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On a Class of 
Parabolic Integro-Differential Equations 

W. Kohl 

Abstract. Existence and uniqueness results for the integro-differential equation 

u 1 (x, t) - aur(x, I) = c(x, t)u(x, I) +j k(s, x)h(s, I, n(s, I)) ds + f(z, I) ((x, i) e Q) 

subject to the boundary condition 

u(x,t) = (x,t)	((x, t) € R) 

and, especially, for the linear case h(s,t,u) = u are given. To this end, this equation is written 
as operator equation in a suitable Holder space. The main tools are the calculation of the 
spectral radius in the linear case, and fixed point principles in the nonlinear case. 
Keywords: Integro- differential equations, parabolic operators, multiplication operators, inte-

gral operators, Holder spaces, heat potential, existence and-uniqueness of solutions, 
Neumann series, fixed point principle 
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1. Introduction 

In this paper we study existence and uniqueness results for the parabolic integro-
differential equation 

Uj(X, t) - au(x, t) = c(x, t)u(x, t) +J k(s, x)u(s,t) ds + f(x,i) ((x, I) € Q)	(1) 

subject to the boundary condition 

u(x,t) = cp(x,t)	((X, t) E R).	 (2) 

Here c: Q - R, k (0,1) x (0,1) -* R,f : Q - R, and : R - R are given functions, 
where Q = (0,1) x (0,T] and R = Q \ Q is its parabolic boundary; the parameter 
a is a real constant. Equations of this type occur in the mathematical modelling of 
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various transport problems, e.g., describing the propagation of radiation through the 
atmospheres of planets and stars [4, 5], or the transfer of neutrons through thin plates 
and membranes in nuclear reactors [6]. In the case a = 0 this boundary value problem 
has been studied in the recent survey paper [1]. By means of a simple scaling argument 
we may suppose that a = 1. 

If we introduce the differential operator 

Lu(x, t) = Ut(X, t) - u,, . (x, t),	 (3) 

the multiplication operator

Cu(x,t) = c(x,t)u(z,t),	 (4) 

and the partial integral operator 

Ku(x, i) = / k(s, x)u(s, i) ds,	 (5) 

we may write (1) as operator equation 

	

Lu = (C + K)u + f .	 S	 (6) 

Our strategy for proving existence (and sometimes also uniqueness) of solutions 
to the operator equation (6) with boundary condition (2) is standard: First we give 
conditions under which the classical parabolic boundary value problem 

	

Lu=f	in Q'
(7)

	

u=p	onRJ 

has a unique solution for each I and in some suitable Banach space; this allows us to 
define the operator L' on this Banach space. Afterwards we pass from the operator 
equation (6) to the equivalent equation 

u—L'(C+K)urzrL'f (8) 

and try to find conditions under which the spectral radius of the operator L'(C + K) 
is less than 1, in order to apply the classical Neumann series. In fact it turns out that 
the spectral radius of the linear operator L'(C + K) is 0, if we take a Holder space as 
underlying Banach space of the operator equation (8). 

Apart from the linear equation (1), we will also be interested in the nonlinear 
equation

?lj(X, t) - au(x, t) 

= c(x, t)u(x, i) + f k(s, x)h(s, i, u(s, t)) ds + f(x, i)	
((x, t) € Q)	(9) 

0
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where h : Q x R - R is some Carathéodory function. Introducing the nonlinear 
Nemytskij operator

	

Hu(x,t) = h(x,t,u(x,t))	 (10) 

generated by the function h, we may write (9) again as operator equation 

	

Lu = (C + KH)u + f.	 (11) 

If we suppose again that the parabolic operator L be invertible in some Banach space, 
we end up,analogously to (8), with the nonlinear operator equation 

u .- L'(C + KH)u = L'f,	 (12) 

which may be studied by several (classical and non-classical) fixed point principles. 
The plan of this paper is as follows. First we introduce some special spaces of 

continuous functions in which the operator (3) and its inverse have particularly "nice" 
properties. In Lemma 1 and Lemma 2 we describe some features of the inverse operator 
by estimations which are not only useful for later functional analytic considerations. 
These estimations fill also a gap in the literature of the heat equation. So we aimed 
at thoroughness in proving them. Afterwards we give sufficient conditions under , which 
the operators (4) and (5) are bounded in these spaces. It turns out that analogous 
results for the nonlinear operator (10) are much more involved. Finally, we show how 
our results give existence and uniqueness results for solutions of the linear boundary 
value problem (1)/(2) and the nonlinear boundary value problem (9)/(2). 

2. The heat potential 

Following the theory of the heat equation in the book of J. R. Cannon [2: Chapter 
19] we know that the inhomogeneous heat equation (7) is invertible, if the data jr is 
bounded and uniformly Holder continuous on each compact subset of the domain under 
consideration. A detailed discussion of the inverse operator L' in the case of the 
infinite set (—co, +) x (0, T] is given in this book. Because we could not find similiar 
investigations for the finite set Q in the literature, we turn now our attention to this 
case. The inverse L' corresponding to the rectangular set Q can be represented as a 
linear Volterra operator

	

L'f(±,t) = I),t;e,1,T)T,	 (13) 

which is generated by the Green's function I' for the Dirichlet problem [3: p. 195]. This 
function can be expressed with the help of the 9-function 

+00  
O(x, t ;e, r ) =	exp —n2 +n(x.—)	+00	2 +n(x+)—xe 

t — T	
-	exp —n

 
00	

i — r 
fl 11= —00
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and the heat kernel
e_12 /4t 

-y(x,t) = 

in the form

f(x—e,t--r)9(z,t;,r) ifx,ER and r<t 
r(x,t;e,r) 

= 10	 if x, E Rand r > t.	
(14) 

Thus the function r is infinitely often continuously differentiable for all x, E R and 
T < t. For fixed (,r) E R2 it solves the heat equation for all x E R and t > r, while 
for fixed (x, t) E R2 it is a solution of the adjoint heat equation for all E R and r < t. 
Moreover, we have the boundary properties 

r(o,t;e,r) = r(1,t;e,r) = 0 ( E R,r < t)	 (15) 
t , r) =	t; , T) = 0 ( E R, r < t).	 (16) 

In order to investigate the operator L' we introduce for fixed e > 0 the family of 
functions Uh with 

i-hi 

Uh(X,t) = if r(x, t; ^, 7-)f(e, T) de& ((x,t) ER x [e,T],0 < h < ).	(17) 

Now the singularity (x, t) of the Green's function lies not in the domain of integration. So 
we conclude assuming f E L°°(Q) that each function uh is infinitely often continuously 
differentiable with respect to x and differentiating under the integral sign is permitted 

i
ok r akuh	

-hi
 

aXk (X, t) 
= 

f f (x, t; C, )f (e, r) dCd7- axk  (k E N). 
00 

In the case I E C°() we may differentiate (17) with respect to t to yield identity (18) 
for all (x, t) ER x [E, TI, 0 < h < 

ôuh	ô2Uh	
)+ I -	f(x,t;,t—h)f(—h)d.	 (18) ...(x,t) = --j-(x,t	

-Jo 

The properties of functions L'f with I E L(Q) are summarized in the following 
lemma. Let C°() denote, as usual, the set of all v E C°() such that there exists a 
c>Owith

höl (v( . ,t))	sup	Iv(x,t) - v(y,t)l 
<c	(t E [0,Tj). 

x,i,E[0,1],z96 y	Ix -	- 

Lemma 1. For f E L(Q), the heat potential 

u(x,t) = Lf(x,t) 
=	

(19)
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has the following properties: 

(a) u l R = 0 and u E C°() with SUPXEI0,11 u(x,t)I 15 c i (T) Ill 1100 t where 1111100 = 
inf(N)= o SUP( i)EQ\N If ( X , t )I is a norm in L00(Q). 

(b) u E C°() with u1(x,t) = f f' r(x,t;,r)f(e,T)ddT, u 1 (x,O)	0, and 

SUP-E[0,11 Iu(x, t)I < c2(T)llfII00/i. 
(c) u E C0(), 1. e. Iuz(x+, t)—u(x, )I 5 c3(T)11f1100 II 23, (x+, X E [0, 11, t E 

[0, T)). 

Proof. Part (a): Since the 9-function is bounded on the set 

D={(x,t;e,r)ER4r,E[0,l],t,rE[0,T],r<t}, 

we may estimate the function u by 

Iu(x, t)I	// If(x, t; e, r)I If(, r) ddr 

t 00 

:5 SUP I9(x; e,r)l I 111100ff 7(x - , t - r) ddr 

=ci(T) 

< c 1 (T) IIfIIoot. 

So the function u is well defined on Q and satisfies the asserted inequality. Furthermore, 
we estimate the difference u - Uh by

J'—h 

r1
Iu(x,t) - Uh(X,t)I	 J r(,t,T) If(e, r ) I ddr

 0 

= C) (T) 1111100h. 

Taking a sequence (ha ) with lim..00 h = 0 the sequence (uh) of continuous functions 
converges uniformly on [0, 1] x [c, T] towards the function u for all e > 0. Hence we 
have u E C°([0, 11 x (0, T]) and the function u(, t) possesses zero boundary values 

u(0,t)	limuh,,(0,t) = lirnuh(1,t) = u(1,t)	(t E (01 Tj). 

