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Relaxation for Dirichlet Problems
Involving a Dirichlet Form

M. Biroli and N. Tchou -

Abstract. For a fixed Dirichlet form, we study the space of positive Borel measures (possibly
infinite) .which do not charge polar sets. We prove the density in' this space of the set of
the measures wh|ch represent varying.domains. QOur method is constructive. For the Laplace
operator, the proof was based on a pavage of the space. Here, we substitute this notion by
that of homogeneous covering in the sense of Coiffman and Weiss.
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1. Introduction

Let X be a connected, locally compact, separable Hausdorff space, X, a relatively
compact open connected subset of X and € an open subset of X3. Let m be a positive
Radon measure on X. In this paper, we consider a strongly local regular Dirichlet-
Poincaré form a on X whose domain relative to § is denoted by D,(a,) C L}(X,m)
(see [2],[3]). Let M3 be the space of the non-negative Borel measures on §, which do not
charge the polar sets with respect to a (i.e. sets whose a-capacity is 0). The space M}
is compact with respect to the ¥¢ -convergence: see [17] for strongly eliptic operators,
[29] for symmetric Dlrlchlet forms and (28] for non-symmetric Dirichlet forms.

Consider a sequence (C4) of closed subsets of Q and denote Q) = Q\Ch, we shall
define . :

b = 00C,

in a suitable way (see Lemma 3.1) such that #n € MS. The y°-convergence of the
sequence (pn) means that there exists a limit measure p in M} such that the solution
Uh of the variational problem

Find uy € D,y(a, s ).such that for é.ny = D,(a,%),

a(u,.,v):/r;\c fv.dm. (1.1)
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or, equivalently, find up € Do(a,Q) N L3R, us) such that for any v € D,(a,2) N
L(Q, pa),

a(un,v) + /n unv dun = /,, fodm, (1.2)

converges strongly in L2(Q, m) to the solution u of the problem: u € Dy(a, Q)N L2(Q, )
and, for any v € D,(a, Q) N L}(Q, ),

a(u,v)+/nuvdp=/‘;fvdm. (1.3)

Dal Maso and Mosco in [17] proved that in the strongly elliptic case for X = R" (n>2)
the space M} is the closure of the Dirichlet problems of type (1.1) with respect to the
7%-convergence, i.e. for all p € M9, there exists a sequence of open sets 1 (and
Ch = Q\Q4) such that the solutions us of (1.1) converge strongly in L?(Q2;m) to the
solution u of problem (1.3). For this reason, (1.3) has been called a relaxed Dirichlet
problem. . '

Other density results have been proved:

e In the case where a corresponds to a strongly elliptic symmetric operator, Dal Maso
and Mosco [17] have proved the density in M3 of the measures with very regular
density: up = gsL where L is the Lebesgue measure, and g € C§o(2).

¢ Dal Maso and Garroni [14] have proved the density in Mg of the Radon measures,
when a corresponds to a strongly elliptic non-symmetric operator.

e The same density result holds when a is a possibly non-symmetric strongly local
Dirichlet-Poincaré form (see [28]).

The aim of this paper is on the one hand to prove that, for a Dirichlet-Poincaré
form, the problems of type (1.3) are the relaxed Dirichlet problems (at least under
suitable assumption on the form a), i.e. the space M7 is the closure with respect to the
7®-convergence of the set of measures of type coc , and on the other hand, for a given
a measure u € Mg, to provide an explicit construction of the subsets Q, for which the
solutions of (1.2) with pj = ococ, converge to the solution of (1.3). The last question
has been solved by Dal Maso and Malusa (15] in the case of strongly elliptic symmetric
operators.

Before defining more precisely the framework for our study, we wish to describe the
method used in [15]. We take X = R™ (n > 2) (this hypothesis on the dimension yields
that the points in R™ have zero a-capacity). Let 4 be a Radon measure. For any h € N,
we fix a pavage of R® made of the cubes Q; of sides % and centers z;. We denote by
Iy the sets of integers such that Q;'x C Q. Fori € Iy let B;'x be the Euclidean ball with

center ' and radius -;—h Let E,‘l be a concentric ball whose radius is chosen so that
cap®(E;, By) = p(Q}).

Observe that such an E} always exists by virtue of the continuity and the monotonicity
of the a-capacity, and because :

cap“('{m,'}, Bi)=0 and cap®(B}, Bi) = +oo. (1.4)
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Let Ch be the set U;es, Ei. Dal Maso and Malusa [15], generalizing the method of
Cioranescu and Murat [9], and using a special Poincaré inequality, proved that the
sequence Q, = Q\C, has the desired property.

This method can be used for some degenerate operators, for instance for the Heisen-
berg operator

2 2

2
9 (49)3,57 (1.5)

A=
H = 52

o2 2 2 9? 17}
+6—y2+(4y + 4z )ﬁ+(4y)azax —

naturally associated with the homogeneous group of the translations of Heisenberg. The
ingredients for generalizing the previous technique are

1. a special pavage (using the above mentioned translations) which has been studied

in [6].
2. the notion of balls in a metric associated with the operator, which is different from
the Euclidean metric because the operator (1.5) is degenerate.

However, it is not clearly possible to construct a suitable pavage for general degenerate
elliptic operators, even if they are associated with homogeneous groups of translations.

In this paper, we shall investigate the possibility of replacing the disjoint covering
(pavage) by a covering with a small overlapping. The method that we shall use consists
of taking an homogeneous covering by balls B(zi,r) (i = 1,...,¢), in the metric as-
sociated with the operator (see [10]). We shall see that this covering has the property
d(zi,z;) > § for i # j. This implies that the balls B(z, 7) are disjoint and that any
point z belongs at most to M balls B(z;,r) (where M is an intrinsic constant). More-
over, a property similar to (1.4) (connected with the behavior of the Green functions for
the Dirichlet form a (see [3]) allows us to define the sets Ei. More precisely, if p € M2
is a Radon measure and if we suppose that N = {zo : a — cap({zo}) > 0} N Q = 0, we
can construct a finite covering of Q: B(zi,r) (¢ € I) such that B(z;, ;) are pairwise
disjoint. Let I* C I such that for all i € I*, B(z;, 5) C Q. Defining

A(zy,7) = B(z)1,7),...,A(zi,7) = B(zi,7)\ Ujci B(zj,7),...,

let Ei = E(z;,r) C A(zi,r) be a ball centered in z;, contained in B(z;, §) with radius
such that

cap® (E(:z:.',r),B (I.‘, i—)) = p(A(zi,1)),

then if E, = U;er« E(zi,7), the sequence cog, y-converges to p.

