relaxation for Dirichlet Problems 
Involving a Dirichlet Form 

M. Biroli and N. Tchou 

Abstract. For a fixed Dirichlet form, we study the space of positive Borel measures (possibly 
infinite) which do not charge polar sets. We prove the density in this space of the set of 
the measures which represent varying, domains. Our method is constructive. For the Laplace 
operator, the proof was based on a pavage of the space. Here, we substitute this notion by 
that of homogeneous covering in the sense of Coiffman and Weiss. 
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1. Introduction 
Let X be a connected, locally compact, separable Hausdorif space, Xo a relatively 
compact open connected subset of X and ci an open subset of X0 . Let m be a positive 
Radon measure on X. In this paper, we consider a strongly local regular Dirichlet-
Poincaré form a on X whose domain relative to ci is denoted by D0 (a,ci) C L2(X,m) 
(see [2],[3]). Let M a be the space of the non-negative Borel measures on ci, which do not 
charge the polar sets with respect to a (i.e. sets whose a-capacity is 0). The space M 
is compact with respect to the 7a convergence: see [17] for strongly eliptic operators, 
[29] for symmetric Dirichlet forms and [28] for non-symmetric Dirichlet forms. 

Consider a sequence (C,,) of closed subsets of ci and denote ci,, = ci\C,,; we shall 
define

f.Lh=OOC,, 

in a suitable way (see Lemma 3.1) such that Ph E M. The 7aconvergence of the 
sequence () means that there exists a limit measure it in M such that the solution 
Uh of the variational problem: 

Find uh E D0 (a,ci,,) such that for any v E D0(a,cih), 

a(uh i v)=J	fvdrn.	 (1.1) 
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or, equivalently, find uh E D0 (a,1Z) n L2 (f,111) such that for any v E D0 (a,l) fl 
L2(, /.Lh),

a(uhv)+J uhvdph = J fvdm,	 (1.2) 
11	 ci 

converges strongly in L2 (, in) to the solution u of the problem: u E D0 (a, 1Z)flL2 (cZ, j.t) 
and, for any v E D0 (a,cl) n L2(Q,p), 

a(u,v)+juvd=jfvdm.	 (1.3) 

Dal Maso and Mosco in [17] proved that in the strongly elliptic case for X = R" (n> 2) 
the space Ma is the closure of the Dirichiet problems of type (1.1) with respect to the 
-y"-convergence, i.e. for all p e M, there exists a sequence of open sets czh (and 
C,, = \1,,) such that the solutions uj, of (1.1) converge strongly in L2 (,m) to the 
solution u of problem (1.3). For this reason, (1.3) has been called a relaxed Dirichiet 
problem. 

Other density results have been proved: 

• In the case where a corresponds to a strongly elliptic symmetric operator, Dal Maso 
and Mosco [17] have proved the density in Ma of the measures with very regular 
density: /h = q,,l. where £ is the Lebesgue measure, and q,, E C00(1). 

• Dal Maso and Garroni [14] have proved the density in M of the Radon measures, 
when a corresponds to a strongly elliptic non-symmetric operator. 

• The same density result holds when a is a possibly non-symmetric strongly local 
Dirichiet-Poincaré form (see [281). 

The aim of this paper is on the one hand to prove that for a Dirichlet-Poincaré 
form, the problems of type (1.3) are the relaxed Dirichlet problems (at least under 
suitable assumption on the form a), i.e. the space M a is the closure with respect to the 
-y" -convergenceof the set of measures of type ooc , and on the other hand, for a given 
a measure p E M, to provide an explicit construction of the subsets Qh for which the 
solutions of (1.2) with p = 00 ch converge to the solution of (1.3). The last question 
has been solved by Dal Maso and Malusa [15] in the case of strongly elliptic symmetric 
operators. 

Before defining more precisely the framework for our study, we wish to describe the 
method used in [15]. We take X = R" (n > 2) (this hypothesis on the dimension yields 
that the points in R'2 have zero a-capacity). Let p be a Radon measure. For any h E N, 
we fix a pavage of R" made of the cubes Q',, of sides and centers x 2 . We denote by 
'h the sets of integers such that Q' C ft For i E I,, let B be the Euclidean ball with 
center x' and radius . Let E, be a concentric ball whose radius is chosen so that 

cap"(E,,B,) = p(Q;,). 

Observe that such an E, always exists by virtue of the continuity and the monotonicity 
of the a-capacity, and because 

cap"({x1},B)=O	and	cap" ph, ,B,)=+cx.	(1.4)
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Let C,, be the set Dal Maso and Malusa [15], generalizing the method of 
Cioranescu and Murat [9], and using a special Poincaré inequality, proved that the 
sequence cz,, 1l\C,, has the desired property. 

This method can be used for some degenerate operators, for instance for the Heisen-
berg operator

a2	a2	
Y2	X2) a2
	a2 

—(4z)-----	(1.5) 
2 

Y2 +	19Z2	19Z19X	azay 

naturally associated with the homogeneous group of the translations of Heisenberg. The 
ingredients for generalizing the previous technique are 

1. a special pavage (using the above mentioned translations) which has been studied 
in [6]. 

2. the notion of balls in a metric associated with the operator, which is different from 
the Euclidean metric because the operator (1.5) is degenerate. 

However, it is not clearly possible to construct a suitable pavage for general degenerate 
elliptic operators, even if they are associated with homogeneous groups of translations. 

In this paper, we shall investigate the possibility of replacing the disjoint covering 
(pavage) by a covering with a small overlapping. The method that we shall use consists 
of taking an homogeneous covering by balls B(x,, r) (i = 1,.. . , q), in the metric as-
sociated with the operator (see [10]). We shall see that this covering has the property 
d(x 1 ,x,) ^! for i j. This implies that the balls B(x, ) are disjoint and that any 
point x belongs at most to M balls B(xg,r) (where M is an intrinsic constant). More-
over, a property similar to (1.4) (connected with the behavior of the Green functions for 
the Dirichiet form a (see [31) allows us to define the sets E,. More precisely, if E M 
is a Radon measure and if we suppose that Al = {x 0 : a - cap({x 0 )) > 01 n Q = 0, we 
can construct a finite covering of ft B(x,,r) (z E I) such that B(x, ) are pairwise 
disjoint. Let 1 C I such that for all i E 1, B(x1, ) C ft Defining 

A(x j ,r) = B(x i ,r),. . . ,A(x,r)	B(x 1 ,r)\ U,< B(x,,r),. 

let E.	 1,	 2, = E(x,r) ç A(xr) be a ball centered in x contained in B(x,, ) with radius 

such that

capa (E(x,,r),B (x1, )) = 

then if E,. =	the sequence OO E, -t-converges to u. 
This result is then generalized for measures in M. Note that the assumptions 

Al = 0 can be weakened (see [7]), but not suppressed, because in the case of the 
dimension 1 (the points have non-zero capacity) this density result is false. 

The y"-convergence of the measures is proved thanks to a generalized Poincaré 
inequality for positive Kato measures (see Theorem 4.1 which has an interest for itself. 

