De Rham's Singular Function and Related Functions

L. Berg and M. **Krüppel**

Abstract. For de Rham's singular function we derive new properties, in particular some formulas which express its self-similarity. Inversions and compositions of de Rham's function are considered as well as generalizations of de Rham's functional equations which have a connection to the $(3n + 1)$ -iteration of Collatz.

Keywords: *Dc Rharn's singular function, inverse singular functions, compositions of such functions, functional equations, Collatz problem*

AMS subject classification: 39B22, 39B62, 26A30, 26A48

1. Introduction

Abstract. For the Hian's singular function we derive the two properties, in particular
mulas which express its self-similarity. Inversions and compositions of de Rham's function are
considered as well as generalizations of de Rham's functional equations which have a connection
to the (3n + 1)-iteration of Collatz.

\nKeywords: De Rham's singular function, inverse singular functions, compositions of such
functions, functional equations, Collatz problem

\nAMS subject classification: 39 B 22, 39 B 62, 26 A 30, 26 A 48

\n1. Introduction

\nIt is well known that for a fixed
$$
a \in (0,1)
$$
 the system of functional equations
 $\varphi\left(\frac{t}{2}\right) = a\varphi(t)$

\n($t \in [0,1]$) (1.1)
 $\varphi\left(\frac{t+1}{2}\right) = a + (1-a)\varphi(t)$

\n($t \in [0,1]$) (1.1)
 $\varphi(0) = 0$ and it has the representation

\n $\varphi\left(\sum_{j=0}^{\infty} 2^{-\gamma_j}\right) = \sum_{j=0}^{\infty} a^{\gamma_j} q^j$ (1.2)
 $\text{where } q = \frac{1-a}{a}, \gamma_j \in \mathbb{N}$ and $\gamma_0 < \gamma_1 < \gamma_2 < \ldots$, in particular $\varphi\left(\frac{1}{2}\right) = a$ and $\varphi(1) = 1$. In

 $\varphi(0) = 0$ and it has the representation

has a unique bounded solution. This solution
$$
\varphi
$$
 is continuous, strictly increasing with $\varphi(0) = 0$ and it has the representation\n
$$
\varphi\left(\sum_{j=0}^{\infty} 2^{-\gamma_j}\right) = \sum_{j=0}^{\infty} a^{\gamma_j} q^j \qquad (1.2)
$$

where $q = \frac{1-a}{a}$, $\gamma_j \in \mathbb{N}$ and $\gamma_0 < \gamma_1 < \gamma_2 < ...$, in particular $\varphi(\frac{1}{2}) = a$ and $\varphi(1) = 1$. In the case of need it will be denoted more precisely by φ_a . The case $a = \frac{1}{2}$ is elementary, namely $\varphi(t) = t$. However, in the case of $a \neq \frac{1}{2}$ the solution φ has the interesting property that it is a strictly singular function, i.e. a continuous and strictly increasing function with derivative zero almost everywhere. This solution φ was first constructed by de Rharn [9], so that it is called de Rham's function (cf. [3], where a detailed history of the whole context can be found). Formula (1.2) defines a continuous solution of system (1.1) also in the case of complex *a* with $|a| < 1$ and $|1 - a| < 1$.

Both authors: FB Math. der Univ., Universitätspl. 1, D-18051 Rostock

ISSN 0232-2064 / \$ 2.50 © Heldermann Verlag Berlin

In the following we derive some new properties for de Rham's singular function φ and for some similar functions which are solutions of generalized de Rham's functional equations. We consider the self-similarity of de Rham's function, show that the inverse of a singular function is also singular, and deal with compositions of the studied functions. Finally, a connection to the $(3n + 1)$ -iteration of Collatz is pointed out.