This result is then generalized for measures in M$%. Note that the assumptions
N = 0 can be weakened (see [7]), but not suppressed, because in the case of the
dimension 1 (the points have non-zero capacity) this density result is false.

The ~°-convergence of the measures is proved thanks to a generalized Poincaré
inequality for positive Kato measures (see Theorem 4.1 which has an interest for itself.

Before giving the precise hypothesis on the Dirichlet Poincaré form we want to point
out that our results apply for instance to the following cases:

¢ forms connected with strongly elliptic operators for X = R” and n > 2,
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e forms connected with degenerate elliptic operators with a weight w in the A,
Muckenhoupt class such that. N = 0; let us remember that in the model case
X =R" (n 2 2) and w(z) = |z|* the requirement w € A; means that —n < a < n,
but if we want that cap®({0},R") = 0, we have to add the hypothesis —n + 2 < a
(see [20]).

e forms connected with vector fields satisfying a Hérmander condition X = R™ and
v 2 2 where v is the intrinsic dimension (in Xo) (see [3, 21, 23, 27)).

2. Hypothesis on the space, the measure and the Dirichlet form

Let X be a connected, locally compact, separable Hausdorff space. We fix a positive
Radon measure m on X, with suppm = X, which is called the “volume” measure
on X. For the general theory of Dirichlet forms we refer to [22]. Let us consider a
strongly local regular symmetric Dirichlet form a(u,v) on the Hilbert space L?(X,m)
with domain D(a); we recall that D(a) is a Hilbert space with the intrinsic norm

\/a(u,v) + fx uvdm. It is possible to associate with a(u,v) a Radon-measure-valued

non-negative definite symmetric bilinear form a(u,v)(dz), called the energy measure of
a, such that . ‘ '

a(u,v):/);a(u.,v)(d:c) o - (20)

for u,v € D(a). We refer to (3] for the definition and for the fnain properties of the
energy measure, and to [26] for the proofs in a more general context. Since the form
a(u,v) is regular, there exists a core C C C.(X) N D(a) which is dense in C.(X) with
the uniform norm, and in D(a) with the intrinsic norm. We assume that C is an m-
separating core, that is, for every z,y € X, with z # y, there exists ¢ € C such that
#(z) # ¢(y) and a(¢, #) < m, where the last'inequality is taken in the sense of Radon
measures on X. Let Xy # X be a connected relatively compact open subset of X and
) an open subset of Xy, the closure of C.(Q) N D(a) in D(a) for the intrinsic norm is
denoted by Do(a,2). We define D(a,f) as the set of all restrictions ulg to 2 of the
functions u € D(a). By the strong local property of the form' a(u,v), the restriction to
§2 of the energy measure a(u,v) depends only on the restrictions of u and v to . For
the properties of the space D(a,Q) we refer to [3,8]. By using the energy measure of
the Dirichlet form a(u,v) we can introduce a metric on X, called the intrinsic metric,

defined by

d(z,y) = sup {np(:c) —¢(y): ¢ €C, alp,p) <min X}. (2.2)
By B(z,r) we denote the intrinsic ball centered at = with radius r, i.e.
B(z,r)={y € X : d(z,y) < r}. B ' (2.3)

We assume that the topology induced by this metric coincides with the given topology
of X. ‘ ' _

We also assume that the measure m on X satisfies the following doubling condition
with respect to the intrinsic metric: there exist two constants R, > 0 and C, > 1 such
that

0 < m(B(z,2r)) < Com(B(z,r)) < +00 oo (2.4)
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for every z € X and for every 0 < r < R,. Moreover, we suppose that
B(z,2r) # B(z,r) (2.5)

for every r € X, and for every 0 < r < %’-. Let us suppose that the metric space (X, d)
is complete.

Let us recall that (X, d) together with this doubling measure m is a space of homo-
geneous type or, for brevity, a homogeneous space in the sense of Coifmman and Weiss
[10}.

We remark that if X is the union of a sequence of balls of radius R,, then the
separability of X is a consequence of the homogeneity.

Remark 2.1. We recall the following property of homogeneous spaces which is a
fundamental tool for our method (see {10: pp. 66 — 71] and {8: Proof of Lemma 2.5)):
there exist two constants R, > 0 and M such that for every 0 < r < —49- there exists
a covering of Q: B(zi,r) (i = 1,...,q) such that d(zi,z;) > r. This implies that the
balls B(z;, 5) are disjoint and that any point z belongs at most to M balls B(z;,r) (M
is an intrinsic constant) and at most to K (k)M balls B(x;, kr) where k > 1.

