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Abstract. For de Rham's singular function we derive new properties, in particular some for-
mulas which express its self-similarity. Inversions and compositions of de Rham's function are 
considered as well as generalizations of de Rham's functional equations which have a connection 
to the (3n + 1)-iteration of Collatz. 
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1. Introduction 

It is well known that for a fixed a E (0, 1) the system of functional equations 

( = a(i) 
2t)  

ii +1'	 ;	(t E [0,1])	 (1.1)
---) =a+(1_a)cp(t)J 

has a unique bounded solution. This solution is continuous, strictly increasing with 
p(0) = 0 and it has the representation

=	 (1.2) 
j'='Oo	) 	j0=00 

where q = , 'y3 E N and 10 <y1 <y2 < ..., in particular () = a and (1) = 1. In 
the case of need it will be denoted more precisely by . The case a = is elementary, 
namely (t) = t. However, in the case of a 54 1 the solution p has the interesting 
property that it is a strictly singular function, i.e. a continuous and strictly increasing 
function with derivative zero almost everywhere. This solution was first constructed 
by de Rharn [9], so that it is called de Rham's function (cf. [3], where a detailed history 
of the whole context can be found). Formula (1.2) defines a continuous solution of 
system (1.1) also in the case of complex a with Ia] < 1 and 11 - a] < 
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In the following we derive some new properties for de Rham's singular function 
and for some similar functions which are solutions of generalized de Rham's functional 
equations. We consider the self-similarity of de Rham's function, show that the inverse of 
a singular function is also singular, and deal with compositions of the studied functions. 
Finally, a connection to the (3n + 1)-iteration of Collatz is pointed out. 

2. De Rham's singular function 

If for t E [0, 1] we introduce the dyadic representation t = 0.dd2 ... with d, E {0, 11, 
then according to de Rliam [8], the formula (0) = 0 and representation (1.2) can be 
gathered up as

(2.1) 

since we have d+ 1 = 1 for j+1 = -yjand d, 1 =Oelse, so that d1 +...+d, = i. The 
series in (2.1) appears also in [6), however, in another context. For t = sum (2.1) 
terminates:

() 
=a1dj+iqd1+J .	 (2.2) 

For non-negative integers k with the dyadic representation k = 5152	8 (6i E {0, 1})
we need the binary sum-of-digits function (cf. [1]) 

	

v(k) = 5 1 + ... + Sn	 (2.3) 

which satisfies the equations

v(2k)=v(k))
(2.4) 

Next, we shall show that the terms 

xn(t) d.+, -	d,+...+d—q	 (2.5)

appearing in (2.2) are step functions with special properties, so that (2.1) is a represen-
tation of p by a series of step functions. 

Proposition 2.1. For t E [0,1) functions (2.5) satisfy the recursions 

xo(t) = 0,	x+ 1 (t) = x(2t)	for 0 t < 
xo(t) = 1,	x+ 1 (t) = qx(2t - 1) for	t < 1 I I	

(2.6) 

and if we extend xo(t) for t > I by 

xo(t) = q"xo(t - k)	 (2.7)
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where k E N and k = [t], then
x11(t) = xo(2't)	 (2.8) 

for 0 < t < 1. 

Proof. For the numbers d, from the dyadic representation t = 0.dd2 let us 
write d, = d,(t). In the case of 0 < t < 1 we have d1 = 0 and d,(2t) = d3 + 1 (t) for 
j E N. In the case of < t < 1 we have d 1 = 1 and d,(2t - 1) = d,+ 1 (t). Hence, (2.5) 
immediately implies (2.6). Solving (2.6) recursively, we find x11(t) = qx(211t - k) 
for k 2 11 t k + 1 211 and according to (2.7) finally (2.8) • 

Proposition 2.2. The solution of system (1.1) satisfies the functional equations 

k+r	k 
=	

+ aqço(r)	 (2.9) 
2 t	it-

where £ E N, k = 0, 1,..., 2 - 1, r E [0, 11, and for t =	with k = 0, 1, ..., 2 it has the
finite representation

= at 1: 	.	 (2.10) 