Moreover, the estimation Iu(x,t)l	ci(T)IlflI00t shows that u(x,t) - 0 as t \ 0 
uniformly for all x E [0, 1], and we conclude u E C°() with u I R = 0. 

Part (b): The existence of the first derivative u of the heat potential is based on 
the crucial inequality	. 

	

0 

Ir1 (x,t;e,r)id	c(T)	L,	(20)
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which we prove first. The product rule and further estimation leads to 

I
I IOx (x, t; , r )17(x - , t - r)d + f 9(x, t; , r)j I(x - e, i - r) d 

=: Ji + J2. 

We estimate the integral J1 by the two integrals 

f10.(X, t; ^, r)I-Y(X	t — T) d^ < A + B 

with

	

fl+OO	 2 
A 	n 

=
Jt-T	\ t — r	t — rJ 

and

^	in —	n 2	X + ^ 

and consider each integral separately using the convention of constants. We write A as 
a sum of integrals A = A 1 + A2 + A3 and treat each integral separately as follows: 

.1 

A1 Jni	 2
— =	—exp----+n—- t 

o InI^2 
—r -	t—r	t—r 

t ini exp
1-n

)de 
T	t — r 

0	IiI^!2 

(4ir)	2( 
<	— exp — 1	(n -	t - T	

+2)(exp_)} 

c(T)
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I 

n=1: A2 = — exp----+------'	p 

	

J 
1	 1	x - (4ir	ex )	— 

2	(x -	d 
t—r	i — r	i — ri /i	4(t—r) 

0

1 (47r)4 Iexp—(2 — (x - d 
4(t—r) 

0 

(4ir)4 1 
Jexp

1
 4(i—r) 

0 

< c(T) 

	

1 1	(	1	x — \ (4ir)4	(x - 
n=-1: A3=j

	

(47r)	
Jexp_

d 
4(i—r) 

0 

c(T)
—/i::-• 

Next we turn to the integral B = B 1 + B2 + B3 + B4 , where we look at 

(	fl2	x+	x 
B1 

=J >	
-

i — T	t — r I —T 
0 I1>2 

00	

1—n (4iry'  exp- 2 d 

0 

<f2v'fl—t t _ r exp ()	 4(t—r) 
n=2 

<J2(4	
1 00 1'	1	(x—)2 

dexp - 
t  exp_j—__E(n+3)(exp_)  -	--r	-

- <c(T) 

c(T) 
—7. 

Then we estimate the integral B2

	

(4) 2	(x+) 2 
n =O: B2 =j -__—/exP-4(1)d 

1	 _	 2 

	

e (47r) 2	____ 

T	 — exp	
r) 

/	
d
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and substitute by () =	- r) to gain the desired inequality 

	

1	 f 00 

B2	 exp 
4(4)-4	

-e2de<	
1	2	

exp-2d. 

For the integral B3 we obtain 

(47r) 4 f 1- e	((1 - x) + (1 - n=1: B3= /iJ —exp-	
4(t-r)	

d 
0 

(4ir)4 l 1 -	(1 - —exp-	d 
-T) 

0 
o	 _1 

_2eexp_2dei 
J	I 

o	 _i 
-2eexp-2de ir 

2 

J_00 

where we applied the substitution #&() = 1 + /4(t - r). Finally, the asserted estima-
tion holds for the integral B4 

n=-1: B4= J l+e	(1+x)(1+e) exp-	 7(x-,t-r)de t - T	 t - r 
0

	

2	1 
<exP_f7(x_1t_r)de r 

	

t-	i — i-  
0 

1 
<c(T) 

Considering the integral J2 we see that the boundedness of the 9-function and the 
substitution by () = x + J4(t _- 7) yield 

	

'	
exp-	d Ix - I (4ir)4	(x - J2<ci(T)j 2(t-r)
	 4(t T)

0

C2	7r 2 

	

c(T)J	IIexp-d-__ 
v) 
+00  

	

<ci(T) I	Iexp-2d _ 2 
J00 

_I 71 = CI(T)
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Now we are able to estimate the function q, where 

i I 

=	—(x t; , r)f(, T) dedr	((x, t) E [0,11 x [0, T]) q(x,t) if
ar 
ox 

00 

with the help of the just derived inequality as 

t	I 

	

'q(x,t)'<JJ	
,r)1 

I 
-	Tx 	If(,r)Id.dr Ox 

00 

<c(T)IIfII oo j	Ldr 

=2c(T)IIfIlv" 

= c2 (T) IIfIIV. 

Obviously, the function q( . , t) is uniformly bounded on [0,11 for each t and q(x,t) —p0 
uniformly on [0, 1] as i \ 0. Looking at the difference q -	we get ax 

	

q(x, t) - OUh --- (x, t)I < c2 (T) IfI1,,v'j	((x,t)E [0,11 X [,TI). 

We conclude like in part (a) q e C°(Q) with q(x,O) = 0 for all x e [0, 1 1 . For each 
the functions uh( • , i) are continuously differentiable on [0, 11 and satisfy the equation 
u h(0 , i) = 0; after the fundamental theorem of calculus the identity 

I 

	

Uh(X,t) = [	(,t)d	(t E [e, TI) 
Ox 

0 

holds, and we gain applying the uniform convergence of the functions u,, and h. as ax 
h \ 0 on [0, 11 x [e, TI the equation 

I 
u(x,i) = Jq(et)de	((X, t) E [0,1] x (0,T1). 

0 

By the uniform convergence of q(x, t) as t \ 0 this relationship is also true for t	0. 
Differentiating with respect to x leads to u 1 (x,t) = q(x,t) on Q. 

Part (c): In order to show the claimed inequality, we proof first that an estimate 
of the type

(x, E [0,11,0	r< t	T)	(21) J r(x, t; , T)l d <.c(T) 1 
t — r 

0
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holds. For this sake we apply the product rule and obtain 

fd^ S 
f I 

O(X, t; ^, 7)11 -y.. (X — ^, t — 7-)l d^ 

0	 0 

	

+ 21 I0x(x,t;,r)I 17.(X	- 

	

+
0 1

0-- ( X , t ; c )I  17(x	t - r)Id 

J1+2J2+J3 
where each integral J1 , J2 and J3 will be investigated separately. 

With regard to the integral J1 we employ the boundedness of the 0-function 

Jl

0

1	(x—e)2	1 

	

<ci(T)f	
r) + 4(t - T)2)	 p 

4(t - r)	4(t - T) (2(t - ex	 d 
0 

and substitute by c(e) = x + .J4(t - T) to get 

ci(T)	 + -) t	exp —2d -	2(t—r)	—r, 

1	1 c (T)7r 2
- J	(2 +	exp _e2 de 

<c(T)--
t—r 

Next we estimate the absolute value of the integral J2 by the sum A + B of the two integrals 

A	
fl+OO 

J i_ex	 x -	-	1	(x - IX=f	 (__+n)	 exp	d 
0

	

r	t—r	t — i - 2(t—r)4(t_r)	4(t —r) 

and
1 fl+c'z 

	

[	In—el 

	

B=	
i — T exp(__+n____ 

	

t — r	t — r	i — ri 0

Jx — Cl	1	(x—C)2 
/4i 2(t - r)	r(iJ	4(1 - r) dC.
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Similiar estimations as in the proof of Part (b) lead to 

00	 1 n Ix—fl	1 
A<-_1--f2exp	

1 
'1—	(	>Jj( +	T) 2(1 - r) J47r(t - r) 

0 

	

1 
f 

Ix - fl 	1	(2+ (x	
d 

_))2

	

(t r)	
exp—

4(1 - r) t - r	2 - J4ir(t - T) 
0 

+ 
1 
f	— 

r) /4ir(i 

	

x—I	1	(2—(x—e))2
d 

t - r 2(1 —	 exp— 
—r)	4(t—r) 

0 

Let us write B B1 + B2 + B3 + B4 . We estimate B 1 via 

-	 exp(—
	

+n — B1 <f	
x 

t — T	\ t—T	t—r i—ri
a InI>2 

Ix—I	1	(x_)2 
x	 exp—	d 

2(i-7)47r(t_r)	4(t— r) 

co	 1—n Ix—I	1	(x— e)2 exp •	I 2(n+1)exP(	 d)2(1)	
4(i—r) i—r 

0_

<c(T) 

Then we consider B2: 

B2 <j1	
/	" x—	I	 (X e ) 2

exp	d 
0 

—T 
— —exp( —

	r)2(i—r)y4ir(t_r)	4(t—r) \ 

1 
= 4(-,T ) 1(1 

1
4(t—r) 

0 

1	1 
f

/ (x +e) 2 x+e  exp ( -  -	\ 8(1 -	exp - 8(1 - r) - , 4(ir)z  

	

0	 -
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For the integral B3 we obtain 

B3	

CI 

	

exp	+ 
<JI'	

1	X+C	XC	Ix-	1	 (x	2
dC (-	 - -	t - T	 i - r t - r	2(t - r) _4______(t —r)	- 4(t - r) 

0

r- 	x) + (1 - C))2 Ix - Cl	1	
d. 