Let us state here an easy lemma on the inverse doubling property of measure:
‘Lemma 2 1. There ezist a constant C, > 1 such that for every ball B(z,2r) CC
X0, 0<r < —ﬂ-, we have
m(B(z,2r)) > C.m(B(J:,r)). (2.6)

Proof. Using the connexity of X and the continuity of the distance, it is easy to see
that there exists yo € B(z,2r) such that d(z,yo) = 3r. Let us consider a ball centered
in yo with radius 1 27, that is B(yo, 2r). Easily,

B(yo, 37) C B(z,2r) A (2.7)
and - o B
B(yo, ir) C B(z,r)". (2.8)
On the other hand, . i
B(z,2r) C B(yo,4r). (2.9)
Indeed, _for z € B(z,2r), . '
d(z,30) < d(z,2) +d(z,30) < 2r + 57 < 4, (2.10)

so we have

m('B(yo, %r)) > — m(B(yo,4r)) > C—m(B(x 2r)) > 03 m(B(:v r)) (2.11)

4

C3
and '
m(B(z, 2r)) — m(B(:r: r)) = m(B(z,2r)\B(z, r)) = m(B(yo, 2r)) > 03 m(B(z,r)),

(2.12)
and the statement follows for C, = 1 + 55 [ |
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We assume that the following Poincaré inequality holds: there exist two constants
C: > 0 and k > 1 such that for every 0 < r < R,, y € X, and for every u € D(a) we
have
/ lu — uy,r|*m(dz) < Cyr? / a(u,u)(dz), (2.13)
B(y,r) B(y,kr)
where uy . is the average of u on B(y, ) with respect to the measure m. Let us remember
that the embedding of D,[a, Q] into LZ(£2,m) is compact

D,(a,92) CcC L}(Q,m) (2.14)

when € CC Xp (this fact can be proved as in Lemma 2.5 of [8]).

3. Review on the definitions of measure space

We recall here some definitions and properties on measures not charging polar sets and
on Kato measures (see (3, 5, 11, 12, 13, 16, 22); all these definitions and properties are
introduced and studied in previous papers, but for the sake of completeness, we describe
them hereafter.

The capacity of a set E C X associated with the Dirichlet form a(u,v) is denoted
by cap®(E) (see [22: Section 3.1]). The capacity cap®(E, ) of a set E with respect to
an open set 2 C X is defined in a similar way, replacing X by  and D(a) by D,(a, ).

A function u defined on an open set 2 C X is said to be quasi-continuous if for
every € > 0 there exists an open set G, with capacity less than ¢ (cap?(G,) < €) such
that.the restriction of u to 2.\ G, is continuous.

Every u € D(a,Q) admits a quasi-continuous representative, that is, there exists a
quasi-continuous function @ on §, unique up to modifications on a set of capacity zero
(with respect to X), such that u = i m-almost everywhere on (see [22: Chapter 3)).
In this paper, when considering pointwise values of functions in D(a, ), we shall tacitly
consider their quasi-continuous representatives.

We say that a set U C X is quasi-open if for every ¢ > 0 there exists an open set
U, such that U C U, and cap®(U, \U) < e.

Definition 3.1. For every open set @ C X, let M%(f2) be the set of all non-
negative Borel measures u on © which are absolutely continuous with respect to cap?,
i.e. u(E) = 0 for every Borel set E C Q with cap?(E) = 0.

We introduce now an equivalence relation on the class M ().

Definition 3.2. We say that two non-negative measures p# and A belonging to
MG3(82) are equivalent (and we write p ~ A) if Jov?du = [ ud\ for every u € D,(a, Q).

Definition 3.3. Let Q be an open subset of X, let u€E MM, andlet ECC N
be a y-measurable set. The set E is u-admissible if there exsits a function u € Dy(a,)
with (u — 1) € L*(E,u). f E is u — admissible, the variational p-capacity of E in
relative to the Dirichlet form a(u,v) is defined by

cap,(E,Q) = min {a(u,u) + /E(u ~1)dp:ue Dy(a, Q)} . (3.1)
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The minimum above is attained taking into account the lower semi-continuity of the
functional in the weak topology of D,(a, Q); if E CC , then the unique minimum point
ug of (3.1) is called the u-capacitary potential of E in Q. If E is not u — admissible, we
define capj(E, Q) = +o0.

Remark 3.1. Arguing as in (11: Theorem 2.9] we obtain that cap3(:,Q) is an
increasing countably sub-additive set function, cap4(@,Q) = 0, capi(E,Q) < u(E),
and cap§(E,2) < cap®(E, Q). Moreover, capi(En,Q) / capji(E, ) whenever E is the
union of an increasing sequence (E4) of u-measurable sets contained in Q. In particular, .
for every open set U C §2 we have

cap,(U,Q) = sup {cap:(K,Q) : K compact, Kc U}. (3.2)
Example 3.1 (see [13: Example 1.6]). Let E C ? and let cog be the Borel measure
on 2 defined by ’
ooE(B)={O if cap®(BNE)=0

+o0o0 otherwise.

Then oog belongs to M2(€2). We notice that a Borel function defined on Q2 belongs to
L?(Q,00E) if and only if u = 0 on E, except on a subset of capacity zero. Therefore,
if E is closed in 2, we have Dy(a,2\ E) = D,(a,Q) N L?(R,0k) (see [22: Theorem
4.4.2/(1)]). It is not difficult to see that cap3, (B,§) = cap®(E N B, Q) for every Borel
set B C Q.

The Green function for the form a(u,v) in an open set @ CC Xj is denoted by
Ga(z,y). We refer to [2,3] for its definition and main properties. In particular, we shall
use the following estimate for balls whose radius is sufficiently small with respect to the
constant R, which appears in the doubling condition (2.4).

Proposition 3.1. Assume that 20R < R, and that B(z,40R) C X, is different
from X. If 0 < d(z,y) < qR, ¢ € (0,1) then

1 /R 52 ds /R s? ds
- _ < G z T, <c —_— 3.3
€ Jd(z,y) m(B(Ias)) S B ,R)( y) d(z,y) m(B(Ias)) s ( )

The constant c depends only q¢ and on the constants occurring in the doubling condition
and in the Posncaré tnequality.