2. De Rham's singular function

If for $t \in [0, 1]$ we introduce the dyadic representation $t = 0.d_1d_2 \cdots$ with $d_j \in \{0, 1\}$, then according to de Rham [8], the formula $\varphi(0) = 0$ and representation (1.2) can be gathered up as **inction**

yadic representation $t = 0.d_1d_2 \cdots$ with $d_j \in \{0, 1\}$,

le formula $\varphi(0) = 0$ and representation (1.2) can be
 $=\sum_{j=0}^{\infty} a^{j+1}d_{j+1}q^{d_1+\cdots+d_j}$ (2.1)
 γ_i and $d_{j+1} = 0$ else, so that $d_1 + \cdots + d_j = i$

$$
\varphi(t) = \sum_{j=0}^{\infty} a^{j+1} d_{j+1} q^{d_1 + \dots + d_j}
$$
 (2.1)

since we have $d_{j+1} = 1$ for $j + 1 = \gamma_i$ and $d_{j+1} = 0$ else, so that $d_1 + ... + d_j = i$. The series in (2.1) appears also in [6], however, in another context. For $t = \frac{k}{2l}$ sum (2.1) terminates:

$$
\varphi(t) = \sum_{j=0} a^{j+1} d_{j+1} q^{d_1 + \dots + d_j}
$$
(2.1)
if $j + 1 = \gamma_i$ and $d_{j+1} = 0$ else, so that $d_1 + \dots + d_j = i$. The
o in [6], however, in another context. For $t = \frac{k}{2^t}$ sum (2.1)

$$
\varphi\left(\frac{k}{2^t}\right) = \sum_{j=0}^{t-1} a^{j+1} d_{j+1} q^{d_1 + \dots + d_j}
$$
(2.2)
k with the dyadic representation $k = \delta_1 \delta_2 \cdots \delta_n$ ($\delta_j \in \{0, 1\}$)
Equits function (cf. [1])

$$
\nu(k) = \delta_1 + \dots + \delta_n
$$
(2.3)
ns

For non-negative integers *k* with the dyadic representation $k = \delta_1 \delta_2 \cdots \delta_n$ ($\delta_j \in \{0, 1\}$) we need the binary sum-of-digits function (cf. [1])

$$
\nu(k) = \delta_1 + \dots + \delta_n \tag{2.3}
$$

which satisfies the equations

$$
\nu(k) = \delta_1 + ... + \delta_n
$$
\n
$$
\nu(k) = \delta_1 + ... + \delta_n
$$
\n
$$
\nu(2k) = \nu(k)
$$
\n
$$
\nu(2k + 1) = \nu(k) + 1
$$
\n
$$
\sum_{k=1}^{\infty} \nu(k) = \binom{n}{k} \tag{2.4}
$$
\n
$$
\text{at } \mathbf{m} \text{ is}
$$
\n
$$
x_n(t) = d_{n+1}q^{d_1 + ... + d_n} \tag{2.5}
$$
\n
$$
\text{at } \mathbf{m} \text{ is}
$$
\n
$$
\text{at } \mathbf{m} \text{
$$

Next, we shall show that the terms

$$
x_n(t) = d_{n+1}q^{d_1 + \ldots + d_n} \tag{2.5}
$$

appearing in (2.2) are step functions with special properties, so that (2.1) *is* a representation of φ by a series of step functions.

Proposition 2.1. For $t \in [0,1)$ functions (2.5) satisfy the recursions

$$
\nu(2k+1) = \nu(k) + 1
$$
\n
$$
x_n(t) = d_{n+1}q^{d_1 + \dots + d_n}
$$
\n
$$
x_n(t) = d_{n+1}q^{d_1 + \dots + d_n}
$$
\n(2.5)\n
$$
x_n(t) = \sum_{i=1}^{n} d_i + \sum_{i=1}^{n} d_i
$$
\n(2.6)\n
$$
x_0(t) = 0, \quad x_{n+1}(t) = x_n(2t)
$$
\nfor $0 \le t < \frac{1}{2}$ \n
$$
x_0(t) = 1, \quad x_{n+1}(t) = qx_n(2t - 1) \text{ for } \frac{1}{2} \le t < 1
$$
\n
$$
x_0(t) \text{ for } t \ge 1 \text{ by}
$$
\n
$$
x_0(t) = q^{\nu(k)}x_0(t - k)
$$
\n(2.7)