Before giving the precise hypothesis on the Dirichlet Poincaré form we want to point 
out that our results apply for instance to the following cases: 

• forms connected with strongly elliptic operators for X = R'2 and n> 2,
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forms connected with degenerate elliptic operators with a weight w in the A2 
Muckenhoupt class such that. Al = 0; let us remember that in the model case 
X = R" (ri > 2) and w(x) = z' the requirement w E A2 means that —n < a 
but if we want that cap"({O}, IR") = 0, we have to add the hypothesis —n + 2 < (see [20]). 
forms connected with vector fields satisfying a Hörmander condition X = R" and 
ii > 2 where'v is the intrinsic dimension (in X0 ) (see [3, 21, 23, 27]). 

2. Hypothesis on the space, the measure and the Dirichiet form 
Let X be a connected, locally compact, separable Hausdorff space. We fix a positive 
Radon measure m on X, with suppm = X, which is called the "volume" measure 
on X. For the general theory of Dirichiet forms we refer to [22]. Let us consider a 
strongly local regular symmetric Dirichiet form a(u, v) on the Hilbert space L2 (X, in) 
with domain D(a); we recall that D(a) is a Hubert space with the intrinsic norm 
/a(u, v) + fX uv din. It is possible to associate with a(u, v) a Radon-measure-valued 
non-negative definite symmetric bilinear form a(u, v)(dx), called the energy measure of 
a, such that

a(uv)=fa(u,v)(dx)	'	 (2.1) 

for u, v E D(a). We refer to [3] for the definition and for the main properties' of the 
energy measure, and to [26] for the proofs in a more general context. Since the form 
a(u, v) is regular, there exists a core C C C(X) fl D(a) which is dense in C(X) with 
the.uniform norm, and in D(a) with the intrinsic norm. We assume that C is an in-
separating core, that is, for every x,y e X, with x 54 y, there exists 0 E C such that 

(x)	qS(y) and a(, g) !^ m, where the last- inequality is taken in the sense of Radon

measures on X. Let X0 34 X be a connected relatively compact open subset of X and 

an open subset of X0 , the closure of C(12) fl D(a) in D(a) for the intrinsic norm is 
denoted by D0 (a,cZ). We define D(a,) as the set of all restrictions ulp to 92 of the 
functions u E D(a). By the strong local property of the form a(u, v), the restriction to 
Q of the energy measure a(u, v) depends only on the restrictions of u and v to ft For 
the properties of the space D(a, ) we refer to [3,8]. By using the energy measure of 
the Dirichlet form a(u, v) we can introduce a metric on X, called the intrinsic metric, 
defined by

d(x,y) = sup	 (x) - ço(y): W E C, a(,) 5 in in x}.	(2.2)

By B(x,r) we denote the intrinsic ball centered at x with radius,r, i.e. 

B(x,r) = { y E X : d(x,y) <r}.	"	 (2.3) 

We assume that the topology induced by this metric coincides with the given topology 
of X. 

We also assume that the measure m on X satisfies the following doubling condition 
with respect to the intrinsic metric: there exist two constants R0 > 0 and C0 > 1 such 
that

0 < m(B(x,2r)) <Com(B(x,r)) <+oo	'	'	'(2.4)
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for every x E X0 and for every 0 <r Rd,. Moreover, we suppose that 

B(x,2r)	B(x,r)	 (2.5) 

for every x E X0 and for every 0 < r < . Let us suppose that the metric space (X, d) 
is complete. 

Let us recall that (X, d) together with this doubling measure m is a space of homo-
geneous type or, for brevity, a homogeneou3 space in the sense of Coifmman and Weiss 
[10].

We remark that if X is the union of a sequence of balls of radius R0 , then the 
separability of X is a consequence of the homogeneity. 

Remark 2.1. We recall the following property of homogeneous spaces which is a 
fundamental tool for our method (see [ 10: pp. 66 - 71] and [8: Proof of Lemma 2.5]): 
there exist two constants R0 > 0 and M such that for every 0 < r < there exists 
a covering of Il: B(x 1 ,r) (i = 1,...,q) such that d(x 1 ,x3 ) 2 r. This implies that the 
balls B(x R , ) are disjoint and that any point x belongs at most to M balls B(X R ,r) (M 
is an intrinsic constant) and at most to K(k)M balls B(x, kr) where k 2 1. 

Let us state here an easy lemma on the inverse doubling property of measure: 
Lemma 2.1. There exist a constant C. > 1 such that for every ball B(x, 2r) CC 

X0,0<r<,wehave

m(B(x,2r)) 2 C,m(B(x,r)).	 (2.6) 

Proof. Using the connexity of X and the continuity of the distance, it is easy to see 
that there exists yo E B(x,2r) such that d(x,yo) = r. Let us consider a ball centered 
in yo with radius r, that is B(yo, fr). 	Easily, 

B(yo, i r) C B(x,2r)	 (2.7) 

and	 •0 

B(yo, r) c B(x,r)c.	 (2.8) 
On the other hand,

B(x,2r) C B(yo,4r).	 (2.9) 

Indeed, for z E B(x,2r), 

d(z,yo)	d(z, x) + d(x, yo)	2r+r<4r,	 (2.10)


so we have 

rn(B(yo, fr)) 2	m(B(yo,4r)) 2	m(B(x,r)) 2	rn(B(x,r))	(2.11) 

and	 S 

m(B(x,2r)) - m(B(x,r)) = m(B(x,2r)\B(x,r)) 2 rn(B(yo, b r)) 2

(2.12) 
and the statement follows for C = 1 + CS 
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We assume that the following Poincaré inequality holds: there exist two constants 
C 1 > 0 and k > 1 such that for every 0 < r R0 , y E Xo and for every u € D(a) we 
have

IB(y,r) 
Iu -uy,rI2m(dx)	C1r2 fB(y,kr) a(u,u)(dx),	 (2.13) 

where Up , r is the average of u on B(y, r) with respect to the measure m. Let us remember 
that the embedding of D,, [a, ci] into L2 (ci, m) is compact 

D0 (a,ci) CC L2(ci,m)	 (2.14) 

when ci CC X0 (this fact can be proved as in Lemma 2.5 of [8]). 

3. Review on the definitions of measure space 

We recall here some definitions and properties on measures not charging polar sets and 
on Kato measures (see [3, 5, 11, 12, 13, 16, 221; all these definitions and properties are 
introduced and studied in previous papers, but for the sake of completeness, we describe 
them hereafter. 

The capacity of a set E C X associated with the Dirichlet form a(u, v) is denoted 
by capa (E) (see [22: Section 3.1]). The capacity cap°(E,ci) of a set E with respect to 
an open set ci C X is defined in a similar way, replacing X by ci and D(a) by D0 (a, Q).

A function u defined on an open set ci C X is said to be quasi- continuous if for 
every e > 0 there exists an open set G with capacity less than E (capa (G) e) such 
that the restriction of u to ci \ G is continuous. 