= 
Jexp ( -	 _______i — T	 4(t—r)	)2(i—T)y4(t_T) 
0 

Using the estimation 

	

l x– Cl ( l x - 1 l+l 1– Cl =2– ( x +C)	(x,CE[0,1]) 
we calculate further 

B3	1 - C	
( 

( ( 1 - x) + (1 -	 exp - C))2 2 - (x + C)	(2– (x + C))2 dC 

	

-	(i - r)2 exp
	

8(t - r)	) 4t - r	8(t - r) 
0

C '1–C	(1-C)2 

	

•	I	exp-8	dC t — rj i — r	—r) 
0 

<c(T) ----. 
t – r 

At last, we proceed with the integral B4 to get 

B4<J1"exp /
	1	x+C	Xe) Ix - CI	1	 (x–C)2 - —(---------- dC 

0

	

t – r	\. t – r	t — T	t – r 2(t–r)4(i_r	4()	- 1—T) 

	

J 1+C	/ (1+x)(1+C)) 'x CI 1	 (x –C)2 = —(–	 exp–	dC exp 

	

t — T	'	t–r	2(i–r)/47r(t_i-)	4(t —r)
0 

<I exp -	 (_)2(tT)y4_T)dC 
0 

t – r 
Finally, it remains to investigate the integral J 3 , which we estimate by 

I

	

n=+00	2	 2	r - C	1	- (X — C)2 exp -------+n----"	 exp	dC 

	

3
	
( t 7-)2 tr	i — TI 4(t—r)	4(1—r) 

0

	

1	 –C)2 x	 exp (X	
dC — T)	4(t - r)

=: C + D.
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We treat the integral C in a similiar manner as the integral A above and derive without 
difficulties

C<c(T)---. 
t — r 

For the integral D 1 we obtain 

	

2	 x+	x	1	(x—)2 

	

D1f> (s—) exp	 exp—(_—+n--_ t — r	t — r	)4(t_r)	4( 
o InI^2	

t—r) 

100
1—	1	 —)2 

	

f2(n+1)(i _r	 n)2exp___'1	 exp — (x 

n=2	
\ I — 7- I 4(i — T)	4(1 - r) 

d 

1 00	--
1

	

/	1\1 
<— f2(n+3)(exP_) - t—r

n0 

/	1 '.	1	(x—)2 xexp	 exp—	d (_ 
t—r) V47r(t_r)	Z( —t --T

1 

Next we go on estimating 

	

I 
__ 1(xe)2 dD2 = 	(t_ T )2 exP (	)4(I_T)exP 4(tr) 

0

1 (r+e)2exp— 
= J (I - r)2 4(i -	

d 
r)	.4(1 - r) 

0

	

1 'e	2	 _	___ 

exp-	 __ exp— - t — rJ j — r	8(t_T))4(I_)	8(t—r) 

<c—'---! exp - ___ 

— i — ri t — r	8(i—

_

r) 
0 

c(T)<-----.. —	t — r 

The integral D3 will be estimated by 

=	 exp(----- + --- x+e	 e -------	 xp — 

	

D3 J(l_)2	 1	 1 	(.T C)2
d 

(t — r) 2	t 	t — r	t—r)4(t_r)	4(t—r) 
0

	

I('	

1 -	((1.x)+(1_.))2 
=	 exp—	 d (t 7-)2 V/4—r) 	 4(i-7-)
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<'.P _____ 
1 

Jt1_	
('-C)2	'-C	 C)2 exp  - t—r	t—r	(- 8(i_r)) 4(t_r) 

C  
<	J1—C exP (le)2 —	—8( d 

t—r t— r —	 t — r) 
0

1 

At last we calculate for the integral D4 without difficulties 

I ( 1 +C) 2 exp (	1	 x + C	X	 exp— C '	1	(x—C)2
dC 

0 

D4	
(i—r)2	t — r	 v'4r(t_r)	4(t—r) 

f(i+e)2 
= J (t—r)2 

exp (_(1 +x)(1 +C)\	1	exp_(2 -C)2dC 
t — r	)y4ir(t—r)	4(t—r) 

0

1(t r)2	 exp — -----d 
—	-../47r(t_T)	t — r 

0

t - T 

Now we turn to the asserted inequality of this lemma and obtain for a positive 
parameter i

i	I 

Iu(x + b, t) - U --(X, t) I	f f . r(x + 6, t; , r) -	i; c, r) If(C r)I dCdr 
00 
I-Il I 

ffjr	+ 6,t;C,T) - 
00 

1	1 

+ f f  
i-ti 0 

1	1 

+ f I 
i-i1 0 

Ii + 12 + 13. 

We already know by the result of part (b) that 12 + 1 3	2c2 (T) I If I I.ql is true. 
Moreover, we obtain by the mean value theorem 

t-q 1 

I' = f f F, t; , T)I If(C r)I dCdr 
00
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for y between z and x + 5. We calculate further applying the inequality above 

I <c(T)ffl 1dr6 

= c(T) IIfIIln 

<c(T) IIfIlO8 

Setting 1) = b 3z we have for all t E [,T] the estimation 

Iu(x + 6,t) - u(x,t)I	c(T) IIfIIoo t	+ 2c2 (T) IIfIIoo8 

(c(T)T + 2c2(T))IIfII,& 

= c3(T) IIfIIS 

whereas in the case t E [0, .5j the inequality 

Iuz(x + 5,t) - u1(z,t)I :^ 2 sup u(x,t)I 
XEIO,i] 

<2c2(T)IIfII,,,t4 

<2c2 (T) I If II000 

holds I 

Equipped with the norm 

II V IIc,o() = II v II, + sup hil0(v(.,t), [0,1)), 
tEIO,fl 

C (Q) is a Banach space. The subspace C0"'0(o) consisting of all v E C a0 
(Q) with 

v(O,t)=v(1,t)=0	(te [0 , T])	 (22) 

is a closed subspace of C'°(), hence also a Banach space. We point out that the norm 

IIVIIc.0() = sup h510 (v( . , t), [0, 11) 
0 tE[O,71 

is equivalent to the norm II IIc .o	on C'°(). In the Banach space C1 '°() we 
obtain the following 

Lemma 2. For 1 € C'°(Q), the heat potential (19) has the following properties: 

(a) u E C O () with sup10 1) u ( x , t) - f1 f(x, r) dr < c(, T) IIfIIc; . ° () t•. 
(b) u I R = 0 and SUPXE(O,iI u(x,t)I < c i (a,T) I IfIIC°() t.
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(c)u E C°() with u(x, 0)	0 and Supz E [O,I l Iu(x, 015 c2 (a, T) I lf IIc:,°() 
(d) u 22, E C°() with u IR = 0, u1(x, t) = f0t j'	t; , r)f(, T) ddr and 

SUP XEE01I u(x,t) 15 c3(,T) IIfIIc:.o() 
(e) u	e C°(), i.e. Iu1(x + 6 1 t) - u(x, i)I	c4 (a, T) Ilf IICn.o() I6I. 
(f) u 1 e C°() with u t (x,t) = u(x,t ) + f(x,t) on 0, u(x,O) = f(x,0), and 

SUPXE[0,1] Iui(x, 0 15 IIfIIc.o () (1 + c3 (c, T)t). 

Proof. Parts (a) and (b): By the continuity of the imbedding C°() c L°°(Q) 
we conclude u E C°() with u I R = 0 and SUpr E L O ij Iu(x,t)I cj(T) IIfIIc.°() t. In 
view of the asserted inequality in statement (a) we estimate 

u(xt)_ff(x,r)dr !^ I ^ ^ (F(X, t T) — -Y(X	t	7) d^ 
I 
dr 

+ ])(x —,t - r)f(e,r)dedr - j AX, T) d7- 

I1+12. 

First we consider the inner integral of 11 to obtain the estimation 

<A+B 

with the integral 

A==J >2 exp -	+n —(	fl2	x)(x - e, t - T)If (,T)lde 
o OnZ t—r	r t—

and the other integral 

1 
00 

f B =	 -	\7( - 
,t - T )lf(e, T )I de . >2	

n2 
t -- T t -- 7- t - 

As usual we write A = A 1 + A 2 + A3 and, obviously, we gain the inequality 

+	 ____ Ai=f>2exp(_ 
2	 (t —r)	 (x_)2 

2 exp—	If(e,r)Id t-r	i —ri y4(t_r) (tT)	 4(t T)In2

<c(T) 

< c(T)(t - r)IIfIIc.o().