Let us remark that this implies (see [3: Remark 6.1]) that if 0 < r < ¢R, then

R 2 -!
a s* - ds
cap®(B(r), B(R)) ~ (/r m?) )
where the constants depends on g; this implies that if 0 < ¢ < 1, then
m(B(r e m(B(r
(@™ B < cap(B(gr), B(r) < Co(g) 2L, (3.4)
From the definition of capacity we have also

lim cap®(B(p), B(r)) = +oo.
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Let us also remark that the hypothesis A = {z¢ : a ~ cap(zp) > 0} N = @ means that

) R st ds _ B

Following [5], we recall the notion of Kato measure associated with a regular Dirich-
let form:

- Definition 3.4. Let Q be a relatively compact open subset of X with 2diam(Q) =
R < R,, where R, is the constant which appears in the doubling condition (2.4). Assume
that there exists z, € Q with B(z,,4R) CC X and B(z,,4R) # X. We say that g is a
Kato measure on Q if y is a Radon measure on Q such that

R 2 ‘
s ‘
lxmsup/ / —_— ul(dy 3.6
rl0 zeQ JanB(z,r) ( d(z,y) m(B(z, 3)) lel(ey) = (36)

where |¢| denotes the total variation of the measure u. The space of Kato measures is
denoted by K (), while K, () indicates the cone of non-negative elements of K(£2).

In the following we assume that Q is a relatively compact open subset of X, with
2 C B(R) C B(40R) C X,, where B(R) denotes a ball of radius R and R, is the constant
which appears in the doubling condition (2.4), if it is not the case we decompose Q2 into
open sets satisfying the previous conditions.

We remark that a Kato measure p is diffuse, i.e. p({z}) = 0 for every z € Q; hence
we have lim,jo |u|(B(z,7)) = 0 for every z € Q. From (3.6) we have that for every
compact set K C {2 and for every £ > 0 there exists § > 0 such that |u|(E) < € for every
Borel set E C K with diam(E) < 6. Moreover, if 1 € K(Q) and g is a bounded Borel
function, then it is not difficult to see that gu € K(2). We recall that if u is a Kato
measure and if u € Do(a,(2) is the solution of a(u,v) = (u,v) for any v € D,(a, ),
then u has the representation

u(a:)=/s;GQ(z,y)d;z(y) qe inQ (3.7)

(see [19: Proposition 37] and [5: Proposition 3.2]). Moreover, u is continuous in £ (see
[5: Proposition 4.1]).

Finally, we recall a decomposition result for diffuse measures in M2(2) proven in

[12] by using an extension to Dirichlet spaces of the Evans-Vasilesco Theorem and a
result on reconstruction of a measure using capacities proven in [13].

Theorem 3.1. Let Q2 be an open relatively compact subset of X and let u € M2(Q)
be a diffuse measure. Then there ezist a Borel function g: Q — [0, +00] and e measure
A€ Ki(Q) such that p ~ gA.

Theorem 3.2. Let 2 an open relatively compact subset of X, -let u be a measure
in M3(R?), and let

E, = {z € Q: capi({z},2) > 0}. (3.8)
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Then for every Borel set B C Q0 we have

(cap2({z},9))’
cap*({z}, Q) — capi({z}, Q)

u(B) = supz capy(Bi, Q) + Z (3.9)

i€l z€BNE,

where the supremum is taken over all finite Borel partitions (Bi)icr of B (as usual if
E, is not countable the. sum for z € BN E, denotes the supremum of the sums on all
finite subfamilies of BN E, ). : '

For every u € M2(§2) we consider the functional F,;: L*(Q2) — [0, + 00| defined by

F,(u) = a(u,u) + /Qu?dp. ) - (3.10)

We recall a variational convergence in the class M2(£2) (see also (8, 12, 29]).

Definition 3.5. We say that a sequence (p)) of measures in M$(Q) v*-converges
to a measure u € M5(R2) if the sequence of functionals F},, I'-converges to the functional
F, in L?(2,m) in the sense of [18].

Let us remember that this convergence is equivalent to the L?-strong convergence
of the minima, more precisely:

A sequence (un) of measures in M2(§2) v*-converges to a measure u € M3(Q) if
and-only if for every f € D)(a,Q) (D\(a,$) is the dual space of D,(a,$)) the sequence
of weak solutions us € Do(a,2) N L*(Q, pus) of the problems

a(ua,v) +/Quhvdm- =(f,v)

for any v € D,(a, Q)N L3(Q, us), converges weakly in Do(a, Q) and strongly in L2(2, m)
to the weak solution u € Dy(a, ) N L?(2, u) of the limit problem

a(u,v) + /;)‘uvdy = (f,v)

for any v € Do(a,Q) ﬂ L9, p).

The following result (see [28, 29]) shows that the space M2(Q) is sequentially com-
pact ‘under the y®-convergence.

Proposition 3.2. Every sequence of measures of M2()) has a subsequence which
~%-converges to a measure of M2().
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4. Poincaré inequality

In this section, when dealing with balls, we shall omit the dependence on the center.
So we shall denote by B(t) any ball with radius ¢ centered in a given point z, € Xo.
We shall also omit the dependence on the form, which will be fixed. For instance,
cap(B(qr), B(r)) = cap®(B(gr), B(r)).

Our main result of this section is a Poincaré inequality on an intrinsic ball B(r). It
consists of estimating the L?(u)-norm of a function u with zero outer capacitary mean
(where p is a Kato measure, possibly different from m) by the energy of the form times
a term tending to 0 as the radius tends to 0. This method can be easily extended to
other bounded projections. See also [1, 15, 31].

First we define the outer capacitary measure:
Definition 4.1. Let U and V two open sets such that V cC U CC €, and w the

capacitary potential of V with respect to U (see also (3.1) with u = ooy and Q = U),
i.e. the minimum point : S

min {/ a(v,v)(dr) : v € Do(a,U),v > 1 q.e. on V}

v (4.1)

= cap®(V,U) = / a(w, w)(dz).
Ju

Let us extend w by 0 on Q\U. Then there exist two positive measures v, A € D! (a)
(Dy(a) is the dual space of Do(a) = D,(a, X)) such that

a(w,v) = (v = \,v) for any v € Dy(a, ), (4.2)
supp(v) C 8V, supp(A) C AU and v(Q) = A(Q) = cap®(V,U). We call v and ) the
inner and outer a-capacitary distribution, respectively, of V with respect to U.

The proof of the existence of such measures is similar to that of [15: Lemma 3.1),
where the essential tools are Stampacchia’s techniques (see [30: Theorems 2.1 and 3.8]
and [25: Theorem 2.6.4]) which can be easily extended in our framework.