Proof. In view of (2.3) representation (2.1) can be written as 

00 

(t) =	 + atq" 
j=0	 j=o 

with k = [2't]. Substituting t = with r E [0, 1], the first sum on the right-hand 
side is equal to cp( - ) in view of (2.2). Since r = 2tt - k has the dyadic representation 
r = 0.d€+id,+2••, the last series is equal to (r), so that (2.9) is proved. Now, in view 
of cp(l) = 1, representation (2.10) follows from (2.9) with T = 1 by summation U 

Note that equations (2.2) and (2.10) are quite different in their external shape. 
Equation (2.9) has the following counterpart with respect to the left of 

pa (
k—r	k = (Pa(7) - aIq1)i_a(r)	 (2.11) 

where k = 1, 2,...,2 t and r E [0, 11, which can easily be derived from (2.9) by means 
of the later formula (2.12). Equations (2.9) and (2.11) express very distinctly the self-
similarity of de Rham's function (with respect to the dyadic points), which is well known 
in the theory of fractals (cf. [51). 

Proposition 2.3. The solution p from system (1.1) with 0 < t < 1 and 0 <a < 1 
is also strictly increasing with respect to a. It has the property 

pi-a(t)	1 - pa( l - t) .	 (2.12) 

The family of all curves y =	(t) with 0 < a <1 fills out the whole open square 
0< t,y < 1.
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Proof. If h is a differentiable strictly increasing function of a with 0 < h < 1 for 
0 <a < 1, then the function a c— a +(1 - a)h(a) is strictly increasing. Since a 
is a strictly increasing polynomial, the specialization of system (1.1) 

k	 k a(T) =aa() 

2t+k k 
2' ) =

a+(1_a)a() 

with 0 < k < 2 t shows by induction that all functionscp,(j) are also strictly increasing 
polynomials in a. Hence, at arbitrarily fixed t E (0, 1), the function a crn—' CPa is at least 
(improper) increasing, and we have to exclude intervals of constancy. In order to do 
this we show that, for Jal < I and Ii - al < 1, the function CPa is holomorphic. Namely, 
choosing jal < 1 and Ii - al :5 1 - E < 1 in representation (1.2) with 2i we 
obtain the estimate

lcpa( t)lI aV 3 l 1 - al	- E) = 

in view of j < -y. This implies that series (1.2) of polynomials is uniformly convergent in 
every compact subset of the domain Ja (l a l < 1)fl(I1 —al < 1)). Consequently, in this 
domain cp is holomorphic. If it would by constant in a certain real interval, then it would 
be constant everywhere. But this is impossible since in view of j < y, representation 
(1.2) implies lim—o cpa(t) = 0 and lima_ l cp(t) = 1 for 0 < t < 1. Moreover, the both 
last relations imply in connection with the continuity that the curves fill out the whole 
open unit square. 

If in system (1.1) we replace the constant a by 1 - a and t by 1 - t, we obtain 

= (1 - a)cp i _a(1 - t) 

CPi_a(l -	= 1 - a + acp j _ a (l t), 

and if we further replace CPi_a( l - t) = 1 - cp(t), we again obtain system (1.1), only 
with interchanged equations. Since in the space of continuous functions system (1.1) is 
uniquely solvable, the proposition is proved I 

Figure 1: The graphs of de Itham's function for a = 0.1(0.1)0.9
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Proposition 2.3 is illustrated by means of Figure 1, which shows de Rham's function 
for different parameters a (cf. also [6]). 

Let us mention a connection to a functional equation, which was studied by Klemmt 
[4], and which gives us a new possibility to prove that w is a singular function in the 
case of a 0 1 . The equations in system (1.1) easily imply for 0 < t < 1 

,ft\	,/t+1\ 
+ (	= 2p'(t) 

almost everywhere. According to [4], ' must be constant almost everywhere: '(t) = c 
with c	0. Hence ct < (t), and in view of ,(-) = a'1 for n E N we obtain 0 <

c < ( 2a)'1 and therefore c = 0 in the case of 0 < a <. The case < a < 1 can be 
transferred to the foregoing one by means of (2.12). 

3. Related functions 

Since de Rham's function w is continuous and strictly increasing in t, its inverse 
exist and we can deal with it. 

Proposition 3.1. If f is a strictly singular function, then the inverse g = f 1 is 
also strictly singular. 