On a Class of Integro- Differential Equations	175 

For A2 (n = + 1) and A3 (n = — 1) there are no difficulties to show the same inequality, 
so we omit it. Considering B = B1 + B2 + B3 + B4 we get for the integral B1 

n2	x+	x	(t — r) 
+ T1-

	

B i = f	exp( 
iT	t — r 

o InI>2

<c(T) 
(x	

If(,r)I 

	

X (t - r) i exP	 d _4( - r) 
<c(T)(t - 7-)A2 IIfIIC°() 

In the integral B2 we apply 

If(e, r )l = IM, T) - f(O,r)I 5 eIIfIIc:o(Q) 

and derive the inequality 

	

I	
(x_)2 

exp----exp	dIIf 

	

B2	
J4ir(t - r)	t -	4(t - r)	I' C°(Q)) 

_______ ex (x+e)2 

	

- r)	- 4(i - r) d IIfIIC°()• 

Then we estimate further 

B2<J	

a	 _____ 
exp	 f II -	d 'C0(Q) 

-	v'47r(t - r)	4(t - r) 
0 

and substitute by () = ./4(t - r) to obtain 

	

B2	exp — 2 d (4(t - 7-)) i 47r - 2 IIfIIC°() 

<c(a,T)(t - - ) a2 IlfIIC0( 

In the integral B3 the inequality 

If(e, r )I = f(1, r) - f(t,r)I	(1	)°IIfIlc:.o()

leads us to

	

B3 < J(1	
1	(1—x+1—)2 

-	_______ exp—	 dIIfIIc..o() 

	

-	,J4ir(t - r)	4(t - r) 
0 

	

< J(1 er1
	_(1 _)2 

-	_______ exp	dIIfIICoo() 

	

-	 47r(t - r)	4(t - r) 
0
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and substitution via	) e/4 ( t	+ 1 yields the inequality 

B3 5 c(c,T)(t - T)IIfIIc.o(). 

Concerning the integral B4 no difficulties occur in proofing the same kind of esti-
mation. We summarize our results so far

(23) / (F(x, t; , r) -	- e, t - r ))f(e, r) d <c(a, T) IIfIIc O () (1— r).  

For the investigation of the integral 12 we use the property f	y(x - , t - 7-)d  = 1
and extend the function f E C0 (Q) by 0 in the set R x [0, T1\Q to obtain the extension 
f E C1 '° (R x [0,T]) with IIfIIc.°()	lIfIIC'°(iRx[oi])' 

1	 +00 

0	 -00 
+0 

=
I
00- 

+00 
1 

< i	Ix —
	
exp_dIpjI 4(i - r) 

Finally, substitution with () = x + ./4(t -- 7-) yields the inequality 

J(x —,t —r )f(e, r ) d -f(x,r) <c(,T)IIfIIc,o()(t
	

(24) 
0 

Therefore we deduce
Il + 12 S c(c,T) IIfIIC.0()t2 0 

and our assertion is proved. 
Part (c): Obviously, we may apply Lemma 1 t get u E C°() and u 1 (x,O) = 0 

for all x E [0, 1]. In order to proof the inequality

l+0 Iu(x, t)I < C2(a, T) IIfII C000() t 

it suffices to convince ourselves that both inequalities 

1	I8	,t;,r)(x —,t —r)f(e,r)Ide	
(25) 

<c(a,T) 111II C °() ( t -
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and

12	
(26) 

0 

<c(c,T) IIfII C ° () (t - T)22 

hold. As usual we employ the integral 
1fl=+OO	 2 

	

A	 frI =
t—T 

and the other integral 
' T1=+001 - 

	

B f	
/	2	 X 

)(x_,t_T)d =	 exp( ----+n---------- — T	\ t — r	t — r i — r 
0 

to estimate 11 by I < A + B. Writing Aas sum of integrals A = A l + A2 + A3 we get 

A1	f >	
ni	

/	2	x — e (47r)4	1 
=

—T	\. t — r	t r 
0 InI>2

<c(o,T) 

(x—)2 
x(t — T) - 2 +a2 exp 4(t—i-) if(, T )I d 

c(, T) iifiiC0() (t - 

and remark that we can reach the same estimation for the integrals A2 and A3. 

In view of B = B 1 + B2 + B3 + B4 we obtain for B 1 the estimation 

In 
B 1 -	 ( , ---- 

2	+e	x	(47r)-4 
exp	+n--- --- 

0 InI>2 
tr	i — T	t — T	i_T)(t_T) 

(x_)2 
x (t—T)exP-4if(,T)Ide 

< c(a,T) iI1ii C ° () (t - T)22. 

The integral B2 is treated by 

J (4ir)4  
exp----exp—	if(,r)ide t - T t — T	4(t—T) 

0

1—____  ii 
1+	 __	(x+)2d 11111 - t—T 

0 

< 1- e2	diIfiic.o() -	t7/ 4(t_7) 
0
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and substitution with	) e V/4(t _- T) leads to 

B2 < c(c, T) I If Hc . °() ( I - 

The integral B3 will be estimated in the following way: 

B3 <JL._c(41r)-4	 ((1_x)+(1_))2 
(1 -	exp - 	

4(t—r) 
d IIfII C 0 () -	/it r  

0 

<J(1_e)l+(4-4(1_)2 -	r	/._exP_4(1)deIIfII t—  
0 

Now substitution with ço() =	_- T) + 1 yields the desired estimation 

B3 < c(a,T) ''fIIC' ° () (t - T) -12 +22. 

For the integral B4 (n = —1) we obtain without difficulties the same kind of esti-
mation. In order to reach the desired inequality for the integral 12 we estimate it with 
the help of two integrals 

I2110(xi;e7-)_11 I7X(x_e,i_r)Ilf(e,r)Id 
0 

+	— e, t - r)f(e,r)de 

Ji + J2. 

We estimate Ji C + D with the integrals

—
-- c=f	exp	

712	x (_ —+n---'I7z(x—,t—r)Id i - r	i — ri 
0 

and

n2	x+e D=Jexp ---+n---------)I-y(x—e,i—r)Ide. ( I r	i — r i — TI 0 =°° 

The integral C can be treated in the usual way, so we turn at once to the integral 
D = D 1 + D2 + D3 + D4 . Here we restrict ourselves to the investigation of the integrals 
D2 and D3 , because the way to estimate the other two integrals is clear. For the integral
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D2 we obtain

	

' Ix - Cl (47r)4	XC	(x - C)2 
J2(t_T)VT tTex14(t_T)hfT1C 
0

< J o lx + c (4-) - 4	(x + C)2 d exp - _______ -	C 2(t - r)	 4(t - r)	lfllC°(Q) 
0 

< J (x + C)° (4)4	(x + C)2  exp  
-	2(t - r)	 4(t - r) dC IlfllC.°() 

0 

and substitution via '() = C/4(i - r) - x leads to the inequality 

D2 < c(c,T) llfIl co, °() (t - T)22 

At last we estimate the integral D3 in the following way: 

'x— (47rY4	1	x+C - XC	(x—C)2 lf(C,r)ldC I 2(t_T),V/Te)cP(t_T+j_	—')exp 
T	t - r 	4(t-r) 

0

J ( i -	
- (x + C) (4ir)- 4	(2 - (x + C))2 

F. 

2(t-r)	
exp-	

4(t—T)	dCllfIlco() 
0 

< 
J 

(2- (x + C))'° (47r)4(2- (x + C))2 exp -  -	2(t - r)	/T	 4(t - r)	dC IlflIc:.°(). 
0 

Then we substitute by (C) = Cv'4( - r) - x + 2 to derive the desired inequality. 
- With regard to the integral J2 we apply the identity f +00

_00 -y1(x - C, t - r) dC = 0 and 
employ the extended function f E C'°(R x [0, T]) of the function f (see p. 176) to get 

1	 +°° 

J2=J7z(x_Ci_r)f(Cr)dC_ f (X	t - T) dC f(X, T 
0 

+00 

J7(x—e,i—r)lf(C,r)—f(x,r)ldC 

+00 

< 
J 

I x —CI°(4 ir Y 4	(z_C)2dC exp -  -	2(t - r)	 4(i - r)	llfllc:.°() 

Finally the substitution (C) = C'v"4( t - r) + x yield inequality (26).
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Part (d): To derive the existence of the second derivative u of the heat potential 
we show that the inequality 

f F 1 , t; , r )f(C, r) d	c(a, T) IfII:. o () (t -	 (27) 
0 

holds. After applying the product rule we estimate this integral by four integrals: 

J 
0

/ 
9(x	7 , i; , r)(x - C , t - T)f(, r)I d 

+ 2/ 8z(x,t;C,r)7(x - C , t - 7-)f(C, 7)1 d 

+ / 
(O(x,t;C,r) - 1) -Y.. (X -	- r )f(C, r ) I dC 

+ J -Y..(x - C, t - r)f(C,r)dC 

I + 212 + 13 + 14. 