Theorem 4.1. Let p € K (Q) be a Kato measure and let P be defined by

1 1
—_ udl?
A2(B(2r)) Jpean

T A(B(r)) B(r)
where AL is the outer a-capacitary distribution of B(p) with respect to B(r) for p < r.
There ezists 1o > 0 such that for any r < r,, if B(r) C 40B(r) cC Q and u €
D(a, B(2kr)), then A

P(u) = udA? (4.3)

[ = P)ds < Cntr) [ et @
B(r) B(2kr)

where C is a constant independent of r and 7 is a function independent of the center of
the ball B(r) with n(r) —» 0 as r — 0.

We begin with an abstract result estimating the L? norm with respect to a Kato
measure in B(s) by an energy norm in B(t) with t > s.
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Proposition 4.1. Let u € D(a, B(t)) and p be a Kato measure, u € K, (B), where
B(t) C B C 40B C Q. There ezists to > 0 such that, for any s <t < 1o,

2 u I ! u2
/;muAdp < Cn(t) (/ O COR e /BM\BM dm) (4.5)

where C is a constant independent of t and n(t) — 0 when t — 0.

Proof. We assume, without loss of generality, that u € C(B(t)). Let W be the
solution of the problem to find W € D,(a, B(t)) such that

/ a(W,v)(dz) = / vdp for any v € D,(a, B(t)). (4.6)
B(t) B(t) '

Let us denote by G} B(t) the Green function with singularity in ¢ with respect to B(t).
Then we have

W)= [ Ghomns [ Ghwansaw=sw [ Giwan (0D
t ) x

Using the definition of Kato measure and (3.3) we obtain that n(t) — 0 when t — 0
and W € D,(a, B(t)) N C(B(t)) (see {5]). Let ¢ be the cut-off function between B(s)
and B(*32). Then u?¢? € Co(B(t)) and we obtain using (4.6)

/ u2¢2d;z=/ a(W,u?¢?)(dx)
B(t) B(1)
=2 ud?o(W, u)(dz) + 2 u2da(W, ¢)(dz
[ 1ot +2 [ sa(W, o)a)

E 2a'l.l’ll T u22 T
<5 Fetww sl [ s wa)

£

by u o z - u2 2(1 X
+2/Bm @8y + 7 [ wgaw Wyae)

€

= = 20’ u,u T u20 T g u2 2C¥ Z).
=5 [ (et + a6 o amN + T [ ue el W)

Let us estimate the last term:

/ u?p? (W, W)(dz)
B(t)
=/ a(W,Wu2¢2)(dz)-—-2/ - upWa(W,ud)(dz)
B(t) B(1)
= Wu?g?du — 2 / u¢pWa(W,ud)(dz)
B(t) B(1)
< r](t)/ ul¢?du + / u?2¢4%a(W, W)(dz) + 2/ W2a(ug,ud)(dz)
B(t) B(t) B(t)
2 2d 1 a2 42 W,W d
<o) [ weddues [ wteta(nwye)

#4770 [ (o(6,0)d2) + Pa(u, i)
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and we obtain
/ u?d?a(W, W)(dz)
B(1) :
<on(t) [ wgtdu+ sy [ (a(6,6)dz) + Patu,u)de)).
B(1) B(1) )
But _ .
2 2 € 2 2 8 | 242,
f 65 [, @atumes) + (6o + Sae) [ R

+ 200 [ (a(6,6)(dz) + $a(u,u)(d)
€ B(t)

8 (4.8)
= —n(t)/ u¢idu
: € B(t)
2
Let us choose € = 167(t) in the preceding inequality. Then
/ w?@’dp <
B (4.9)
s w1000 [ (52a(6,6)de) + alu,u)(ds),
B(1) B(t)
and then .
2d < 2 2d :
./B(s)u = /13(:)u s A
<200(t) [ (a8, 6)(d2) + #%a(u, u)dz)) (4.10)
B(1) '

< 207(¢) / a(u,u)(d:c)+é uldm | .
B(1t) (= 8)? Jpn\B(s)

for any u € C(B(t)), and we conclude by density

Remark 4.1. Easily, from Proposition 4.1 we have that, if u € D(a, B(2r)) and
ceR, C .

/ (u = ¢)*du < Cn(2r) / a(u,u)(dz) + lz/ (w—c)ldm]|.  (4.11)
B(r) ' B(2r) r B(2r)
Let H be the Hilbert space H = D(a, B(2r)) endowed with the scalar product

| 1 - |
(u,0) = C (/B(M ofu,v)(ds) + % /B(M uwo dm) (4.12)
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where C is a suitable constant . Let H, = R. The Hilbert projection on H, is given
by M(u) = m fB('Zr) udm. On the other hand, we denote by P a bounded linear

operator P : H — H; such that P(u;) = u, for any u; € H,. We can use (4.11) with
¢ = P(u). Then

[ =Py
B(r)

) (4.13)
< Cn(2r) / a(u,u)(dz) + -5/ (u — P(u))?dm ).
B(2r) T° JB(2r)
In view of obtaining our Poincaré inequality (4.4), we have to prove that
/ (u —'P(ﬂ))z}im's Cr? / of(u,u)(dz). (4.14)
B(2r) B(2kr) '

Using the Poincaré inequality (2.13) with [I(u) = m fB(2r) udm, it is enough to
prove that

2 Cr?
(I(u) = P(u))” < m(B@) 02k a(u,u)(dz), (4.15)
but
(I(u) — P(w))* = (P(u — I(w)))* < IPlIFllw — ()l (4.16)
Thanks to
=TI <€ [ au,ude) (4.17)
B(2kr)

we have Theorem 4.1 below for any P such that ||'P||2;,, < ;(Cﬁ;ﬁ.

It remains to prove that for P defined as in (4.3)

1 1

P =SB Joan* 7 = NBON Jocn

udA? (4.18)

we have

" Cr?
2 =
1Pl < m(B(2r))

where A? is the outer a-capacitary distribution of B(p) with respect to B(r)for p< .