Every U E D(a, ci) admits a quasi-continuous representative, that is, there exists a 
quasi-continuous function ü on ci, unique up to modifications on a set of capacity zero 
(with respect to X), such that u ü rn-almost everywhere on ci (see [22: Chapter 3]). 
In this paper, when considering pointwise values of functions in D(a, ci), we shall tacitly 
consider their quasi-continuous representatives. 

We say that a set U C X is quasi-open if for every e > 0 there exists an open set 
U such that U C U and cap°(U \ U) <e. 

Definition 3.1. For every open set ci C X, let M a (Q) be the set of all non-0 
negative Borel measures z on ci which are absolutely continuous with respect to cap", 
i.e. (E) = 0 for every Borel set E C ci with capa(E) = 0. 

We introduce now an equivalence relation on the class M(ci). 
Definition 3.2. We say that two non-negative measures y and A belonging to 

M(ci) are equivalent (and we write u A) if j u2d = fn u 2 dA for every u E D0 (a, ci). 
Definition 3.3. Let ci be an open subset of X, let z € M(ci), and let E CC ci 

be a u-measurable set. The set E is p- admissible if there exsits a function u € Do(a,Q) 
with (u - 1) E L2 (E,.t). If E is jz - admissible, the variational /.t-capacity of E in 92 
relative to the Dirichlet form a(u, v) is defined by 

cap(E,ci) = min {a(uu)+ 
JE 

(U - 1)2 dz: u € Do(aci)}.	(3.1)
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The minimum above is attained taking into account the lower semi-continuity of the 
functional in the weak topology of D0(a, ci); if E cc ci, then the unique minimum point 
uE of (3.1) is called the jz-capacitary potential of E in Q. If E is not z - admissible, we 
define cap(E,ci) = + 00. 

Remark 3.1. Arguing as in [11: Theorem 2.91 we obtain that cap( . ,ci) is an 
increasing countably sub-additive set function, cap(O, ci) = 0, cap(E, ci) :5 
and cap(E,ci) capa(E,ci). Moreover, cap(Eh,ci) / cap(E,ci) whenever E is theit

 union of an increasing sequence (Eh) of hz-measurable sets contained in Q. In particular, 
for every open set U C ci we have 

cap(U,ci) = sup {cap(K, ci): K compact, K c u}.	(3.2) 
Example 3.1 (see [13: Example 1.6]). Let E C ci and let 00E be the Borel measure 

on ci defined by	 - 

OO E(B ) = 0	if capa(B n E) = 0

1+00 otherwise. 

Then OOE belongs to M(ci). We notice that a Borel function defined on ci belongs to 
L 2 (ci 3 O0E) if and only if u = 0 on E, except on a subset of capacity zero. Therefore, 
if E is closed in ci, we have D0 (a, ci \ E) = D0 (a, ci) fl L2 (ci, OOE) (see [22: Theorem 
4.4.2/(i)]). It is not difficult to see that cap,E(B, ci) = cap°(E fl B, ci) for every Borel 
set B C Q. 

The Green function for the form a(u,v) in an open set ci cc X0 is denoted by 
Gc(x, y). We refer to [2,3] for its definition and main properties. In particular, we shall 
use the following estimate for balls whose radius is sufficiently small with respect to the 
constant R. which appears in the doubling condition (2.4). 

Proposition 3.1. Assume that 20R < R. and that B(x,40R) c Xo is different 
from X. 110< d(x,y) <qR, q E (0,1) then 

1 	
G8,(x,y)	

cld(.,Y)
 

C 

I R R	 2	ds	
(3.3)

(x,y) m(B(x, )) 	m(B(x, s)) .s 

The constant c depends only q and on the constants occurring in the doubling condition 
and in the Poincar6 inequality. 

Let us remark that this implies (see [3: Remark 6.1]) that if 0 <r <qR, then 

H	2	ds' capa(B(r),B(R)) U: m(B(s))s) 
where the constants depends on q; this implies that if 0 q 1, then 

Ci(q)m	<cap°(B(qr),B(r)) <c(q)m
	

(3.4) 
r2	 r2 

From the definition of capacity we have also 

lim cap"(B(p), B(r)) +00. 
p— r
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Let us also remark that the hypothesis .N = {x 0 : a — cap(xo) > 01 fl ci = 0 means that 

urn I	s2	ds 
= 00.	 (3.5) 

r_OJr m(B(s))s 

Following [5], we recall the notion of Kato measure associated with a regular Dirich-
let form: 

Definition 3.4. Let ci be a relatively compact open subset of X with 2 diam(ci) = 
R < R0 , where R. is the constant which appears in the doubling condition (2.4). Assume 
that there exists x 0 E ci with B(x0 ,4R) CC X and B(x 0 ,4R) X. We say that It is a 
Kato measure on ci if i is a Radon measure on ci such that 

2	ds" tim sup 
LB(z,r) ( ld(,y) m(B(x, s)) 7 II(dy) = 0,	(3.6) rjO 

where Il denotes the total variation of the measure p. The space of Kato measures is 
denoted by K(ci), while K+(Q) indicates the cone of non-negative elements of K(c). 

In the following we assume that ci is a relatively compact open subset of X 0 with 
ci C B(R) C B(40R) C X0 , where B(R) denotes a ball of radius R andR0 is the constant 
which appears in the doubling condition (2.4), if it is not the case we decompose ci into 
open sets satisfying the previous conditions. 

We remark that a Kato measure p is diffuse, i.e. p({ x}) = 0 for every x E ci; hence 
we have limr jo IpI(B(x,r)) = 0 for every x E Q. From (3.6) we have that for every 
compact set K C ci and for every e > 0 there exists 6 > 0 such that IlL 1(E) < c for every 
Borel set E C K with diam(E) <. Moreover, if it E K(Q) and g is a bounded Borel 
function, then it is not difficult to see that gi e K(ci). We recall that if p is a Kato 
measure and if u E D0 (a,ci) is the solution of a(u,v) = (p, v) for any v E D0(a,ci), 
then u has the representation 

U(X) = 
in G

0 (x,y)dp(y)	q.e. in ci	 (3.7) 

(see [19: Proposition 37] and [5: Proposition 3.2]). Moreover, u is continuous in ci (see 
[5: Proposition 4.1]). 

Finally, we recall a decomposition result for diffuse measures in M a (Q) proven in 
[12] by using an extension to Dirichlet spaces of the Evans-Vasilesco Theorem and a 
result on reconstruction of a measure using capacities proven in [13]. 

Theorem 3.1. Let ci be an open relatively compact subset of X and let p E M(Q) 
be a diffuse measure. Then there exist a Borel function g: ci - [0, +oo] and a measure 
A E K+(Q) such that p gA. 