These integrals will be investigated separately. First we estimate the integral 11 by the 
sum of the two integrals 

n= +00	2
----------' 

n	
(	

ri2 exp	 1 A 
=	(t - r)2	 t - T 

+n t - T	 eI 4(t - T)	- 4(i - T)
 i f (C, 7-)1 dC 

0 

and

B=f	
(IT1I)2 2	X+	X 

exp(___+n__ -) t — r	t—T	 — 0 "°°	 t r 

1	 (x-C)2 X	 exP_4( — 
4ir(t—r) 

We turn at once to the two interesting parts of the integral B. For the one part we
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obtain
2	 XC	1	

X 4(i—r) 

e2°	1	_______	
I I ( i - r)2 .J4ir(t - T)	4(i - T) 

exp	dflf iC0(Q) 
 

< c(a,T) iifIIc:.a()(t - 7-)21 

where we employed the substitution ç() = C /4— r). Similiar calculations lead to 

x+C	XC)	1	(x —C)2 

	

exp	If(C,r)idC J (	)2exP(	+t	t	/47r(t-T)	4(t—r) 
0

1(1 _C) 2 +	1	(1 C)2  exp	dCllfIlc.o() I  
0 

(t - r)2 4(t -- T	4(t - r) 

1 (1 - C)2 °	1	(1 -ex	C)2 
d llfilc'°() 

I
0 

(t - r)2 /i - r) 
p 

4(i - r) 

< c(a,T) IIfIIC'°() (t - 

for the other part. In the treatment of the integral 12 we proceed in the same way. We 
have

-_---exp"	xC ix — CI	1	(x— C)2 exp—	lf(C,r)idC 
Jt - r	t—r)2(t—r)4(t—T)	4(t-7) 
0

< [(x + C) 2	1	exp - (x + C)2 
dC I 

- J 2(t - 7)2	r)	4(t -- 1 )	
1fI1C0(Q) 

0 

< c(a,T) IIfIIc0() (i - 

	

where c(c, t) is a positive constant obtained via the transformation (C) =	- T)—
x. Then we estimate 

	

1	x+C XC '	1	Ix — CI	(x—C)2 exp	+	-

	

exp—	If(C,r)ldC —(— 
t-r	\ t - T t - r i — T) 

_______
4(i_T)2(i_T)	4(t—r) 

0

	

< f(1—C) 1	1	2—x—C	(2—x—C)2 
exp -	 dC IIfIlc•°(Q) 

0	
-	/4ir(t - r) 2(t - r)	4(t - r) 

1	(2—x—C)2 
- r	J4ir(t - r) 

exp -	 dC ll!IIc;.°() 4(t-T) 
0 

<c(,T) iI!iIc . ° () ( t -
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using the substitution () =	-- T) + x - 2. Also, by the integral 13 we restrict 
ourselves to the following two cases. First we calculate 

exp f
(_

________ 

)	 (2(
1	(x—e)2 

+
xp_	 r )e	(x—e)2 

If (C,	)I de 4(i - r) - r)	4(t - r)2	4(t - r) 
0

< I
l	

e 
--T  2(t - T)

(x - 
4(t 4(t - r)2) exp— 

(x + )2
If(e,r)Id 4(t	T) 

0

1	(x+	+ 4(t)(2(—T)
(x+

exp— (x+)2 
4(t—r) deIflICO() 4(t—r)2 

0 

< c(a, T) IIfIl C ° () (t -

where we used the substitution () = ,./4(t - r) - x. Next we estimate 

f
exp (_ —L_ +	-	- (x- 

0	
i — T	t — r	t — T	4(t_7-))

(4 7r) 	1	(x - 

X	

(t - r) (2(t — r) + 4(t _T2),T 

< J

1	(x - )O (x -
 

	 (2 - _ _

d I I f I I 

- 0	
- r) (2(t - r) + 4(t - r) 2 ) 

exp - 
4(i - r)	c:°() 

<1
+  (2_x_)2+a

	(2	
e)2

d I f I I "I exp -	 c;.°() 
- 0	

- T)	2(t - r)	4(t - r) 2 I	4(t - r) 

< c(a,T) IIfIIC' ° () (t - 

	

employing the substitution () =	-- ,) + 2 - x. 
At last, it remains to look at the integral 14 . Here we apply the identity ft yzx(x_ 

, t - r) d = 0 and use the extension f of the function f (see p. 176) to get 

	

'4 = j -Y.. (X	t — T)f	d^ 

= 	
-Y.. (X - e,t - r)(f(,r) - J(x,r)) d 

I(x —,t —r)IIf(e,r)—f(x,r)Id 
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+oo

/4ir(t — r)	

+	 2) 
exp —	) d If lIc;.°()• 

Substituting with () = x + J4(t — r) yields the asserted inequality. Now we may 
conclude that the function

ii 
p(x,t) = if 

00 

is well-defined and satisfies the inequality 
t	1 

	

Ip(x,t)I	J 
0	0

1• 
<c(a,T) IIfIIC0(Th I (t - r)' dT 

0 

= C(c,T)lIfIIc,O()t2. 

Hence the function p( . , t) is uniformly bounded on [0,1] for each t and p(x,t) -i 0 

uniformly on [0, 1] as t \ 0. Considering the difference p -	we obtain 

p(x,i) —	
(X, t)	c(a, T) IlfIIc:. o () h 2	((x, t) E [0,11 x [e, T]). 

We conclude similiarly as in Lemma 1/Part (a), p € C°() with p(x,0)	0 for all 
x e [0, 1 1 . Moreover, we have p I R = 0. Since the functions	-(., t) are continuously az 
differentiable on [0, 11 for each t, we may apply the fundamental theorem of calculus to 
get

auh	t) -	_!.(ot) = I __.h(t) d	((x, t) E [0,1] x [e,TI).
49X	aX2 

Obviously, we gain further
I 

au	au 
—(x, t) — –(0, t) = J p(, t) d	((x, i) E [0,11 x (0, TI) 
ax

0 

as h \ 0, and this equation is also true for t = 0. Differentiating with respect to x 
yields u 11 (x,i) = p(x,i) for all (x, t) E Q. 

Part (e): Assuming t E [0, 6 2 ] we calculate by virtue of Part (d) 

I u zx(x + 6,t) — uzz(x,t)I	2 sup Iuxx(x,t)I 
zEta,!] 

< 2c3(c,T) IIfIIC:•°() 
t2 

<2c3 (c,T) IIfIICo.O — (Q)
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and the claimed inequality is valid. 
In the case t E (62, TI we estimate with the help of three integrals 

t_62 i 

+ 6, t) - u(x, t)I	f I (r( + b ' t ; "r) - F(x, t; , r))f(e, r) ddr 

+ ))rzr(x +5,t;e,r)f(,r)ddr 
f- 0 

+ ))rx1(x,t;e,r)f(e,r)dedT 
i-6 2 0 

11 + 12 + 13. 

Of course, we deduce a suitable inequality for 12 + 13 

	

12 + 13	2c(a,T)IJfIIC.o()(52). 

So it remains to consider the integral Ii. Applying the mean value theorem we obtain 
for the inner integral of I

f t; , r )f(e, r) d S 
0 

where y lies between x and x + 5. The product rule and further estimations lead to the 
investigation of integrals which have the form. 

	

a'o	L Ak, = J	(y,t; , T)	(Y - ,t - r)f(, rde	(k + I = 3, k, I € N0). 
0 

We remark that each integral may be estimated by 

Ak, < c(, T) I IfII C' ° () (t - 

using simliar calculations as in Part (d). Hence we know 

	

L i	c(a,T) I 'fIC°() f (t - 
0

i-62 
c(a,T) IIfIIC°()	

2 
(j___—(t	L±a 

- T) 2	 )s 
= c(a,T) IIfIIc .o ( — (6 + - 

< c(c,T)--.-- 
1	IIfIIC:,O()Sc—a
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and our assertion is proved. 
Part (f): We conclude with the help of the results of Part (a) and the inequalities 

u(x,t) - u(x,0)
- f(x,0) 

if(	
Iu(x,t)1 <I 

- I	
_x,r)dr+J(f(xr)_f(x,0))dr 

0	 10 

1 
<c(a, T) IIfIIC°() t + f If(x , r) - f(x, 0)] dr 

0 

as t \ 0, uniformly for all x E [0, 1], and this yields the property ug(x, 0) = f(x, 0). 
Next we consider the estimation 

fr(xt;et - h)f(e, t - h) d —f(x,t) 

+	- ,h)f(,t - h)d - f(x,t —h) 

+ If(x,t - h) —f(x,t)I 

=: Ii + 12 + 13. 
Applying inequalities (23) and (24) for r = t - h we get 

Ii + 12 < 2c(, T) IIfII C •° () h, 

and from the uniform continuity of the function I on [0,1] x [e, T] we deduce the 
relationship

ash\O uniformly on[0,1]x[e,T]. 

With regard to equality (18) we notice that 

i) - —(x, t) + f(x , t)	as h \ 0 uniformly on [0,1] x [, T]. 

Hence u 1 (x, t) exists for all (x, t) E [0,1] x (0, T]. We include the case t = 0 to yield 
UI(X, i) = u 1 (x, t) + f(x, t)	((x, t) E Q). 

The properties Uj E C0°°() and supZE [ O , I ) Iut(x, t)] :5 lIfIIc.0() (1+c3(c, T) t) follow 
now from the identity above in connection with Part (d)U
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3. The Barbashin operator 

In this section we state sufficient conditions under which both (4) and (5) are continuous 
operator functions mapping C°'°() into itself and estimate their norm. 

Lemma 3. Suppose that c E C"°(). Then the corresponding multiplication op-
erator (4) is bounded in C"°() and II C I1	IICIIc,o(). 