Lemma 4.1. Letr < %‘-, 40B(r) CC Q end P as defined in (4.3). If AL is the outer
capacitary measure of B(p) in B(r) concentrated on the boundary @B(r) and if there
ezist ¢ € (0,1) and a constant C such that for any p € (0,q7) and for any0 < p € H

1

_ d\? < C
X@B®) Josn *

1
LN $dAI", (4.19
X @BM) Jonc (419
- then-

. Cr?

PN < (B’ (4.20)
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Proof. Using (4.19), for any ¢ € H

1 1

VTS YRS dN| < C o | dAT" 4.21

AZ(0B(r)) ae(r)qS AT (0B(r)) aB(r)| | (.21)
and then ! 1

1 D em——— p ’ < T vye-wuned qr ‘., .
We want to prove that
Cr?
qr(|2 qr 2

Let us consider the function ( = 1 — 6 where 6 is the cut-off function between B(qr)
and B(r). Then ¢ = 1 on dB(r), ( = 0 in B(gr) and a((,¢)(dz) < Sdm. Using the
equality AZ"(9B(r)) = cap(B(gr), B(r)) and the definition of the capacitary potential
wy, of the ball B(gr) in B(r) (extended to zero in the complement of B(r)), we obtain
for any ¢ € H N C(B(2r))

AT (8)] = ] paAr,
B(2r)

= / 6CdNT,
B(2r)

(4.23)
=1/ atw},80))
B(2r)
< C+/cap(B(gr), B(r)) </ a(¢, d)dz + —12- ¢2dm) .
B(2r) % JB(2r)
So we have
A1} < Ceap(B(gr), B(r)). (4.24)
It follows that Cr2
cap(B(gr), B(r)) < m(B—(zr))(/\‘5'(313(')))2 (4.25)
if and only if
cap(B(qr), B(r)) > Cm. (4.26)

Using (3.4) and the previous inequalities we obtain the desired result §

We end the proof of Theorem 4.1 by observing that inequality (4.19) can be proved
using the same methods as in [15).

Remark 4.2. Using Lemma 4.1, it is also true that (4.4) holds for P(u) satisfying
an inequality of the type (4.20), for instance for

P(u) = udAf. (4.27)

1
ALB(%) B(%) *
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5. Main results

Now we are able to prove the density result announced in the introduction. We shall
prove it first for Kato measures in a Dirichlet space without polar points. This result
gives a natural meaning to the notion of relaxed Dirichlet problems involving a form,
i.e. any weak solution u of the "relaxed Dirichlet problem” in  with homogeneous
Dirichlet boundary data a(u,v) + fyuvdu = [, fvdm (with v in a suitable space)
is the L%(Q)-strong limit of solutions uy of a(u;,,v) = fn fvdm with homogeneous
Dirichlet boundary data in varying domains ;.

Different density results have been stated for instance by Mataloni and Tchou [28]
proving that the relaxed Dirichlet problems are also the closure of Schrédinger type
problems. These results have been already proved in the Laplacian case by Dal Maso
and Mosco |16, 17] and in a more-constructive way for general strongly elliptic operators
by Dal Maso and Malusa [15]. In both articles, the Euclidean pavage associated with the
Laplacian plays a fundamental role. The density result in the case of elliptic degenerated
Heisenberg operator can be easily proven with the same methods as {16, 17 ] by using
results stated in [6], and in particular the special pavage associated with the operator.

In a more general case, it is not possible to construct a pavage of the space associated
to a general degenerated elliptic operator and enjoying the properties needed by the Dal
Maso and Mosco ‘theory. The method used here is issued from harmonic analysis on
homogeneous spaces (see [10]) and consists.of replacing the notion of ”pavage” (disjoint
covering) associated to the operator, by the notion of "homogeneous” covering associ-
ated to the operator. This notion is really weaker than the first one, and more suitable
for general degenerated operators. Moreover, also in the classical strongly elliptic case,
this method provides new approximating Dirichlet problems associated to homogeneous
coverings different from the pavage.

Let us recall that, using the measures defined in Example 3.1 u, = oog, where
Qs = Q\E,, it is possible to consider the sequence uj of solutions of the homogeneous
Dirichlet problem a(us,v) = fn fvdm as a special case of a sequence of solutions of
the relaxed Dirichlet problem

a(u;,,v)-*—/u,,vdy;,:/fvdm.
Q 1]

Let us recall also that for H~! positive measures, Cioranescu, Murat and Kacimi (see [9,
24]) proved that the existence of the Dirichlet approximating problem is a consequence
of the existence of two positive measures satisfying special conditions. Indeed, we want
also to use a similar approach and we start with the following

Proposition 5.1. Let u € D;'(a,Q). If there ezist two positive measures vy, Ay €
D;(a,f) and a sequence of functions wy € D(a,Q) such that

wp — 1 weakly in D(a, Q)
“wa=0" 77 ge inEj
a(wn,v) = (vh = An,v)  for any v € Dy(a, Q)
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vp — strongly in D' (a,Q)
Ap—p weakly in D;'(a,Q)
' {An,v) =0 for any v € D,{a,N) with v =0 in Ej, .
then the measures cog, v-converge to the measure .
Proof. First we remark that x € D;'(a,Q) is a positive measure (cf. [24: Remar-

que 2.4]). To prove our result, let us consider for f € D;!(a,) the sequence uy of the
solutions of the problems

a(un,v) = (f,v)  for any v € D,(Q) with v = 0 in E)
, | ~ (5.1)
up =0 in By,
We want to prove its stroﬂg L?*()-convergence to the solution u of the problem"
a(u,v) + / wvdp = (f,v) for any v € Do(a, Q) N LA(Q, p). (5.2)
a :

Let us take as test function in (5.1) wn¢ where ¢ € C (the core of the form); the choice is
possible since ¢ is continuous and a(phi, phi) Has a bounded density, so wa¢ € D, (a,R).
Then

/ wha(un, ¢)(dz) + / a(wh, und)(dz) — / una(ws, $)(dz) = (f,wnd)  (5.3)
[¢] Q ‘ » Q

and, using the definition of wy,

[ atwnund)de) = n = dnud) = g G4)

By using the techniques used in (8], we can prove that passing to the limit in (5.3) yields

/Q a(t, 6)(dz) + (1, ud) = (f, 9) (5.5)

for any ¢ € C and then

[ ot o)as) + / uddy = (f,6) (5.6)
1] 193 . .

for any v € Do(a, Q)N L% (Q, u) B

Proposition 5.2. Let us suppose that N = {z¢ : a — cap({zo}) > 0} N Q = 0,
u € Ky () and supp p CC 2.