Proof. Since g is strictly increasing, g is differentiable almost everywhere with 
g'(r) > 0. For arbitrary 0 < a < /3 let E,, , ,6 be the set of all r such that g'(r) exists 
and a g'(r) :5 P. Denote by lE ,fl l the Lebesgue measure of the measurable set Ea,. 
According to f'(g(r)) =	we have f'(t) 2 for all t E g(Ea, ), which implies that 

= 0 since [is singular. In view of g'(r) > a for r E E0, we have the estimate 
a l E0,s1 :5 l g ( Eo,$)l (cf. [7: p. 234]). Consequently, E0,fl 1 = 0 for 0 <a </3. Since the 
set E of all r with g'(r) > 0 is representable as countable union of such sets, we obtain 
I El = 0. Hence g' = 0 almost everywhere I 

There is another possibility to prove -Proposition 3.1 by means of measure theory. 
Namely, if I is an increasing singular function, then it generates a Stieltjes measure 
which is singular with respect to the Lebesgue measure. If, moreover, x f(t) is 
continuous and strictly increasing, then the inverse function t = f (x) generates au-
tomatically also a measure singular to the Lebesgue measure, i.e. f is also a singular 
function. 

In particular, for fixed a 54 1 the inverse	of de Rham's function is also strictly
singular with respect to t. System (1.1) implies that 

= 
'(a + (1— a)t) = +	-'(t) }	

(0 < t	1)	 (3.1) 

(cf. [2]). Moreover, from (2.12) we obtain that 

= 1 -	1 0 - t)	 (3.2)
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for 0 < t	1. 
Systems (1.1) and (3.1) can be generalized by 

p(ct) = a(t) 
(c + (1 - c)t) = a + (1— a) (t) }	

(t E [0,11)	 (3.3)

with fixed 0 < a,c < 1. 

Proposition 3.2. The following assertions are valid: 
(i) The composition ç(t) = ça(p'(t)) is the unique bounded solution of the func-

tional equations (3.3). 

(ii) This solution is continuous, strictly increasing and maps [0, 1] onto [0, 1]. 
Proof. It can easily be checked that the composition a1 satisfies equations 

(3.3):
pa(cpct))	pa(p'(t)) = 

and
'(c + (1— c)t)) = a( +	'(t)) = a + (1— a)a(c(t)). coa(  

Moreover, 'p = 'PaYc 1 has in fact properties (ii). 
Now, let 'p be a further solution of equations (3.3). For 0 < t < 1 we put d(t) = 
- 'pa(ç'(t))I. Assume that there exists a point to E [0, 1] with d(to) > 0. If 

to :^ c, then for t 1 = 1 t 0 we have t 1 E [0, 1] and the first equation of (3.3) implies that 
d(t 1 ) =d(t 0 ). In the case of c < to ^ 1 the point t1 = lies in [0,1] and from the 
second equation of (3.3) we obtain that d(t 1 ) = 1-.!-d(to). Putting m = min{, ..L.} 
and

Itn
 

for 0<t<c 
tfl+l=1t_C for c<t<1 

where n E N, we get d(t)	'd(to). However, in view of m> 1 this is a contradiction
to the boundedness of 'p I. 

Proposition. 3.3. The solution 'p = cp,ço' of system (3.3) has the representation 

E(

00	00 
cqci)	 (3.4)

—	I where q, = I a , q, = -- —c-, 'Yj E N and 7o < 71< 72 < ... . Moreover, for £ E N and 
k = 0,1,...,2' —1 we have

	

+ cq)c() = a() + atq)'p(r)	(3.5) 

for 0	r	1. In the case of a 54 c the solution 'p of system (3.3) is strictly singular 
and its derivative is 0 whenever it exists.
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Proof. Representation (3.4) follows from (1.2) in view of V ( Wc(i)) = a(t) with 
=	2'. From ((t)) = a( t ) with t =	we also get (3.5) by twofold use

of (2.9), but once with c instead of a. 
Let be x E [0, 11 such that '(x) exists. For n E N choose integers kn with 0 kn 

2" - 1 and x, = y,, =	i.l) so that x	x	y,,. From (2.9) and (3.5)
with r = 0 respectively r = 1 we obtain 

- (y)—(x) - a qa 
Dn -	 - -	c"q '(k)	