Proof. From the definition of C'°() and the hypothesis on the function c we 
conclude directly that Cu E C°() for u E C1 ' 0() and that the function Cu satisfies 
the boundary condition (22). From the estimates 

c(x,t)u(x,t) - c(y,t)u(y,t) 

c(x, t)u(x, t) - c(x, t)u(y, t)I + Ic(x, t)u(y, t) — c(y, t)u(y, t)I 

IC(X,t)I Iu(x,t) - u (y , t )I + Ic(x,t) — c( y , t ) I Iu(y,t)l 
II c II, höi (u ( . , t), [0,1]) Ix —	+ h510(c(.,t), [0,1]) lx — yl°IlulIoo 

< h6l0 (u( . , t), [0,1]) ix — YIallCllCOo() 

it follows that Cu E C'°() and II C II	ll C Ilco,o() U 

Lemma 4. Suppose that the function k : [0, 1] x [0, 11 - R has the following prop-
erties:

(a) k( . , x) is measurable for each x e [0, 1]. 
(b) k(s,.) € C([0, 1]) uniformly for ails € [0, 11, i.e. there exists a constant 4 € IR 

with

lk(s, x) - k(s, )I 5 4 Ix -	(s E [0,1]).	 (28) 

(c) k(s,O) = k(s, 1) = 0 for all S  [0, 11. 

Then the corresponding partial integral operator (5) is bounded in C"°() with IIKII 
where

q = sup höl(k(s, .), [0,1]).	 (29) 
sE[O,1] 

Proof. The function F( . ,x,t) = k(.,x)u(.,t) is measurable and bounded on the 
interval [0, 11 for fixed (x, t) E [0, 11 x [0, T], while the function F(s,.,.) = k(s, .)u(s, -) 
is continuous on Q for fixed s € [0, 1]. Since 

IF(s, x, t)I	q lI u II	((s, x, t) € [0, 11 x [0, 1] x [0, T]), 

we conclude that the integral over F( . , x, t) depends continuously on the parameters 
€ [0,11 and t E [0,T]; this means that Ku € C°(). It is clear that the function Ku
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fulfills the boundary condition (22). Finally, from 

Ku(x,t) - Ku(y,t)I = J[k(s,x) - k(s,y)]u(s,t)ds 

/ Ik(s, x) - k(s, y)I Iu(s, t) - u(0, t)l ds 

sup h10(k(s, .), [0,1]) Ix - y I° f Iu(s, t) - u(0, t)I ds 
3E[0,1)

0 

qIx 

we get

	

IKu(x, t) - Ku(y, t)I	q h510 (u( . , t), [0, 11)f s ds, Ix,_yIo	
0 

hence
h5la(Ku(, t), [0, 1]) ^ --j- höl(u( . , t), 10, 1)). 

Passing to the supremum in the interval [0,T] leads to IIKuIIc:.o() 
as claimed U 

4. The linear problem 

Now we turn from the parabolic differential equation (6) to the equivalent operator 
equation (8). We calculate the spectral radius of the operator L (C + K) and give 
existence and uniqueness results for equation (6). 

First of all, we need the following 
- 

Lemma 5. For f € C0 (Q) the following two statements are equivalent: 

(A) u e C°() has the properties u E C°(),	E C°(Q) and solves the 
boundary value problem

Lu=(C+K)u+f inQ 1 

	

u=0	 onR.J	 (30) 

(B) u e C1 ' 0 () satisfies the linear operator equation (8). 

Proof. Let u be as in statement (A). We fix (z,t) E Q and observe that for 0 < 
to <t the vector field F: [0, 11 x [0, t0 ] -+ JR2 defined by 

F(, r) = (I'(x, I; , '-)u(, r) - F(x, t; e, r)u(, r), -r(x, t; C, r)u(, r))
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is continuous on [0, 1) x [0, to] and continuously differentiable on (0, 1) x (0, t 0 ) with 
div F(, r) = —r(x, t; , r)Lu(e, T) - u(, r) [r(x, t; , r) + f(x, t; , T)] 

= —r(x, t; e, r) [(C + K)u(, r) + f(, r)J. 

So the divergence of the vector field F is continuous and bounded on (0,1) x (0, t 0 ) and 
we may apply the Gauss theorem to obtain 

tol 

	

if—F(x, t; , T) [(C + K)u(, r) + f(, r)]ddr=
	

-f(x, i; , to)u(, to) d. 

Letting to - t we get the identity 

	

if t; , r) [(C + K)u(e, r) + f(, r)] dedr = u(x, t)	((x, t) e Q) .	(31) 

The function on the left-hand side of (31) is continuous on Q by Lemma 1 and we have 
u E C°(), so the above equation holds for all (x, i) E Q . Of course, u E C'°() and 
[I - L - '(C + K)]u = L'f. 

Conversely, let u be as in (B). Since I E C'°(), the same is true for the function 
(C + K)u + f. Moreover, from the identity L'[(C + K)u + f] = u and from Lemmas 
1 and 2 it follows that the function u has the regularity properties stated in (A) and 
satisfies (30) I 

Lemma 6. The spectral radius r(A) of the operator A = L(C + K) : C'°() —* 00 — C0 (Q) is zero. 

Proof. We use the classical Gel'fand formula 

r(A) = lim /Fii. 
First of all, the inequalities II Cv II	11 c 1100 II v II	and II Kv II	q II v Il, with q as in 
(29), combined with property (a) in Lemma 1,lead to the estimate 

IAv(x, t)I	t c (II c II	+ q) IIvII. 

By induction, we get then 

IAv(x,t)I < 
tn

 [c (IIcII	+ q)]fl 
I1_1100	(n E N).	 (32) 

Furthermore, for arbitrary x, z E 10, 11 we have, by the mean value theorem, 
IA'v(x, ) — A"v(z, t)I

Ix - z] 
< A'v(x, t) — A'v(z, t) I 
—	Ix — zI 

= 
if r. (y, t; , r)(C + K)Av(, r) dedr 

I(y)
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for some y between x and z. Applying inequalities (20) and (32) we obtain 
ii	 I 

1(o)	if	( y , t; , r)I	r)I A"v(e, r)I + q J IA' — l v(s, r)I ds] d dr 
00	 0 

J c	
(II + q)	1)! [c i(II c II	+ q)j"	II v IIoo dT Vt -	(n-

0

-'

(ii - 1)! 
dr) [a (II c II, + q)]"IIvIoo 

\0 

with a = max {Ch c2 }. The identity 

f T"	1 2" 
dr 

j (n-1)!	1.3.5."(2n-1)	 (33) 

leads to
Ii 

( 
r in-i	1 

(n —1)! 
dT) [a (II c II	+ q)]"IIvII 

0
2" 

	

1 . 3 . 5 .. (2n —1) "[a(IIcII	
+ q)]"IvII

L2aT(IIcII cx
 + q)]" TIIvII. n! 

Consequently, we obtain the estimate 

	

[2aT(IIcII	q)]n 
T 4 IluIIc.o()	(n EN). IIA"vIIc.o()	n! 

From this estimate we deduce

rwni^
(n) 

as claimed I 
Building on the results of the previous sections we are now able to prove the following 
Theorem 1. The inhomogeneous linear equation (8) has for each f E C1 "°() a 

unique solution u E C"°(). This solution can be represented as infinite series 

u = 

co

	

 [L — '(C + K)]"( L 'f)	 (34) 

and depends continuously on the data f E C1'0(). 
Proof. The operator A = L (C+ K) is a continuous endomorphism of the Banach 

space C1 '°(). From Lemma 6 we know that the Neumann series An converges 
to the inverse of the operator I — A. Consequently, for I E C1 "°() the inhomogeneous 
linear equation (8)has a unique solution u = (I—A)(Lf) E C1 '°(Q) which depends 
continuously on f and has the representation (34) 1
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From the proof of Lemma 6 we see that the norm of (I - A)- ' may be estimated 
by

00 

(I - A) - ' 11 15 1+ E II A II	
1+ exp [2aT(11c11 00 + q)].— 1 

n=' 

Next we consider the Dirichiet problem for the linear equation (8) with prescribed 
boundary function , which belongs to the set 

C1(R) = { W E C°(R)H(.,O) E C'([O,lj) and	 E C'([O,T])}. 

Theorem 2. Let I E C°°() and E C'(R). Then the problem 

Lu=(C+K)u+f	in  
u(x, 0) = cp(x, 0)	 (x E [0, 1])	

(3) u(0, t)	ço(0,t)	 (t E (0,T)) 
u(i,t) = W(1 ' t)	 (t € (0,T1) 

has a unique solution u E C°() with u E C°() and U, u € CO (Q) 

Proof. If tz1 and u 2 are two solutions of problem (35), we see that the function 
U = u 1 - U2 solves problem (30), and hence u 0 I 

As usual, we obtain a representation of a solution u of problem (35) if we add the 
solution of problem (30) to the solution of the homogeneous heat equation Lu = 0 with 
u I R = V, which we denote by S, with 

Sço(x,t) = I r(x, t, e, O)w(e, 0) de

(36) 

+ / r(z, t; 0, r)(0, r)dr - / 17C (-T, t; 1, r)ço(1, r)dr. 

So we have explicitly 

u(x,t) = 
CO

 [L' (C + K)](L'f)(x,t) + S(x,t).
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5. The nonlinear problem 

In the nonlinear case we first give sufficient conditions under which the nonlinear op-
erator KH, with K given by (5) and H given by (10), acts on C'°(Q) and satisfies a 
Lipschitz condition in order to apply a classical fixed point principle. 