(1) There ezists a positive constant depending only on R, and C(R,) such that if
0 < r < min(C(Ro), 35d(supp 1,Q°)), we can construct a finite covering B(zi,r) (i€
I) of Q such that the balls B(z;,§) are pairwise disjoint.
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(ii) Let I* C I such that B(z;,5) C Q for alli € I*. Let us define

A(z1,7) = B(z1,7)
A(:r;?r) = B(z;,7)\ Uj<i B(zj,7) (1 21).

Let E(z;,r) be a ball centered in z;, contained in B(z;, ) and with radius such that

capa (E(I,’,T), B(I,’, 45)) = }l(A(.‘C,‘,T)). (57)
Then sf E, = Uiy E(zi,7) and rp, — 0 the sequence 0OE,, Y-converges to p.

Proof. We shall use the previous result to study the asymptotic behavior of the
sequence oog,. To this aim, we construct three sequences w, € D(a,f), v, and A, as
in the previous remark.

Using Definition 4.1, let us define /\,',,. as outex-“capacit.a.ry distribution of E(z;,r)
with respect to B(z;, §) and v, , as inner capacitary distribution of E(z;,r) with respect
to B(z;, ;). We introduce

A _Z,\.,

1€l '
=Y vie '  (58)
(Y=Y Ad , - .
_ in Q\ Uier+ B(I,‘, 45) o
Wr = {1 —%ir} in B(zi, D\E(zi,r) (i €I)
where ;- is the éapacitary potential of E(z;,r) with respect to B(xg,'f). Thanks to
the weak maximum principle we have 0 L w, <1 and then ||w,||L2¢q) £ C. Moreover,

-3 / a(éifr,w;,,)(dx)

&7 Imce st

= Z cap E(:z:,-,jr),B(Ii, 45) =
i€l

= z }J(A(I.',T))
1€I°

< u(9)

| atwriwn)as) -

and we obtain

lwrllpaa <C. (5.9)
Using the compact embedding of D,(a,Q) into L%(R) (see (2.14)) and remarking that
w, — 1 € D3(S) we have

w, = w  in D(a,N) } (5.10)

: Wy —w in LQ(Q).

We wish to prove that w = 1. For this let us consider the characteristic function

Xr = X(uiese Blzi g0\ B(z:, 5))" (5.11)
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We have xrw, = x,. Let us call x the w * —L*-limit of x,. Passing to the limit as
r—0,

Xw = X. (5.12)
We want to prove that q.e. x # 0. Let Q' be an open subset of . If I*' C I is defined

by i € I*' if and only if B(zi,5) C &, and if C, is the constant of the inverse doubling
condition (see (2.6)), we have

/ x- 2 3 m(B(si, §) - (B(zi, £)
ieJ*’
> 3 (C. - Um(B(zi, 1))
i€l
Ct Y m(Bair))

ere

(5.13)

A\

C.-
C?

v

(m(Q )~ O(r))
where O(r) — 0 as r — 0. Letting r — 0 and using a density argument we obtain
2
X > gC‘T__'L and this implies that w = 1.
Now we shall study the weak convergence of the sequence A, = Z,-e 7o Air. Let

¢ € C, and let us define

1
¢r = Z Mi,r(¢)XA(z.~,r)) Mi.f(¢) =

— ¢d/\i,r- (5‘14)
P /\i,r(B(xi: 4_)) B(z;, f)

From now on, let us choose r such that 37' < ﬁdist(supp U, §2°); then it is easy to see
that Eﬂ\u.»ep B(zi,r) ¢ du = 0. We recall that A, is the outer capacitary distribution
of E(z;,r) with respect to B(z;, §). Then

/\,',,-(B(I.', f)) = cap® (E(I.‘,T), B(.‘E.’, i)) = /‘(A(Iivr))

and

{Ar, @) — (1, &)
< / bdi, — / b du
Uigse B(zi,r) Uiere B(zi,r)

-/ sar, - | $du
Uier= B(zi,%) Uigrs A(zi,r)

-1z / M-r—Z/A sdn

iel* (zilz) & (zi,7)

_ /.L(A(:L‘,,r))
- Z :r(B(zlhg)) B(z.,‘) Ir Z/ ¢d#

et i Jaen

(5.15)
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_ w(A(zi,r)) o
- xEEI:' </\i,r(B(-'l7ia 45)) B(z:,%) ¢d/\"r /A(z.',r) ¢d#)

iEZl' v/A(z.‘,T)( ) # 4/;1\U;e,- B(Zi,r) K
Then
I(Ary ¢) - (I"‘) ¢)|
S QS - ¢r d
;/A(W)I |du
#(Q) (g{: /A(w)( ) du

1
2

= u(Q)? - M; . (¢))%d
u(S) (621 /A (6= Mis(e)) ,,)

and using the Poincaré inequality stated in Theorem 4.1 and Remark 4.2, we obtain
that

/ (6 — M o(6))dp < / (6 — M o(8))Pdu
A(:.;,r) B(z;,r)
= [ 6= Py (5.17)
B(z;,r)

< n(r) /B a0z,

Using (5.15) - (5.17) we deduce that, denoting by N (depending on k and C,) the
maximal number of balls B(z;,2kr) such that z € B(z;, 2kr),

[(Ar, ) = (1, 8)| < 0(r) (; /B e a(¢,¢)(dz))

< Nn(r) ( | e, ¢)(dr))

Now the other conditions stated in Proposition 5.1 are easily verified and we have
proved our statement. 8 '

(5.18)

We conclude by density.