and if we extend $x_0(t)$ *for* $t \geq 1$ *by*

$$
x_0(t) = q^{\nu(k)} x_0(t-k)
$$
 (2.7)

where $k \in \mathbb{N}$ and $k = [t]$, then

De Rham's Singular Function

\n
$$
x_n(t) = x_0(2^n t)
$$
\n(2.8)

\nFrom the dyadic representation $t = 0.d_1 d_2 \cdots$ let us

for $0 \le t < 1$ *.*

Proof. For the numbers d_j from the dyadic representation $t = 0.d_1d_2 \cdots$ let us write $d_j = d_j(t)$. In the case of $0 \le t < \frac{1}{2}$ we have $d_1 = 0$ and $d_j(2t) = d_{j+1}(t)$ for *j* \in N. In the case of $\frac{1}{2} \le t < 1$ we have $d_1 = 1$ and $d_j(2t - 1) = d_{j+1}(t)$. Hence, (2.5) immediately implies (2.6). Solving (2.6) recursively, we find $x_n(t) = q^{\nu(k)}x_0(2^nt - k)$ for $k \leq 2^n t \leq k+1 \leq 2^n$ and according to (2.7) finally (2.8) *k_j* from the d
 k of $0 \le t < \frac{1}{2}$

1 we have $d_1 =$

1 we have $d_1 =$

1 we have $d_1 =$
 k according to (2
 k $\frac{k+r}{2^{\ell}}$) = $\varphi\left(\frac{k}{2^{\ell}}\right)$ *n* the dya
 $t < \frac{1}{2}$ we
 $dt < \frac{1}{2}$ ave
 $dt_1 = 1$

2.6) recurs
 $\log 10$ (2.7)
 $\log 10$
 $\log t$
 $\log \left(\frac{k}{2^{\ell}}\right)$
 $\log 1$, and 2ⁿ*t*) (2.8)

dic representation $t = 0.d_1d_2 \cdots$ let us
 \geq have $d_1 = 0$ and $d_j(2t) = d_{j+1}(t)$ for

. and $d_j(2t-1) = d_{j+1}(t)$. Hence, (2.5)

sively, we find $x_n(t) = q^{\nu(k)}x_0(2^n t - k)$

) finally (2.8)
 m (1.1) satisf *2g* from the d₁
 2g for $0 \le t < \frac{1}{2}$
 2g we have $d_1 =$
 2g $d_1 = 2$
 2g i $d_2 = 2$
 2g $\left(\frac{k}{2}t\right) = \varphi\left(\frac{k}{2}t\right)$
 2g $\tau \in [0, 1]$, and

Proposition 2.2. The solution φ of system (1.1) satisfies the functional equations

$$
\varphi\left(\frac{k+\tau}{2^{\ell}}\right) = \varphi\left(\frac{k}{2^{\ell}}\right) + a^{\ell}q^{\nu(k)}\varphi(\tau) \tag{2.9}
$$

where $\ell \in \mathbb{N}, k = 0, 1, ..., 2^{\ell} - 1, \tau \in [0, 1],$ and for $t = \frac{k}{2^{\ell}}$ with $k = 0, 1, ..., 2^{\ell}$ it has the *finite representation*

$$
\varphi\left(\frac{k}{2^{\ell}}\right) = a^{\ell} \sum_{j=0}^{k-1} q^{\nu(j)} \tag{2.10}
$$