Lemma 7. Suppose that the function k : [0, 1] x [0,1] - R satisfies the three 
conditions (a) - (c) stated in Lemma 4. Moreover, let h : Q x R — R be a continuous 
function satisfying a Lipschitz condition 

h(x, t, u) - h(x, t, v)l 5 Lu - v.	 (37) 

Then the nonlinear operator KH acts on C"°() with 

II KHu — KHvII	qL 1 ju — vu,,,, 
Il KHu - KHv IIc. o()	qL 1 ju - VIlcoo() 

where q is given by (29). 

Proof. It is easy to see that the function KHu is continuous if u is continuous. Fur-
thermore, the function KHu satisfies the boundary condition KHu(0, t) = KHu(1, t) = 
0 for all t E [0,T]. From the estimate 

KHu ( x , t) — KHu(y, t)l	J k(s, x) - k(s, )l Ih(s, t, u(s, t))I d  

q Ix - y l° max lh(s, t, u(s, t)) 
(s,t)€Q 

-. we see that the operator RH maps C (Q into nto C0 (Q), and hence KH : C0 (Q) —* 

Cc'°(). For functions u,v E C"°() we have 

(KHu - KHv)(x,t) — (KHu — KHv)(y,t) 

1 
—	-	J k(s, x) — k(s, )l I h ( s , t, u(s, t)) - h(s, t, v(s, t)) ds 

0 

qLu — v 

:^ qL 1 ju — Vllc.o(). 

From this the assertion follows U 

In view of the nonlinear operator equation (12) with imposed boundary conditions 
we define the function spaces 

C01 Q0 1 1)) = 1 g E C'([0, 1]) g(0) g(1) = o}
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and

C'°() = f I 1 1, 1 1 E C°() and u(0,t)= u(1, t) = 0 for all t E [0,T]}. 

Equipped with the norms 

II9IIc([o,I))	sup Ig'(x)I	and	II U IIc .0 () = sup Iuz(x,t)I, 
zE[O,Ij	 (x,t)EQ 

respectively, both function spaces are Banach spaces, and we can state the following 

Lemma 8. For g E C([0, 1]), the boundary operator S with 

(Sg)(x,t) = 

is a continuous operator from C([0, 1]) into C'°() and II S II = 1 
Proof. The function r = 59 satisfies the homogenuous heat equation Lr(x,t) = 0 

for all (x, t) E Q with the boundary conditions r(x,0) = g(x) for all x E [0,1] and 
r(0, t) = r(1, t) 0 for all t E [0, T]. If we extend g to the odd function on the interval 
[-1, 11 and continue to the periodic function with period 2, we remark that the 

+00  function f_00 -y(x - e, t )g (e) d is also a solution of the Dirichiet problem above. Hence 
a unicity argument yields 

r(x,t) =J7(x - ,t)(e)d	((x, t) E Q). 

Obviously, and' are bounded and continuous functions on the whole real line. First 
we have r E C O (Q). Considering the difference quotients 

Ih = r(x + h, t) - r(x,t) 
h 

=	
+"O-f (x	t)^(C) dC) 

 

=_L 
we notice that the integrand is dominated by 

+ x + h) -	+ x)	
,t) . sup	( e h	 R 

EL'(R)
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Now Lebesgue's Dominated Convergence Theorem insures that 

t)'( + x) d = I -y(x - , t)'() d 

as h -, 0. Thus

r(x,t) =J 7(x - e,t)'(e)d	and	r E C°() 

hold. Moreover, from the inequality 

+ 

	

sup r(x, t)I :5/ y(x - , t) d sup	= sup Ig'() 
(z,i)EQ	 .1	 ER	eE(o,I) 

we deduce II S II < 1. For the function g(x) = sin irz € C([0,1J) we have explicitly 

Sg(x,t) =exp—ir 2 t sin irx € Col (Q )	and	IISgII C I () = IIgIIc([o,1l) 

so JIS11 cannot be less than 11 

Before we turn to the nonlinear operator equation (12), we remark that equations (9) 
and (12) are equivalent. Even more is true, namely (9)/(2) is equivalent to a nonlinear 
operator equation with an imposed boundary operator in the sense of the following 

Lemma 9. For I E C1 '°() and g E C([0, 1]), the following two 3tatements are 
equivalent: 

(A) u € C°() has the properties u € C°(), u t , u 2 € C°(Q) and solves the 
boundar?,, value problem 

	

Lu=(C+KH)u+f	in 

	I u(x,0) = g(x)	 (x E [0,1])	 (38) 
u(0,t) = u(1,t) = 0	 (t € [0,T]). 

(B) u € C'°() satisfies the nonlinear operator equation 

u - L'(C + KH)u = L'f + Sg. 

Proof. It follows the pattern of the proof of Lemma 5 with only minor modifica-
tions. Hence it is omitted U
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Theorem 3. The nonlinear operator B : C0°'°(Q) —* C"°() defined by Bu = 
L'(C+KH)u+L'f+Sg has precisely one fixed point to  C'°(). This fixed point 
may be obtained as limit of the successive approximations v = B'1 v0 with arbitrary 
Vo E C00'°(). 

Proof. First of all, the inequalities 

IIC( u - v )II	II C IIooIItL — vII 
II KHu - KHvII	qLu — vII 

with q given by (29) and L by (37), lead to 

Bu(x,t) - Bv(x,t)I = L'C(u - v)(x,t) + L'K(Hu — Hv)(x,t) 

L 1 C(u — v)(x,t)I + LK(Hu - Hv)(x,t) 

tci (II c IIoo + qL) 1 ju — vll. 
By induction, the inequality 

lBu(i,t) - Bv(x,t)l < 
tn 

	

 - i[ci(Ilcll	+ qL)]nu — vlI 

may be proved for arbitrary n E N. In order to estimate the norm lI BThu - BvlIco() 
we fix x, z E [0, 1] and get, by the mean value theorem, 

I(Bu — B"v)(x, t) — (B nu - B'v)(z, t) 

= 
fJ [r(, t; , r) - r(z, t; e, r)] [(C + KH)B'u - (C + KH)B'vJ(e, ) ddr 

- zl 
ff r. 

(Y , t; ^, 7 ) [ (
C 

+KH)Bu — (C + KH)Bv](,r)dedr 

J(y) 

for some y between x and z. Furthermore, 
t  

J(y) I x — zI jf lfz (y,t;,r)l (C + KH)B'u — (C + KH)B'v)(,r) ddr 
00 

ii 

Ix	zifJ 11( y , t; , r)l (Il cll + qL)(B	u - B'v)(e, )l dedr 
00 

< lx - zla I C2(11 CII + qL) r '[c i(Il cIl + qL)]'lIu — vll dr —	 (n—i)! 
0
It 

	

( t	i	Tn_I 
Ix — Z	J	dr I [a(lI c ll	+ qL)'lu.— vll,,c, 

	

\o	
(n—i)!	

j
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with a = max {c i ,c2 }. Using again identity (33) we obtain 

2" t [a(II c II	+ qL)j'' h6la((B"u - B'1v)(.,t))	 IIti - vII. 1.3.5...(2n-1) 

This implies that IIBu - B'1vIIc.o() < d,,u - V IICOO () where 

2T ' f [a (II c II,,, + qL)]" d=	
l . 3 . 5 ... (2n1) 

Obviously, we can choose no E N such that 

dn+l- 2Ta (II ë IIc,, ± qL) 
4,, -	2n+1	4' 

say, for n o• Consequently, the series F,00 1 d,, converges. By Weissinger's fixed 
point theorem of [7), the operator B has a unique fixed point w E C"°(), which can 
be obtained by the successive approximation v,, 1 =Bv,,, with v0 E C1 "°() arbitrary. 
Moreover, the error estimate II W - V IIco. o()	ll Bvo - Vollc .o()	d, is true U 

As a corollary of Theorem 3, we get the following 
Theorem 4. Let f E C°'°() and V E C°(R). Then the problem

	

Lu=(C+KH)u+f	inQ) 
u=co	 onRi	

(39) 

has a at least one solution u E C°() such that	 e C°(Q). One solution can 
be represented in the form 

u(x, t) = w(x, t) + / r(x, t; , o)(e, 0) d 

+ f r(x,t;o,r)(o,r)dr - ]r(x,t; 1,T)(17T)dT 

where w E C°() is the unique fixed point of the nonlinear operator Bu = L'(C + 
KH)u + L'f.. 

Theorem 5. The solution of the boundary value problem (38) depends continuously 
on the functions f E C'°() and g E Q[0, 1]). 