Theorem 3.2. Let ci an open relatively compact subset of X, let p be a measure 
in M(ci), and let

E, = {x E Q: capa (fxl ,
1 Q)  > o}.	 (3.8)
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Then for every Borel set B C Q we have

(cap({x},cl))2 
p ( B ) = sup >cap(Bj,)+	 (3.9)  i	capa({x},)_cap7({x},c^) 

iEJ	 zEB(E, 

where the supremum is taken over all finite Borel partitions (B 1 ) 1 €i of B (as usual if 
E, is not countable the sum for x E B fl E, denotes the supremum of the sums on all 
finite subfamilies of B fl E). 

For every u E M(l) we consider the functional F,: L2 (Q) - [0, +oo] defined by 

F,,(-) = -(u,-)+ j u 2 dp.	 (3.10) 

We recall a variational convergence in the class M(1) (see also [8 1 12, 29)). 

Definition 3.5. We say that a sequence (ph) of measures in M(1l) 7°-converges 
to a measure p E Ml) if the sequence of functionals F h r-converges to the functional 
F, in L2 (cl, m) in the sense of [18]. 

Let us remember that this convergence is equivalent to the L 2 -strong convergence 
of the minima, more precisely: 

A sequence (ph) of measures in M(l) 7°-converges to a measure p E Ml) if 
and only if for every f E D,(a, ) (D,(a, ) is the dual space of D0(a, )) the sequence 
of weak solutions U  E D 0 (a, ) fl L2 (Q, ph) of the problems 

a(uhv)+fuhvdPh = (f,v) 

for any v E D0 (a,fZ)flL 2 (, ph), converges weakly in D0 (a,l) and strongly in L2 (, m) 
to the weak solution u E D 0(a,) fl L2 (, p) of the limit problem	- 

a(uv)+juvd = (f, v) 

for any v E D. (a, c) n L2(cl, ). 

The following result (see [28, 29]) shows that the space M(l) is sequentially com-
pact under the 7°-convergence. 

Proposition 3.2. Every sequence of measures of M(1l) has a subsequence which 
7°-converges to a measure of M°0().
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4. Poincaré inequality 

In this section, when dealing with balls, we shall omit the dependence on the center. 
So we shall denote by B(t) any ball with radius t centered in a given point x0 E X0. 

We shall also omit the dependence on the form, which will be fixed. For instance, 
cap(B(qr), B(r)) = cap"(B(qr), B(r)). 

Our main result of this section is a Poincaré inequality on an intrinsic ball B(r). It 
consists of estimating the L2 (p)-norm of a function u with zero outer capacitary mean 
(where p is a Kato measure, possibly different from m) by the energy of the form times 
a term tending to 0 as the radius tends to 0. This method can be easily extended to 
other bounded projections. See also [1, 15, 31]. 

First we define the outer capacitary measure: 
Definition 4.1. Let U and V two open sets such that V CC U CC Q, and w the 

capacitary potential of V with respect to U (see also (3.1) with p = nov and Q = U), 
i.e. the minimum point 

min 
{lu

 a(v,v)(dx): v E D0 (a,U),v 21 q.e. on v} 
 (41) 
= capa(V,U) = 

fru, 
a (w, w)(dx). 

Let us extend w by 0 on cl\U. Then there exist two positive measures ii, A E D,(a) 
(D,(a) is the dual space of D0 (a) = D0 (a,X)) such that 

a(w,v) = - A, v) for any v E D0(a,), (4.2) 

supp(v) C ÔV, supp(A) C OU and u() = A() = cap°(V,U). We call u and A the 
inner and outer a-capacitarij distribution, respectively, of V with respect to U. 

The proof of the existence of such measures is similar to that of [15: Lemma 3.1], 
where the essential tools are Stampacchia's techniques (see [30: Theorems 2.1 and 3.8] 
and [25: Theorem 2.6.4]) which can be easily extended in our framework. 

Theorem 4.1. Let p E K+() be a Kato measure and let ' P be defined by 

1  
P(u)

1	 1
	fB(r)

 udA	 (4.3) =A(B(2r)) JB(2r) u dA =A(B(r))  

where A P is the outer a-capaciiary distribution of B(p) with respect to B(r) for p < r. 
There exists r0 > 0 such that for any r < r0 , if B(r) C 40B(r) cc Q and u E 
D(a, B(2kr)), then

	

JB(r) 
(u -P(u))2dp < Cri(r)fcx(u,u)(dx)	 (4.4) 

where C is a constant independent of r and Y7 is a function independent of the center of 
the ball B(r) with r(r) - 0 as r - 0. 

We begin with an abstract result estimating the L2 norm with respect to a Kato 
measure in B(s) by an energy norm in B(t) with t > s.
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Proposition 4.1. Let u E D(a, B(t)) and p be a Kato measure, 1A E K+(B), where 
B(t) c B C 40B c Q. There exists to > 0 such that, for any s <t < to, 

	

fB(
u2dz C(t) (fB(t)a(u,u)(dx) +	1 2 J	u2dm 	(4.5)
s) 	(t — s)	B(t)\B(s) 

where C is a constant independent of t and 77(t) —* 0 when t —* 0. 

Proof. We assume, without loss of generality, that u E C(B(t)). Let W be the 
solution of the problem to find W E D. (a, B(t)) such that 

JBM
a(W,v)(dx) = J vdi	for any v E D0(a,B(t)).	(4.6)

 B(t) 

Let us denote by G (1) the Green function with singularity in x with respect to B(t). 
Then we have	- 

W(x) 
= JBM 

G(t)(y)dIz f G(y)d	i(t) = supJBM G(y)dp.	(4.7) 
 B(i)	 xEB 

Using the definition of Kato measure and (3.3) we obtain that i(t) — 0 when t — 0 
and W E D0 (a, B(t)) fl C(B(t)) (see [5]). Let 4 be the cut-off function between B(s) 
and B(). Then u 2 q 2 E Co(B(t)) and we obtain using (4.6) 

JBM u2q2dp=IBM   

=21 u 2 c(W, u)(dx) +2J u 2 (W, )(dx) 
8(i)	 B(t)


<J	
2(uu)(dx)+J 

2 B(t)	 8(t) 

+ 
J u

2 a(cb, c)(dx) +24 
 u

22a(W, W)(dx) 
2 B(t)	 (t) 

= J (52	u)(dx) + u2co((, )(dx)) +41 u 22 (W, W)(dx). 
2 B(i)	 B(t) 

Let us estimate the last term: 

fB( t) u202a(W, 

= JBM 
a(W,Wu2q2)(dx) _2JB(t) uç5Wa(W,uc)(dx) 

=
 
JWu2 ci 2 du — 2J uqW(W,uq)(dx) 

8(t)	 B(1) 

<i(t)f u2ç62d/2 + JBM 
u 2 2 2 (W,W)(dx) +2f Wc(uq5,uc)(dx) 

B(t) 	 B(t) 

u22dp +
J u

22 a(W, W)(dx) 
B(t)	 8(i) 

+ 4172(2) I (u 2 a(O, )(dx) + 2a(u, u)(dx)) 
8(i)
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and we obtain 

fB( t) u22a(W,W(dx 

<2i7(t)J u22dp + 82(t)JB(s) (u 2 ()(dx) + 2(u,u)(dx)). 
B(t)  

But

	

u2cb2d1z 1	 8 

	

( 2 a(u, u)(dx) + u 2 , )(dx)) + —(t)	u22dj JB(i)	- 2 JB()	 C	fB(t) 
32 

	

+ —i72(t) f	(u2, )(dx) + 2(u, u)(dx)) 

	

C	 B(t)	
(4.8) 

= ii(t)/'	u2ç62djz 
B( i) 

	

(C
	

3217
++	 2(t) JB(t) (u2 ,)(dx) + 2a(u,u)(dx)). 