Proof. In view of (2.3) representation (2.1) can be written as

position 2.2. The solution
$$
\varphi
$$
 of system (1.1) satisfies the functional
\n
$$
\varphi\left(\frac{k+\tau}{2^{\ell}}\right) = \varphi\left(\frac{k}{2^{\ell}}\right) + a^{\ell}q^{\nu(k)}\varphi(\tau)
$$
\nN, $k = 0, 1, ..., 2^{\ell} - 1, \tau \in [0, 1],$ and for $t = \frac{k}{2^{\ell}}$ with $k = 0, 1, ..., 2^{\ell}$
\n*essential*
\n
$$
\varphi\left(\frac{k}{2^{\ell}}\right) = a^{\ell} \sum_{j=0}^{k-1} q^{\nu(j)}.
$$
\nf. In view of (2.3) representation (2.1) can be written as
\n
$$
\varphi(t) = \sum_{j=0}^{\ell-1} a^{j+1} d_{j+1} q^{d_1 + ... + d_j} + a^{\ell} q^{\nu(k)} \sum_{j=0}^{\infty} a^{j+1} d_{\ell+j+1} q^{d_{\ell+1} + ... + d_{\ell+j}}
$$
\n[2^{\ell}*t*]. Substituting $t = \frac{k+\tau}{2^{\ell}}$ with $\tau \in [0, 1]$, the first sum on the a real to $\varphi\left(\frac{k}{2}\right)$ in view of (2.2). Since $\tau = 2^{\ell}t - k$ has the dyadic repr

with $k = \lfloor 2^{\ell}t \rfloor$. Substituting $t = \frac{k+r}{2^{\ell}}$ with $r \in [0,1]$, the first sum on the right-hand side is equal to $\varphi(\frac{k}{2^l})$ in view of (2.2). Since $\tau = 2^{\ell}t - k$ has the dyadic representation $\tau = 0.d_{\ell+1}d_{\ell+2}\cdots$, the last series is equal to $\varphi(\tau)$, so that (2.9) is proved. Now, in view of $\varphi(1) = 1$, representation (2.10) follows from (2.9) with $\tau = 1$ by summation \blacksquare *k*_{$i+1$} $q^{d_1 + ... + d_j} + a^{\ell} q^{\nu(k)} \sum_{j=0}^{\infty} a^{j+1} d_{\ell+j+1} q^{d_{\ell+1}+...+d_{\ell}}$
 *h*g $t = \frac{k+r}{2^{\ell}}$ with $\tau \in [0,1]$, the first sum on the

ew of (2.2). Since $\tau = 2^{\ell}t - k$ has the dyadic reg

series is equal to $\varphi(\tau)$

Note that equations (2.2) and *(2.10)* are quite different in their external shape. Equation (2.9) has the following counterpart with respect to the left of $\frac{k}{2}$.

$$
\varphi_a\left(\frac{k-\tau}{2^{\ell}}\right) = \varphi_a\left(\frac{k}{2^{\ell}}\right) - a^{\ell}q^{\nu(k-1)}\varphi_{1-a}(\tau) \tag{2.11}
$$

where $k = 1, 2, ..., 2^{\ell}$ and $\tau \in [0, 1]$, which can easily be derived from (2.9) by means of the later formula (2.12). Equations (2.9) and *(2.11)* express very distinctly the selfsimilarity of de Rham's function (with respect to the dyadic points), which is well known in the theory of fractals $(cf. [5])$. respect to the left of $\frac{k}{2}$:
 $t^{u(k-1)}\varphi_{1-a}(\tau)$ (2.11)

sily be derived from (2.9) by means

2.11) express very distinctly the self-

ie dyadic points), which is well known
 $m (1.1) with 0 < t < 1 and 0 < a < 1$

the property

-

Proposition 2.3. The solution φ_a from system (1.1) with $0 < t < 1$ and $0 < a < 1$ *is also strictly increasing with respect to a. It has the property* u tion φ_a from syste
respect to a. It has
 $\varphi_{1-a}(t) = 1 - \varphi_a(1)$

$$
\varphi_{1-a}(t) = 1 - \varphi_a(1-t) \tag{2.12}
$$

The family of all curves $y = \varphi_a(t)$ with $0 < a < 1$ fills out the whole open square $0 < t, y < 1.$