Proof. Given f,h E c'°()and g,j E C([0,1]), denote by v,w E C00 '°() the 
unique solutions of the operator equations 

vL(C+KH)v+L'f+5g 
W = L(C + KH)w +L'h + Si,
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respectively. Differencing the derivatives with respect to x and estimating yields 

Iv(x,t) - 

ISg - 

+11 r(-, t; , r)I [icy - Cwi + IKHv KHwI + if - h i] (, r) dedr 

c2 (T)/f - hIicoo() + Hg - iiiC((o,lJ) 

+J
c(T)

+ qL) sup i(v - w)(, r)i dT. 
EE[O,Il 0 

We apply the mean value theorem, 

i(v - w )(e, t)i	(v - w)(, t) - (v - w)(0, t)l = i(v - w)(z, t)I iei 

for z E (0,), to obtain the relationship 

sup i(v - w )(e, 015 sup Ivz(x, t) - w(x, t )i : W(t). 
eElo,Il	 zE[0,I) 

Employing this inequality and passing to the supremum over the interval [0, 11 yields 

(t) < C2 (T)vlrt 	- h iic .o () + ii	3IiC((O,l])+ J 
c(T) 

(ii cii + qL)(r)dr. 
0 

By virtue of the generalized Gronwall's inequality (see, e.g., [2: p. 304/ Lemma 17.7.1]) 
the estimate

<E2(T) (c2(T) i iif - h iic. o() + ii - iIIC([o,Il))) 

holds. Hence we get the inequality 

iv - W iic i.O ()	E(T)([if - h IiC :.o() + H g - iiIC([o,1l))	(40) 

with a certain constant E(T). This concludes the proof U 

To illustrate the existence and uniqueness results of the previous section, let us 
consider a very simple example. Let w : [0, 1] -. R be defined by 

X CI

 X)- 
 for 0<x< 

- (1—° for<x<1.
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Put
k(s,x) = 

h(x,t,u) = ui(x,t)arctanu 
AX, t) =w(x)f(t)

g(x) = sin irx 

where (0,1) - R is measureable and bounded, while h : Q -4R and f  :[O,T] - IR 
are continuous. Obviously, k satisfies the hypotheses of Lemma 4 with q = IIklILoo((0,1)). 
Moreover, h satisfies (37) with L = max{Iii(x,t)I : (x,t) E Q}, I E C'°() with 
Ill IIc;° () = If IIc'((o,T]) and g E C([0,1]). As multiplicator we may choose, for 
example, c(x,t) = xp(t) with p E C°([0,T]; from Lemma 3 we know then that IICII 
2IIpIIco ([0,) . For this choice of data, the operator C + KH has the form 

(C + KH)u(x, t) = xu(x, t) + w(X)
0

 (s)i(s, t) arctan u(s, t) ds.	(41) 

From Theorem 3 we conclude that the sequence of successive approximations 

t 0 (x,t)	0 

v1(x,t)=L'(C+KH)v(x,i)+L'f(x,t)+Sg(x,t) 

has a well-defined limit w E C-O (Q). If f(t) 0 and g 0, we have of course 
u(x, t) 0, and this is the only solution of problem (38), by Lemma 9 and Theorem 3. 
On the other hand, if 1(t) 0 and g 0, from Theorem 5 we may conclude not only 
that u(x, i) = w(x, i) is the unique solution of problem'(38), but also that this solution 
depends continuously on f . In particular, u(x,t) -* 0 uniformly on Q if If II -i 0 and 
II9IIcU0,1)) - 0. 

6. The extension of the operator L' 
This last section is concerned with some generalizations of the preceding results. In 
order to solve the inhomogenuous heat equation with zero boundary values, we chose 
for technical reasons the heat source I from the Holder space C'°(). On this space 
the operator L' has particularly nice properties. Actually, one can take the larger 
HOlder space C aO (Q) as underlying Banach space of the boundary value problem (7). 

Together with the solution operator S of the homogenuous heat equation with C'-
boundary values, where S is given by (36), with the projection operator P, -	- 

Pf(x,t) = f(0,t) + x(f(1,t) - f(0,t)),	 (42)
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and with the Volterra operator V, 

V f(xt ) = Jf(xr ) dr ,	 (43) 

we can represent the unique solution of the boundary value problem (7) with the help 
of the extended operator L' 

L' = L'(I - P) ± (I - S)VP	 (44) 

in the form
u=Lf+S. 

In fact, we have u, u. E C°(), and direct calculations yield u I R = and Lu = f. 
According to the plan in the introduction we formulate now sufficient conditions 

that the operators C and KH act continuously on C°'0(Q). 

Lemma 10. Suppose that c E Ca'(). Then the corresponding multiplication 
operator (4) is bounded in C' 0 (0) and uGh < hICIIco(). 

Lemma 11. Suppose that the function k 10, 11 x [0, 11 - R has the following 
properties: 

(a) k(x,.) E L'([O, 1]) for each x E [0, 11. 
(b) k( . , s) E C([0, 1]) for almost every s E [0, 1], such that there exists a function 

q E L' ([0, 1]) with the property 

Ik(x,$) — k (y ,$)I	q() Ix —• y I°	for a. e. S E[0, 1].	(45) 

Then the corresponding partial integral operator (5) is bounded in C aO() with 

I IKI I :5 lII IL'([o,l]) + sup I Ik(x, )I IL' ([0,1]). 
zE[0,1J 

Lemma 12. Suppose that the function k :[0, 11 x [0, 1] — R satisfies conditions (a) 
and (b) stated in Lemma 11. Moreover, let h Q x IR - IR be a continuou3functi6n sat-
isfying the Lipschitz condition (37). Then the nonlinear operator KH acts on COO(Q) 
with

II KHu — KHvlI	:^ L sup II k (x , •)IILI ([o 1))II u — vIl 
xE[0,1J 

II KHu — KHvI IC0()	L (u Il IL' ((0,1)) + sup Ik(r )I IL' ((01])) I lu - vIl. 
zE(O,i] 

We omit the proofs of these three lemmata, because their proofs follow the pattern 
of that given in Lemma 3, 4 and 7 with only minor modifications. 

After modifying the proof of-Lemma 5 we are able to establish the next result.
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Lemma 13. For f € C0 '() and € C'(R), the following two statements are 
equivalent:	 .	.	. 

(A) u € C°() has the properties u E C°() and u t ,u € C°(Q) and solves the 
boundary value problem 

Lu=(C+KH)u+f	in  

uIR=.	 . onRJ	
(46) 

(B) u E Cc "() satisfies the nonlinear operator equation 

u - L'(C + KH)u = Le if + Sg. 

Our main existence and uniqueness result reads as follows. 

Theorem 6. For f € C-o (Q) and initial data	€ C 1 (R) the boundary value
problem

Lu (C + KH)u + I 

uIR= 

possesses a unique solution. 

Proof. By Lemma 13 it suffices to show that the integral equation admits a unique 
solution. For a < b the set  

B ([a , bI) = { v: [0, 1] x [a, b] — Rv,v € C°([0,1] x [a,bl)} 

becomes together with the norm 

II V II(a,b] =	sup	Iv(x,t)I +	sup 
(z,t)E[0,1] x[a,b)	 (x,1)E[0,11 x[a,b] 

a Banach.space. The nonlinear operator Au = L(C + KH)u + Le if + Sp maps 
B([0, ri]) into B((0, ij]) for 0 <'j ( T. Employing Lemma 1 we know that for v € B([0, 'i]) 
the estimation

IIL'vII1o,i < c(T) (11 + /) IIvIIioi 

holds. Actually, the same kind of estimation is valid for the operator L'. Applying this 
and the assumptions on the continuity of the operator C + KH e obtain the inequality 

Au— AvlIto,1 1 < .E ( 7i + v')lIu - VII[o,,j 

with a constant 4T, I ICII, II K II, L) . Choosing n € N such that the estimation

(46) 

holds for ij	, the operator ' A is a contraction of([O,i]) 1it B([0,771) -- 'and ac- 
carding to the Banach fixed point theorem the operator A possesses a unique fixed
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point w 1 E B([O, i]) . Assuming that the integral equation possesses a unique solution 
Wk e B ( I O , ki7J) for k	n - 1 we introduce the function r: [0, 1] x [kt, (k + 1)7] - 

r(x, 1) = / f(x, t; , 0), 0) d 

k'I 

+ff	t; , r)(I - P) [(C + KH)w k (e, r) + f(, r)J 

kq + I P [(C + KH)wk(x,T)+ f(x,r)] dr 

- I r, (x, t; 0, r) f(C+KH)Wk(O,S)+f(O,$)ds-W(O,,r) dr 

kyj 

+fF(xt;1T) (I(c + KH)wk(ls)+f( ls) ds_ (lT)) dr. 

Next we consider the operator A1, 

A i v(x, t) = r(x, t) + if F(x, t; r)(I - P)[(C + KH)v(e, r) + f(, r)J dedr 
k,jO 

+JP[(C + KH)v(x,r) + f(x,r)] dr 
kyj

i; 0, r) (f(C + KH)v(0, s) + f(0, s) ds - (0, T)) dr 
kri 

+Jr(x,t;l,r) (J(C + KH )v( 1s)+f(1s ) ds_ ( 1r )) dr. 

Of course, A 1 maps B([ki,(k + 1)77]) into B([ki7,(k + 1)7]) and the estimate 
II A i u - AIv Il(k(k+I),,]	c(ij + v")II u - VII[k17,(k+1),7] 

holds. From (46), we conclude that A l is a contraction and hence possesses a unique 
fixed point u E B([ki7 , (k + 1 ) 77]) . Since the fixed point of A 1 matches continuously with 
wk(x,k?)) and	Wk(x,k77), we see that the function w1, 

- I Wk(X , i ) if (x, t) E [0,1) x [0, k77] Wk+1( X , ) -	u(x, t)	if (x, t) E [0,1] x [ku, (k + 1)] 

is the unique solution of the integral equation in B([0, (k+1)7)). Applying this argument 
we can construct inductively the unique solution of the integral equation in B([0, T]) U
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