Let us choose e = 16 77(t) in the preceding inequality. Then 

J B(t)	
(49) 

J
u 2 çb 2 d + 10 ii(t)j	(u 2 a(, c)(dx) + 2(u,


B(t)	 8(i) 

and then 

IBOO 
u2du f 8(i) 

	

< 2077(i)[	(u 2 a(,çb)(dx) +2&(u,u)(dx))	 (4.10)
B( i) 

	

20(i) (IB(t) a(u,u)(dx) + (is)2C	

L()\B(S) u2dm— 

for any u E C(B(t)), and we conclude by density I 
Remark 4.1. Easily, from Proposition 4.1 we have that, if u E D(a, B(2r)) and 

cER,

	

4(r)
(u-c)2dz C(2r) 

(fB(2r)
 (u,u)(dx) +	J	(u -c)2dm .(4.11)
  ' 	B(2r) 

Let H be the Hilbert space H = D(a, B(2r)) endowed with the scalar product 

(u, V) = (
IB(2r)

 (u,v)(dx) +	J	uvdm	 (4.12) 
 r	B(2r)	J
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where C is a suitable constant . Let H1 = R. The Hubert projection on H1 is given 
by 11(u) = u dm. On the other hand, we denote by P a bounded linear 
operator 2: H — H 1 such that 2(u 1 ) = u 1 for any u 1 E H1 . We can use (4.11) with 
c = 2(u). Then 

IB(r) 
(u—P(u))2d 

J

Cij(2r) ()B(2r) udx) +	
JB(2r) — 

P(u))2dm).	
(4.13) 

In view of obtaining our Poincaré inequality (4.4), we have to prove that 

J
(u P(i))2 dn< c

2 JIB	
a(u,u)(dx).	 (4.14) 

B(2r)	 (2kr) 

— Using the Poincaré inequality (2.13) with 11(u) — m(B I(2r)) fB(2r)lm, it is enough to 
prove that

(11(u) - P(u )) 2 <	
Cr2

 m(B(2r)) IB(2kr) (u, u)(dx),	 (4.15) 

but
(11(u) — 'P(u)) 2 = ('P(u — H(u)))2 ^ Il P llvllu — H(u)llj.	(4.16) 

Thanks to
lu — 11(u)II ^ cf	a(u,u)(dx)	 (4.17) 

B(2kr) 

we have Theorem 4.1 below for any P such that 11211 2 < Cr' 
H — m(B(2r)) 

It remains to prove that for P defined as in (4.3) 

1	 _____________ 1
	JB(r) udA	 (4.18) = A(B(2r)) )B(2r) u dA = 

we have
p2 

<— II IIti — rn(B(2r)) 

where AP is the outer a-capacitary distribution of B(p) with respect to B(r) for p < r. 

Lemma 4.1. Let r-, 40B(r) CC and  as defined in (4.3). If A is the outer 
capacitary measure of B(p) in B(r) concentrated on the boundary .3B(r) and if there 
exist q E (0,1) and a constant C such that for any p € (0, qr) and for any 0	€ H 

A(0B(r)) JaB(r)	
r C9r(B()) JadA	 (4.19) 

then
2 

	

11p11 2	 (4.20) 

	

H'	m(B(2r)) 
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Proof. Using (4.19), for any 0 E H


1 
A(ôB(r)) IaB(r)	

^	q 
1 

ArT (ÔB(r)) JaB(r)	
d	 (4.21) 

and then
1  

II P IIH' =	IIIIH' ^ Cqr 
1	

IIIH'.	 (4.22) 
r (ÔB(r)) 

We want to prove that

li Ar iiii,	m(B(2r)) 
Let us consider the function ( = 1 - 9 where 9 is the cut-off function between B(qr) 
and B(r). Then ( = 1 on ÔB(r), ( = 0 in B(qr) and (,dx)dm. Using thery  equality A(ôB(r)) = cap(B(qr),B(r)) and the definition of the capacitary potential 
W;r of the ball B(qr) in 11(r) (extended to zero in the complement of B(r)), we obtain 
for any 0 E H fl C(B(2r)) 

= IfB(2r) 
dAr 

= L2r) 
(dAj

(4.23) =
 L2

(Wr,()(dx) 
r) 

	

Ccap(B(qr), B(r))	
(2 r) (
	)dx +	

111 ( 2r )	) • 

So we have
II ' qr 2 

	

II'r PIH'	Ccap(B(qr),B(r)).	 (4.24) 
It follows that

cap(B(qr), B(r))	m(2r)) (A(OB(r)))2	 (4.25) 

if and only if

	

cap(B(qr),B(r)) > cm(B(2r))	 (4.26) 
Using (3.4) and the previous inequalities we obtain the desired result U 

We end the proof of Theorem 4.1 by observing that inequality (4.19) can be proved 
using the same methods as in [15]. 

Remark 4.2. Using Lemma 4.1, it is also true that (4.4) holds for P(u) satisfying 
an inequality of the type (4.20), for instance for 

	

P() =	
1 
	f	udA.	 (4.27) 

r4 AB(!:) B()
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5. Main results 

Now we are able to prove the density result announced in the introduction. We shall 
prove it first for Kato measures in a Dirichlet space without polar points. This result 
gives a natural meaning to the notion of relaxed Dirichlet problems involving a form, 
i.e. any weak solution u of the "relaxed Dirichlet problem" in S2 with homogeneous 
Dirichlet boundary data a(u, v) + fn uv dp = f, fv dm (with v in a suitable space) 
is the L2 (1l)-strong limit of solutions u,, of a(uh,v) = j, fvdrn with homogeneous 
Dirichlet boundary data in varying domains czh. 

Different density results have been stated for instance by Mataloni and Tchou [28] 
proving that the relaxed Dirichiet problems are also the closure of Schrödinger type 
problems. These results have been already proved in the Laplacian case by Dal Maso 
and Mosco [16, 171 and in a more constructive way for general strongly elliptic operators 
by Dal Maso and Malusa [15]. In both articles, the Euclidean pavage associated with the 
Laplacian plays a fundamental role. The density result in the case of elliptic degenerated 
Heisenberg operator can be easily proven with the same methods as [16, 17] by using 
results stated in [6], and in particular the special pavage associated with the operator. 