Proof. If *h* is a differentiable strictly increasing function of a with *0 < h < 1* for $0 < a < 1$, then the function $a \mapsto a + (1 - a)h(a)$ is strictly increasing. Since $\varphi_a(\frac{1}{2}) = a$ is a strictly increasing polynomial, the specialization of system (1.1)

graph

\nrentiable strictly increasing function
$$
a \mapsto a + (1 - a)h(a)
$$
 is strictly in

\nynomial, the specialization of systo

\n
$$
\varphi_a\left(\frac{k}{2^{\ell+1}}\right) = a \varphi_a\left(\frac{k}{2^{\ell}}\right)
$$

\n
$$
\varphi_a\left(\frac{2^{\ell} + k}{2^{\ell+1}}\right) = a + (1 - a) \varphi_a\left(\frac{k}{2^{\ell}}\right)
$$

with $0 < k < 2^{\ell}$ shows by induction that all functions $\varphi_{a}(\frac{k}{2^{\ell}})$ are also strictly increasing polynomials in *a*. Hence, at arbitrarily fixed $t \in (0,1)$, the function $a \mapsto \varphi_a$ is at least (improper) increasing, and we have to exclude intervals of constancy. In order to do this we show that, for $|a| < 1$ and $|1 - a| < 1$, the function φ_a is holomorphic. Namely, choosing $|a| < 1$ and $|1 - a| \leq 1 - \varepsilon < 1$ in representation (1.2) with $t = \sum_{i=0}^{\infty} 2^{-\gamma_i}$ we obtain the estimate $\varphi_a\left(\frac{k}{2^{\ell+1}}\right) = a\varphi_a\left(\frac{k}{2^{\ell}}\right)$
 $\varphi_a\left(\frac{2^{\ell}+k}{2^{\ell+1}}\right) = a + (1-a)\varphi_a\left(\frac{2^{\ell}+k}{2^{\ell+1}}\right) = a + (1-a)\varphi_a\left(\frac{2^{\ell}+k}{2^{\ell+1}}\right)$

so by induction that all functions $\varphi_a\left(\frac{2^{\ell}+k}{2^{\ell}+1}\right)$

so so and we h

$$
|\varphi_a(t)| \leq \sum_{j=0}^{\infty} |a|^{\gamma_j - j} |1 - a|^j \leq \sum_{j=0}^{\infty} (1 - \varepsilon)^j = \frac{1}{\varepsilon}
$$

in view of $j < \gamma_j$. This implies that series (1.2) of polynomials is uniformly convergent in every compact subset of the domain $\{a : (|a| < 1) \cap (|1 - a| < 1)\}\)$. Consequently, in this domain φ_a is holomorphic. If it would by constant in a certain real interval, then it would be constant everywhere. But this is impossible since in view of $j < \gamma_i$ representation (1.2) implies $\lim_{a\to 0} \varphi_a(t) = 0$ and $\lim_{a\to 1} \varphi_a(t) = 1$ for $0 < t < 1$. Moreover, the both last relations imply in connection with the continuity that the curves fill out the whole open unit square.

If in system (1.1) we replace the constant a by $1 - a$ and t by $1 - t$, we obtain

If in system (1.1) we replace the constant a by
$$
1 - a
$$
 and t by $1 - t$, we obtain
\n
$$
\varphi_{1-a}\left(\frac{1-t}{2}\right) = (1-a)\varphi_{1-a}(1-t)
$$
\n
$$
\varphi_{1-a}\left(1-\frac{t}{2}\right) = 1 - a + a\varphi_{1-a}(1-t),
$$
\nand if we further replace $\varphi_{1-a}(1-t) = 1 - \varphi(t)$, we again obtain system (1.1), only

with interchanged equations. Since in the space of continuous functions system (1.1) is uniquely solvable, the proposition is proved \blacksquare

Figure 1: The graphs of de Rham's function for $a = 0.1(0.1)0.9$

Proposition 2.3 is illustrated by means of Figure 1, which shows de Rham's function for different parameters *a* (cf. also [6]).