(x)	(n - (DO)
 Xn

owing to (0) = 0 and (1) = 1. Now, putting z = x,, + c(yn - x), there are two 
possibilities, either z,, < x < z,, or z, < x y,,. From (2.9) and (3.5) with r = 0, 
T = 1 respectively r = -1 we get in view of V(c) = a that 

_________ 1— 
- (Xn) =	and	p(yn) - 'p(z)	a 

= 
C	 1—c 

At least one of both possibilities mentioned before occurs infinitely many times. Con-
sequently, o'(Z) ='(Z) or '(x) = ,-#p'(x). Hence '(x) = 0 in view of a c I 

Denoting the solution of system (3.3) by co,,,c, we easily see the validity of the 
relations 

1. Pa,b('Pb,c(t)) = 
2. jt) = 
3. CPa,c(l - t) = 1 - pi_a,i_c(t) 

for arbitrary 0 < a,b,c < 1. 
Next, we consider the generalization of system (1.1) 

(t\ 

	

g) =ag(t)	(0t1)
(3.6) (t+1

-_)	 ( g —=a + c g(i )	(0<t1)) 

with jal < 1 and Icl < 1. A bounded solution of system (3.6) must have the particular 
values g(0) = 0, g(1) = j-- and g() = j, where also g(+0) = 0. However, in the 
case of a + c lit cannot be right-continuous in all points, since g( + 0) = a 
However, system (3.6) possesses the left-continuous solution 

00g( E 2`1 ) =	 ( 3.7) 

with 1 < -y < 7ji' and q = (cf. (1.2)). On the other side, for 

t n 
=

2	
=	

2	+	 (3.8)



0 

g(t 0 +0) =
3=0 

- a+qTh 
1—c (3.9) 
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with n > 0 we have 

n-i	00 

g(t0)=	 and 
3=0	j=O 

and in view of
00

aIqn = aYn 
E 1—aq

consequently

g(tn+O)g(t0 )= ar. qn (1—a—c).	 (3.10) 

Hence, the solution g is discontinuous at all dyadic points, so far as a 54 1 - c. However, 
it is bounded and Lebesgue integrable as limit of uniformly converging step functions. 
According to (3.10) it is not increasing for a + c > 1. 

Proposition 3.4. In the case of 0 < a, c and a + c < 1 the solution g of system 
(3.6) is strictly increasing and continuous except in the dyadic points t = 1 0 from (3.8) 
where

g(t0 —0) = g(t 0 ) < g(t 0 + 0)	 (3.11) 
with jumps (3.10). Moreover, g = 0 almost everywhere. 

Proof. Assuming that 1, 1' E (0, 1] have the representations 

1 
=

2'	and	t' = E 2 

with	as before respectively 'y, then t > 1' if and only if there exists an integer rn
such that -y3 =-y for j=0,...,m-1 and-y, 27m+1. Owing to (3.7) we have 

g(t) = 

	

Co	 M-1 
 a'q 

i
2
 
1aq3 +a"qm 

since q = >0. Moreover, y 2-Tm + 1 implies that -y., 2-Tm + 1 +j for all  20 
so that in view of 0 < aq = c < 1 we get 

g(t') =	aq' +aiq3 <a1Jq3 +am+1+)qm+3 

Hence, according to (3.9) and a < 1—c we obtain g(t) > g(t'), i.e. g is strictly increasing. 
It follows that the intervals (g(t 0 ), g(t + 0)) are disjoint. Since the set of all dyadic 

points is dense in [0,1] the union 

00
(g( 2k+12k+1 G=	U 	2'' ),g( 2' +o)) 

UO k=0
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is an open Cantor set with Lebesgue measure 

IC! =(l_a_C) 
in 

(cf. (3.10) where we have to sum over all dyadic t, of (0,1)). Since there are () 
possibilities for 'y, to be equal to k + 1 we find that 

00	 cc	co	 00
a 

1—a—c n0 kn	 k=O 

in view of aq = c. Therefore we obtain that IC! = I a C = g(1). Consequently, the 
increasing function g cannot have further jumps. 