In a more general case, it is not possible to construct a pavage of the space associated 
to a general degenerated elliptic operator and enjoying the properties needed by the Dal 
Maso and Mosco 'theory. The method used here is issued from harmonic analysis on 
homogeneous spaces (see [10]) and consists. of replacing the notion of "pavage" (disjoint 
covering) associated to the operator, by the notion of "homogeneous" covering associ-
ated to the operator. This notion is really weaker than the first one, and more suitable 
for general degenerated operators. Moreover, also in the classical strongly elliptic case, 
this method provides new approximating Dirichlet problems associated to homogeneous 
coverings different from the pavage. 

Let us recall that, using the measures defined in Example 3.1 Ph = 00Eh where 
Qh = cl\Eh, it is possible to consider the sequence u, of solutions of the homogeneous 
Dirichlet problem a(uh, v) = j, fv dm as a special case of a sequence of solutions of 
the relaxed Dirichiet problem  

a(u h v)+j u hvdPh =jfvdm. 

Let us recall also that for H' positive measures, Cioranescu, Murat and Kacimi (see [9, 
24]) proved that the existence of the Dirichlet approximating problem is a consequence 
of the existence of two positive measures satisfying special conditions. Indeed, we want 
also to use a similar approach and we start with the following 

Proposition 5.1. Let  E D'(a,fZ). If there exist two positive measures vh,.X h E 
D o '(a, 	and a sequence of functions wh E D(a,) such that 

WI, - 1	 weakly in D(a,ul) 
- -	

WI,0	-	'	 q. e. inEh  
a(wh,v) = (VI, - ) h, V )	for any v E Do(a,fZ)
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- /2	strongly in D'(a,cl) 

Ah	/1	weakly in D'(a,Z) 

	

= 0	for any v E Da (a,1) with v = 0 in Eh, 

then the measures OO E,, 7-converge to the measure 12. 

Proof. First we remark that /2 E D'(a,f) is a positive measure (cf. [24: Remar-
que 2.4]). To prove our result, let us consider for f E D'(a,) the sequence uh of the 
solutions of the problems 

	

a(uh,v) = (f, V)	for any v E D0 (1l) with v = 0 in Eh	
(5 1 

	

tL h = O	inEh-

We want to prove its strong L 2 ()-convergence to the solution u of the problem 

a(u,v) + in uvdp = (f, v)	for any v E D0(a,) fl L2 (,p).	(5.2) 

Let us take as test function in (5.1) WhO where 0 E C (the core of theform); the choice is 
possible since 0 is continuous and a(phi, phi) Has a bounded density, so W,I cb E D0 (a, Il). 
Then

	

in 
W h cX ( U ), 0)(dx) + j	Uh)(dX) - f UQ(W, 0)(dx) = (f, -h 0)	(5.3) 

and, using the definition of 

J (whuh)(dx) = (vh A h) U h> = ( vh, uh) .	 (5.4) 

By using the techniques used in (8], we can prove that passing to the limit in (5.3) yields 

fn c(u, )(dx) + ( ii, uc6)	(1 )	 ( 5.5) 

for any 0 E C and then

	

(u, )(dx) + in uO d = (1 )	 ( 5.6) 

for any v E DO (a,1)nL 2 (c,/2) • 

Proposition 5.2. Let us suppose that .N = (x 0 : a - cap({xo}) > 0) fl ) = 0, 
E K+(1l) and supp y CC Q. 

(i) There exists a positive constant depending only on R 0 and C(R0 ) such that if 
0 < r < rnin(C(R0 ), d(.supp /2 ,1)), we can construct a finite covering B(x,,r) (i E 
I) of Q such that the balls B(x, ) are pairwise disjoint.



Ar =
iEI 

II,- =

iEI 

Wr = { {i -
in l\ UREJ . B(x,, ) 

in B(x., )\E(x 17 r) (i e I')

(5.8) 
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(ii) Let 1 C I such that B(x, ) C 1 for all i E 1* . Let us define 

A(xi,r)=B(xi,r) 

A(x 17 r) = B(x 17 r)\ U 3 <, B(x,,r) (i 2 1). 

Let E(x 1 ,r) be a ball centered in x,, contained in B(x, ) and with radius such that 

cap" (E(x, r), B(x1, ))	It(A(x 1 , r)).	 (5.7) 

Then if Er U%EI . E(x,r) and r, - 0 the sequence OOErh -y-converges to  

Proof. We shall use the previous result to study the asymptotic behavior of the 
sequence OOE,. To this aim, we construct three sequences Wr E D(a,), 'r and A 7- as 
in the previous remark. 

Using Definition 4. 1, let us define .X ,r as outer capacitary distribution of E(x1,r) 
with respect to B(x1, ) and ii , r as inner capacitary distribution of E(x, r) with respect 
to B(x, ). We introduce 

where ?4',r is the capacitary potential of E(x 1 ,r) with respect to B(x 1 ,). Thanks to 
the weak maximum principle we have 0 <— w,. 1 and then IWrIIL2 ( Q ) C. Moreover, 

j cs(w; Wr)(dX) = = > L.	cx(w,7-, w1,7-)(dx) 
)\E(x,,r) 'El. 

=	
capa(E(x1,r),B(z, ) = 

iE! 

= > ,u(A(x,,r)) 
iEl 

and we obtain
IIWrIID(a) <— C- (59) 

Using the compact embedding of Do (a, l) into L2 (cl) (see (2.14)) and remarking that 
w7--1ED()wehave

WrW	inD(acl)1 

WrW	inL2(1l).	
(5.10) 

 J 
We wish to prove that w E 1. For this let us consider the characteristic function 

Xr = X(u,. B(z1,)\B(r,))	 (5.11)
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We have XrWr	Xr Let us call x the w * —L-limit of Xr Passing to the limit as 
r —+ 0,

xw = X.	 (5.12) 

We want to prove that q.e. x 54 0. Let 1' be an open subset of ft If 1*' C I is defined 
by i E I' if and only if B(x1, ) C ST, and if C. is the constant of the inverse doubling 
condition (see (2.6)), we have 

	

I Xr 2	m(B(x, )) - (B(x, )) 

	

2	(C. — 1)m(B(x,, ))

(5.13) 
C. —1 2
C.-1

(m(') — 0(r)) 

where 0(r) — 0 as r — 0. Letting r — 0 and using a density argument we obtain 
(C.-i)2 and thi x 2 C.	 s implies that w = 1. 