Proposition 5.3. Let p be a measure in K4+(2) and Q4 an increasing sequence
of open sets with closure contained in Q ans such that UpQy = Q. Denote by muy

the measure defined by pun(E) = p(E N Q) for every p-measurable set E; then uy v
converges to 1 as h — +oo.

Proof. Consider the problems

a(up,v) +/nu;.vd;zh = (f,v) - (5.194)
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for any v € D,(a,Q),un € Dy(a, ).
and

a(u,v)-}-/ﬂuvdp: (f,v) (5.19)

for any v € Do(a,),u € Dy(a,Q).

where f € L*°(Q,m). We may assume without loss of generality that uj, converges
weakly to u, in Do(a, ), then u, converges strongly to u, in LY (9, m), [8]. Moreover
the functions u are locally equicontinuous in §2,[5], so we may assume that u, converges
to u, uniformly locally in 2. We observe that '

limp—joo /»u;,v duy = lim;._.+°°/ upvxp dp = / u,vdy (5.20)
Q Q Q

for every v € Do(a, ) N C(R), then for every v € Do(a, ), since u is a Kato measure
in §, [5]. From (5.20) we obtain easily that ug is the solution of (5.19). Since L*°(2, m)
is dense in D;(a, ), the above result holds again for f € D! (a, ), so us ¥-converges
to u. .

We remark that the y-convergence is metrizable, [16, 17}, then by a diagonal argu-
ment and by the results in Proposition 5.2 and 5.3 we prove:

Theorem 5.1. Let us suppose that N = {zo : a — cap({zo}) > 0} N Q = 0,
n € Ki(Q) and denote Q, = {z € Q;dist(z,Q°) > 3r}.

(i) There ezists a positive constant depending only on R, and C(R,) such that if
0 < 7 < min(C(R,), g5d(supp p,N°)), we can construct a finite covering B(z;,r) (¢ €
I) of Q such that the balls B(z;, 7) are pairwise disjoint.

(ii) Let I* C I such that B(z;, %) C Q for all'i € I*. Let us define
Azvr) = Bar)
A(zi,r) = B(zi,7)\ Uj<i B(zj,r) (i 2 1).
Let E(z;,r) be a ball centered in z;, céntained in B(z,]) and with radius such that
cap® (B(zi,7), B(zi, §)) = u(A(z:,7) 0 Q,).

Then sf E; = Uier- E(zi,7) and 1) — 0 the sequence o©E,, 7-converges to p.
We shall extend our previous result in the case of Radon measures in M.

Theorem 5.2. Let us suppose that
N ={z0: a~cap(ze) >0} NQ =0 (5.21)

andp € Mg is a Radon measure. Then if E, is defined as in Theorem 5.1, the sequence
OOE, 7-converges to u. ’ :

~ Proof. Using a general result due to Mosco (see [29]) we know that M? is compact.
So it is possible to extract a subsequence of oog, (that we shall call again cog,) which
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converges to m € M2. We want to prove that # = u. Let us show first that # < u. For
this, let us prove that cap2(A4,Q) < u(A) for any open A CC Q2. Let A’ be an open set,

A' CC A and r be a real number small enough so that Ug(:;,r)n,‘:#gB(z.’,r) C A. We
have

capi(A',Q) = lif_nﬂiaxf capg,, (4',9)
= limi(x)lf cap®(A'NE,, Q)

< M M a ! R
< ll{_lllgxf Z cap®(A' N E(z;,r),)
E(zi,r)NA'#80

r

< . . a . PR—

< liminf Z cap®(E(zi,r), B(zi, 4))
E(zi,r)NA'#8

< lim i(t))f Z #(A(zi, ) UR)
E(zi,r)NA'#8

< u(A).

In this inequality we have used that A(z;,7) N A(z;,r) = 0ifi # 35 If A — A
increasingly, we have

capl(4,Q) < p(A). (5.22)

If u i§ a Radon measure, we can easily extend (5.20) to any Borel set B C 2
capy(B, ) < u(B).

Using Theorem 3.2, we have

7r(B) = supz capy(Bi, ) < supr(B;) < u(B) _ (5.23)
i€l i€l

where the supremum is taken over all finite partitions B; of B.

Now we want to prove that

(B) 2 u(B).

Thanks to Theorem 3.1 there exist a Borel function g : € — [0, +00] and a measure
A € K4+(f2) such that g ~ gA. Let us define gx(z) = min{g(z), K} and px = gk A for
K € N (then pux € K4+()), and for any K let us construct the set E, g as in Theorem
5.2, such that cog, , v-converges to ux. But we have E, x C E, for any r and K and

this implies cog, ,, <'c0g,. Using the monotonicity properties of the y-convergence we
have ug < m and, also letting K — oo,

pm ' - (5.29)

We conclude using (5.23) and (5.24). 8

Let us now give a more abstract result on the density of measures cog in the general
case of p € Mj.
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Theorem 5.3. Let us suppose that N' = {zo : a — cap(zo) > 0} NQ = 0 and
B € M3. Then there ezists a sequence 004, Y-converging to p.

Proof. We give only a sketch of the proof. We remark that the space M$ with the
7-convergence is metrizable (see (16, 17] for a similar proof in a particular case). Let
# € M. We use the [28: Proposition 4.13] (where no result of type of Theorem 3.1 is
used) to find a sequence of positive Radon measures #a € MG which y-converges to pu.
Then we use Theorem 5.2 to approximate uj and we conclude by a diagonal argument il

Remark 5.1. Let us remark that also in the general case when u € M3, the
construction of the sequence co4, is explicit. Indeed, the construction of the measures
Ba € M3 in [29: Proposition 4.13] is completely explicit and our preceding Theorem
5.2 and the standard diagonal argument are also constructive.

Remark 5.2. No representation theorem (like Theorem 3.1) for the measure p €
M3 has been used in the proof of Theorem 5.3 for the approximation of u by Radon
measures.
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