For the set M [0,11 \ u{t} we have IMI =1 andlg(M)I_— 0 which implies that 
= 0 almost everywhere (cf. [7: p. 234]). Hence, the proposition is proved U 

Remarks. 
1. P = [o,\ C is a perfect Cantor set with measure zero. 
2. Note that the boundary points t = 0 and t = 1 do not belong to the points (3.8). 
3. The results can easily be transferred to the case that the first equation in system 

(3.6) is valid for 0 t < 1 and the second equation for 0 < t	1, where the solution 
is determined by g(1) = 2 ') =	a' q' and right continuity with q
and -yi as before. 

Supplement. Finally, we consider the generalization of systems (1.1) and (3.6) 

	

i() = af(t)	
(3.12)

i(- -) =b+cf(t)J 

where we admit that the solution is not defined for all t € (0, 1). 
Proposition 3.5. For a 54 0, Jal < 1, Ic! < 1 and 0 < t 1, system (3.12) has the 

left-continuous solution

2—'Yi 	=	 (3.13) 

with 7) e N, y) <7j+1 and q= . If  < a, 0 < b and 0 < c < 1, then every 
y > f(1) = j--C has infinitely many inverse images under Jr. 

Proof. If g is the solution (3.7) of system (3.6), then I = g is the solution of 
system (3.12). If Il < 1, but Jal > 1, then the right-hand side of (3.13) can diverge, 
and f remains undefined at the corresponding points of (0,1]. However, for c 76 1 the 
solution of system (3.12) always possesses the value 1(1) = 16 C .Now, let 1 < a, 0 < b, 
0 < c < 1 and y > 1(1). We look for a sequence such that 

b (k	 k )	- b E
+	< y< ('aqi +	

1qk)	
(3.14)
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for infinitely many k. For k = 0 this inequality means 
ba)'o 

	

1-c	1-c 
and determines	uniquely in view of a > 1. If 7, ..., y, are already determined, 
we choose an arbitrary integer k > n depending on n, define 7j	+ y - n for

= n + 1, ..., k - 1, and determine 7k out of (3.14). The last step is uniquely possible, 
since in view of

=
a1 q + 

ah1q 

there always exits such a 7k 2 7k-i + 1. In this way we find infinitely many sequences 
-yi such that the right-hand side of (3.13) is equal to y  

Let Jal > 1. If we define £ = lim-, the series at the right-hand side of (3.13) is 
In Id	 In Icl convergent for £ < 1 -	and divergent for £ > 1 -	in view of the root test. In 

the "periodic" case 7pj+k = rj + Qk for sufficiently great j and k 0, 1,...,p - 1, where 
=	2' is rational, we have £ = 

From system (3.12) we can derive further functional equations. Namely, for k = 
0,1,..., 2 - 1 with £ e N, the dyadic representation k = d, d2 d,,, dj E {0, 11, where 
d 1 = 0 is allowed, and 0 < t < 1 we find 

bt-I 	+ a'q'f(t) 

(cf. (2.9) and (2.2)). For lal > 1 this formula shows that f is unbounded in every 
subinterval of (0, 11, since f(-) = 

Let us mention a curious connection to the (3n + 1)-problem of L. Collatz, which 
for negative n is equivalent to the (3n - 1)-problem, i.e. to the iteration of the function 

	

In	for n even 
t(n) (3n -1) for n odd. (3.15) 

The iterates of n E N under t have the fixed point 1 and the two cycles (5, 7, 10) as well 
as (17, 25, 37, 55, 82, 41, 61, 91, 136, 68, 34), and one conjectures that all t-trajectories 
eventually end in one of these three sets (cf. [10: p. 13]). It suffices to restrict ourselves 
to odd n and to replace t(n) for such n by T(n) = 2 P" (3n - 1) if 2P- 1(3n - 1) but 
2Pn+1 %(3n - 1), p, E N. The equation for T can be inverted by 

n = (1 + 2T(n)) . (3.16) 
We denote the iterates of T by Tk( ri) T(Tk..l(n)) with To(n) = n, and for a fixed n 
we introduce the notations 7° = 1 and 7k 1 +PT0() + ... +PT,_ 1 (n) for k 2 1. Then 
(3.16) implies the representation 

= (vo+r + ... +-j2' +2ThTk(n)) 
for every odd n, and for k -	the right-hand side converges to the right-hand side of
(3.13) with a = 2, b =, c = and therefore q = 
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