Now we shall study the weak convergence of the sequence Ar = EiEj . A s, ,.. Let 
E C, and let us define 

=	M (ç	x,r), Mi,r() =
	1 

iEI	 Ai,r(B(Xi, )) JIB(z, r)	
(5.14) 

From now on, let us choose r such that 4f < disi(supp z, t); then it is easy to see 
that 1l\uE,.B(zr) d,u = 0. We recall that A r is the outer capacitary distribution 
of E(x 1 ,r) with respect to B(xe, ). Then 

Ai,r(B(Xi,)) = cap' (E(xi,r),B(x,, )) = 

and

I(Ar,) - 

c
 J

cbdAr
U jE,. B(x,,r) 

HfU €,. B(z,) 

=f 
^ iEPB(x.,) 

= 'ç.' p(A(x,r)) 

iEI*
d Ai,r(B(x i , ))

LE I - B(z i ,r) 

- JUE,.A(zI,r) 
di 

-
	fA(z i ,r) 

d1	 (5.15) 
iEl-

dAi,r_> f	çbdp 
B(x.,)	iEP	 (z,,r)
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Ip(A(x,,r)) f	dAi,r -
 I =	

,r(B(Xi, )) B(x)	 (	/ x.,r)	I 

=	I	-	+ 1	0 dp 
IiEI JA(z.,r)	 I 

Then
-

IA(zi,r) 

( I	r)2dP)	 (5.16) 

iEI	A(z.,r)

I 

=

	(I
( - Mi,r())2d 

iEI	A(z.,r)	
)


and using the Poincaré inequality stated in Theorem 4.1 and Remark 4.2, we obtain 
that

J	( - Mi,r())2d	J	( - 
A(z,r)	 B(z,,r) 

	

= J
( - P())2 dz	 (5.17)


B( x r) 

IB(xi,2kr) 

Using (5.15) - (5.17) we deduce that, denoting by N (depending on k and C0 ) the 
maximal number of balls B(x 2 ,2kr) such that x E B(x1,2kr), 

I(r,) - (11 , 0) 	i7 (r) ( 1:.JBZ.	
a()(dx))	

(5.18) ,2kr) 

N,7 (r) (j a(, )(dx)) 

We conclude by density. 
Now the other conditions stated in Proposition 5.1 are easily verified and we have 

proved our statement. I 

Proposition 5.3. Let IL be a measure in K+(Q) and Qh an increasing sequence 
of open sets with closure contained in Q ans such that Uhflh = ft Denote by mu 
the measure defined by ph(E) = 1z(E fl for every ,u-measurable set E; then U h It 

converges to /.L as h - + 00. 

Proof. Consider the problems 

a(uhv)+fuhvdih =(f,v)	 (5.19h)



222	M. Biroli and N. Tchou 

for any v E Do(a,ci),uh E D0(a,ci). 

and
a(u,v)+fuvd = (f,v)	 (5.19)


for any v E D0 (a,1l),u E D0(a,1l). 

where f e L°°(ci, ni). We may assume without loss of generality that uh converges 
weakly to u 0 in D0 (a, ci), then Uh converges strongly to u 0 in L 2 (ci, m), [8]. Moreover 
the functions Uh are locally equicontinuous in cl,[5], so we may assume that 

uh converges 
to U. uniformly locally in Q. We observe that 

lim	fs, uv dp = lim	fn uvx dp = f u 0 v dp	(5.20) 

for every v E D0 (a, ci) fl C(ci), then for every v E D0 (a, Il), since p is a Kato measure 
in ci, [5]. From (5.20) we obtain easily that u 0 is the solution of (5.19). Since L(ci, m) 
is dense in D,(a, ci), the above result holds again for I E D,(a, ci), so Ph 7-converges 
top.I 

We remark that the-y-convergence is metrizable, [16, 171, then by a diagonal argu-
ment and by the results in Proposition 5.2 and 5.3 we prove: 

Theorem 5.1. Let us suppose that A/ = {x 0 : a - cap({xo}) > 01 fl ci = 0, 
p E K+(Q) and denote cir = {x E ci;dist(x , ci c ) > 3r}. 

(i) There exists a positive constant depending only on R. and C(R 0 ) such that if 
0< r < rnin(C(R 0), 40 d(supp p,cic)), we can construct a finite covering B(x 1 ,r) (i E 
I) of ci such that the balls B(x1, ) are pairwise disjoint. 

(ii) Let 1* C I such that B(x,, ) C ci for all i E I* - Let us define 

A(x i ,r) = B(xi,r) 
A(x 1 ,r) = B(x,,r)\ U3 < B(x,r) (i 2 1). 

Let E(x 1 ,r) be a ball centered in x 1 , contained in B(x1, ) and with radius such that 


cap(E(x1,r),B(x1, )) = p(A(x 1 ,r) fl cir). 

Then if E,. = U IE pE( x , r ) and r h -* 0 the sequence OO E, 7-converges to fL. 

We shall extend our previous result in the case of Radon measures in M. 
Theorem 5.2. Let us suppose that 

.iV= { xo :a —cap(xo)>O}flci-_. O	 (5.21)


and ,u E Ma is a Radon measure. Then if E, is defined as in Theorem 5.1, the sequence 
7-converges to p. 

Proof. Using a general result due to Mosco (see [291) we know that M is compact. 
So it is possible to extract a subsequence of	(that we shall call again COEr) which
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converges to ir E M. We want to prove that ir = it. Let us show first that ir . For 
this, let us prove that cap(A,f) < j (A) for any open A CC ci. Let A' be an open set, 
A' CC A and r be a real number small enough so that Ug(r,,r)r.,A1,6OB(xI,r) C A. We 
have

cap(A',ci) = liminf cap' ,E (A',ci) r-O 
=liminfcap°(A'fl Er, fl) r-O 

<liminf

	

	cap"(A' fl E(x1,r),cl) 
E(z,r)flA'ø 

< liminf

	

	 cap°(E(x1,r),B(x1, )) 

E(z,,r)flA':00 
-	 < liminf	 1i(A(x1,r) U Il,-) 

E(x.,r)flA'iAO 

In this inequality we have used that A(x,,r) fl A(x 3 ,r) = 0 if i 54 j . If A' - A 
increasingly, we have

cap(A, ci) :5 p(A).	 (5.22) 

If z is a Radon measure, we can easily extend (5.20) to any Borel set B C ci: 

cap' (B, ci) p(B). 

Using Theorem 3.2, we have 

ir(B) = sup E cap(B,, Il) . < sup E jz(B,) 5 y(B)	 (5.23) 
iEI	 iEI 

where the supremum is taken over all finite partitions B, of B. 

Now we want to prove that
7r(B) > 

Thanks to Theorem 3.1 there exist a Borel function g : Il -* [0, +00] and a measure 
A E K+(Q) such that p gA. Let us define 9K(X ) = min{g(x),K) and p = 9K A for 
K e N (then PK E K(ci)), and for any K let us construct the set Er,K as in Theorem 
5.2, such that 00E,K 7-converges to 11K• But we have Er, K C Er for any r and K and 
this implies 00E,K 00 E Using the monotonicity properties of the 7-convergence we 
have AK ir and, also letting K - 00,

p	ir.	 (5.24) 

We conclude using (5.23) and (5.24). I 

Let us now give a more abstract result on the density of measures 00E in the general 
case of p E M.
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Theorem 5.3. Let us suppose that Al = {xo : a - cap(xo) > 01 fl Q = 0 and 
p E M. Then there exists a sequence A, 7 -converging to p. 