Let us mention a connection to a functional equation, which was studied by Klemmt [4], and which gives us a new possibility to prove that φ is a singular function in the case of $a \neq \frac{1}{2}$. The equations in system (1.1) easily imply for $0 < t < 1$ De Rhat

d by means of Figure 1, wh

also [6]).

i, to a functional equation, v

possibility to prove that φ

i, system (1.1) easily imply
 $f'(\frac{t}{2}) + \varphi'(\frac{t+1}{2}) = 2\varphi'(t)$

to [4], φ' must be constant

equation

$$
\varphi'\Big(\frac{t}{2}\Big)+\varphi'\Big(\frac{t+1}{2}\Big)=2\varphi'(t)
$$

almost everywhere. According to [4], φ' must be constant almost everywhere: $\varphi'(t) = c$ with $c \geq 0$. Hence $ct \leq \varphi(t)$, and in view of $\varphi(\frac{1}{2^n}) = a^n$ for $n \in \mathbb{N}$ we obtain $0 \leq$ $c \leq (2a)^n$ and therefore $c = 0$ in the case of $0 < a < \frac{1}{2}$. The case $\frac{1}{2} < a < 1$ can be transferred to the foregoing one by means of (2.12).

3. Related functions

Since de Rham's function φ is continuous and strictly increasing in *t*, its inverse φ^{-1} exist and we can deal with it.

Proposition 3.1. If f is a strictly singular function, then the inverse $g = f^{-1}$ is *also strictly singular.*

Proof. Since *g is* strictly increasing, *g is* differentiable almost everywhere with $g'(\tau) \geq 0$. For arbitrary $0 < \alpha < \beta$ let $E_{\alpha,\beta}$ be the set of all τ such that $g'(\tau)$ exists and $\alpha \leq g'(\tau) \leq \beta$. Denote by $|E_{\alpha,\beta}|$ the Lebesgue measure of the measurable set $E_{\alpha,\beta}$.
According to $f'(g(\tau)) = \frac{1}{g'(\tau)}$ we have $f'(t) \geq \frac{1}{\beta}$ for all $t \in g(E_{\alpha,\beta})$, which implies that Exist and we can deal with it.
 Proposition 3.1. If f is a strictly singular function, then the inverse $g = f^{-1}$ is

also strictly singular.
 Proof. Since g is strictly increasing, g is differentiable almost everywher $\alpha |E_{\alpha,\beta}| \le |g(E_{\alpha,\beta})|$ (cf. [7: p. 234]). Consequently, $|E_{\alpha,\beta}| = 0$ for $0 < \alpha < \beta$. Since the set *E* of all τ with $g'(\tau) > 0$ is representable as countable union of such sets, we obtain $|E| = 0$. Hence $g' = 0$ almost everywhere **I**

There is another possibility to prove Proposition 3.1 by means of measure theory. Namely, if f is an increasing singular function, then it generates a Stieltjes measure which is singular with respect to the Lebesgue measure. If, moreover, $x = f(t)$ is continuous and strictly increasing, then the inverse function $t = f^{-1}(x)$ generates automatically also a measure singular to the Lebesgue measure, i.e. f^{-1} is also a singular function. There is another possibility to prove Proposition 3.1 by means of measure theory.
hely, if f is an increasing singular function, then it generates a Stieltjes measure
th is singular with respect to the Lebesgue measure. I by means of measure theory.

we because theory.