Proof. We give only a sketch of the proof. We remark that the space M with the 
-y-convergence is metrizable (see [16, 17] for a similar proof in a particular case). Let 
p E M. We use the [28: Proposition 4.13) (where no result of type of Theorem 3.1 is 
used) to find a sequence of positive Radon measures p, E M which -y-converges to p. 
Then we use Theorem 5.2 to approximate Ph and we conclude by a diagonal argument I 

Remark 5.1. Let us remark that also in the general case when p E M, the 
construction of the sequence OO A, is explicit. Indeed, the construction of the measures 
Ph E M in [29: Proposition 4.13] is completely explicit and our preceding Theorem 
5.2 and the standard diagonal argument are also constructive. 

Remark 5.2. No representation theorem (like Theorem 3.1) for the measure p E 
M has been used in the proof of Theorem 5.3 for the approximation of p by Radon 
measures. 

References 
[1) Biroli, M.: An embedding property of Schechter's type for Dirichlet forms on an homoge-

neous space. Rend. 1st. Lombardo Acc. Sc. e Lettere A 128 (1994), 247 - 255. 
[2] Biroli, M. and U. Mosco: Formes de Dirichlet et estimations strctureUes dans les miluex 

discontinus. C.R.A.S. Paris 313 (1991), 593 - 598. 
[3] Biroli, M. and U. Mosco: A Saint- Venant type principle for Dirichlet forms on discontin-

uous media. Ann. Mat. Pura AppI. 169 (1995), 125 - 181. 
[4] Biroli, M

'
and U. Mosco: Sobolev and isoperimetric inequalities for Dirichiet forms on 

homogeneous spaces. Atti Acc. Naz. Lincei, Rend. Cl. Sc. Mat. Fis. Naturali 6 (1995), 
637 - 644. 

[5] Biroli, M. and U. Mosco: Kato space for Dirichlet forms. Potential Analysis 10 (1999), 
327 - 345. 

[6] Biroli, M., Mosco, U. and N. Tchou: Homogenization by the Heisenberg group. Adv. 
Math. Sci. AppI. 7 (1997), 809 - 831. 

[7] Biroli, M. and N. Tchou: Relaxed Dirichlet problems involving a Dirichiet form (in prepa-
ration). 

[8] Biroli, M. and N. Tchou: Asymptotic behaviour of relaxed Dirichlet problems involving a 
Dirichlet-Poincaré form. Z. Anal. Anw. 16 (1997), 281 - 309. 

[9] Cioranescu, D. and F. Murat: Un terme étrange venu d' ailleurs. In: Nonlinear Partial 
Differential Equations and their Applications, College de France Seminar, Vol. II and 
III (Research Notes in Mathematics: Vol. 60 and 70; eds.: H. Brézis and J. L. Lions). 
London: Pitman 1982, pp. 98 - 138 (Vol. I) and 154 - 178 (Vol. II). 

[10] Coifman, R. R. and C. Weiss: Analyse harinonique sur certaines espaces homognes. Lect. 
Notes Math. 242 (1971). 

[11] Dal Maso, G.: 7-convergence and p-capacities. Ann. Sc. Norm. Sup. Pisa C. Sc.. 14 
(1987), 59 - 100. 

[12] Dal Maso, C. and V. De Cicco: Evans- Vasilesco theorem on Dirichlet spaces. Rend. di 
Mat. (to appear).



Relaxation for Dirichlet Problems	225 

[13] Dal Maso, C., De Cicco, V., Notarantonio, L. and N. Tchou: Limits of variational prob-
lems for Dirichlet forms in varying domains. J. Math. Pures App!. 1 (1998), 89 - 116. 

(14) Dal Maso, C. and A. Carroni: New results on the asymptotic behavior of Dirichlet problems 
in perforated domains. Math. Models Methods in AppI. Sc. 4 (1994), 373 - 407. 

[15] Dal Maso, C. and A. Malusa: Approximation of relaxed Dirtchlet problems by boundary 
value problems in perforated domains. Proc. Royal Soc. Edinburgh (Sect. A) 125 (1995), 
99-114. 

[16] Dal Maso, C. and U. Mosco: Wiener criteria and energy decay for relaxed Dirichlet 
problems. Arch. Rat. Mech. An. 95 (1986), 345 - 387. 

[17) Da! Maso, G. and U. Mosco: Wiener's criterion and -y-convergence. App!. Math. Opt. 

15(1987), 15- 63. 

[18] De Giorgi, E. and T. Franzoni: Su un tipo di convergenzo variazionale. Parte I: Atti Acc. 
Naz. Lincei, Rend. Cl. Sc. Mat. Fis. Naturali 58 (1975), 842 - 850; Part 11: Rend. Scm. 
Mat. Brescia 3 (1979) 63- 101. 

[19) De La Pradelle, A. and D. Feyel: Construction d' un espace harrnonique de Brelot associd 
a Un espace de Dirichlet de type local v&iflant une hypothèse de hypoellipticité. Inv. Math. 

44 (1978), 109 - 128. 

[20] Fabes, E. B., Kenig, C. E. and R. Serapioni: The local regularity of solutions of degenerate 
elliptic equations. Comm. Part. Duff. Eq. 7 (1982), 77 - 116. 

[21] Franchi, B., Lu, C. and R. L. Wheeden: Weighted Poincaré inequalities for Hórmander 
vector fields and local regularity for a class of degenerate elliptic equations. Potential 

Analysis 4 (1995), 361 - 376. 

[22] Fukushima, M.: Dirichlet Forms and Markov Processes. Amsterdam: North Holland 

1980. 

[23] Serison, D.: The Poincari inequality for vector fields satisfying Hor-mander's condition. 
Duke Math. J. 53 (1986), 503 - 523. 

(24) Kacimi, H. and F. Murat: Estimations de 1' erreur dans des problérnes de Dirtchlet ot 
apparait un terme étrange. In: Partial Differential Equations and the Calculus of Varia-
tions, Vol. II (eds.: R. Serapioni and F. Tomarelli). Boston: Birkhäuser 1989, pp. 661 - 

696. 

[25] Kinderlehrer, D. and C. Stampacchia: An Introduction to Variational inequalities and 
Their Applications (Pure and Applied Mathematics: Vol. 88). New York: Academic 
Press 1980. 

(26) Le Jan, Y.: Mesures associeés a tine forme de Dirichlet et applications. Bull. Soc. Math. 

France 106 (1978), 61 - 112. 

[27] Lu, C.: Weighted Poincaré and Sobolev inequalities for vector fields satisfying Hórmander 
condition and applications. Riv. Mat. Iberoamer. 8 (1992), 367 - 440. 

[28] Mataloni, S. and N. Tchou: Homogenization for nonsymmetric Dirichlet forms. Tecnical 

Report, Uriiversità. di Roma 2 (1998). 

[29) Mosco, U.: Compact families of Dirichlet forms (to appear). 

[30] Stampacchia, C.: Equations elliptiques a coefficients discontinus. Montréal: Les presses 

de I' Universitè de Montréal 1987. 

[31] Zamboni, P.: Some function spaces and elliptic differential equations. Le Matematiche 42 

(1987), 171 - 178. 

Received 08.04.1999