If, moreover, $x = f(t)$ is

on $t = f^{-1}(x)$ generates aure, i.e. f^{-1} is also a singular

am's function is also strictly

($0 \le t \le 1$) (3.1) The inverse function $t = f^{-1}(x)$ generates authe Lebesgue measure, i.e. f^{-1} is also a singular
verse φ^{-1} of de Rham's function is also strictly
implies that
 $\frac{1}{2}\varphi^{-1}(t)$
in that
 $= 1 - \varphi_a^{-1}(1 - t)$ (3.2)

singular with respect to *t.* System (1.1) implies that In particular, for fixed $a \neq \frac{1}{2}$ the inverse φ^{-1} of de Rham's function is also strictly

$$
\varphi^{-1}(at) = \frac{1}{2}\varphi^{-1}(t) \n\varphi^{-1}(a + (1 - a)t) = \frac{1}{2} + \frac{1}{2}\varphi^{-1}(t) \qquad (0 \le t \le 1)
$$
\n(3.1)

(cf. [2]). Moreover, from (2.12) we obtain that

$$
\varphi_{1-a}^{-1}(t) = 1 - \varphi_a^{-1}(1-t) \tag{3.2}
$$

Systems (1.1) and (3.1) can be generalized by

d M. Krüppel
\nand (3.1) can be generalized by
\n
$$
\varphi(ct) = a \varphi(t)
$$
\n
$$
\varphi(c + (1 - c)t) = a + (1 - a) \varphi(t)
$$
\n
$$
\varphi(t) = \left\{ \begin{array}{ll} (t \in [0, 1]) & (3.3) \\ & & (t \in [0, 1]) \end{array} \right\}
$$

with fixed $0 < a, c < 1$.

Proposition 3.2. *The following assertions are valid:*

(i) The composition $\varphi(t) = \varphi_a(\varphi_c^{-1}(t))$ is the unique bounded solution of the func*tional equations (3.3).*

(ii) This solution is continuous, strictly increasing and maps [0, 1] *onto* [0, 1].

Proof. It can easily be checked that the composition $\varphi_a \varphi_c^{-1}$ satisfies equations (3.3): *parameters* is *parameters* is *parameters* is *pa*($\varphi_c^{-1}(ct)$) = $\varphi_a(\varphi_c^{-1}(t)) = \varphi_a(\frac{1}{2}\varphi_c^{-1}(t))$ = *che composition* $\varphi(t) = \varphi_a(\varphi_c^{-1}(t))$ *is the unique bounded solution of*
cations (3.3).
chis solution is continuous, strictly increasing and maps [0, 1] *onto* [(
cf. It can easily be checked that the composition

$$
\varphi_a(\varphi_c^{-1}(ct)) = \varphi_a\left(\frac{1}{2}\varphi_c^{-1}(t)\right) = a\varphi_a(\varphi_c^{-1}(t))
$$

and

$$
\varphi_a\big(\varphi_c^{-1}(c+(1-c)t)\big)=\varphi_a\big(\tfrac{1}{2}+\tfrac{1}{2}\varphi_c^{-1}(t)\big)=a+(1-a)\varphi_a\big(\varphi_c^{-1}(t)\big).
$$

Moreover, $\varphi = \varphi_a \varphi_c^{-1}$ has in fact properties (ii).

Now, let φ be a further solution of equations (3.3). For $0 \le t \le 1$ we put $d(t) =$ $|\varphi(t) - \varphi_a(\varphi_c^{-1}(t))|$. Assume that there exists a point $t_0 \in [0,1]$ with $d(t_0) > 0$. If $t_0 \leq c$, then for $t_1 = \frac{1}{c} t_0$ we have $t_1 \in [0,1]$ and the first equation of (3.3) implies that
 $d(t_1) = \frac{1}{a} d(t_0)$. In the case of $c < t_0 \leq 1$ the point $t_1 = \frac{t_0 - c}{1 - c}$ lies in [0,1] and from the

second eq $u(t_1) = \frac{1}{a}u(t_0)$. In the case of $c < t_0 \le 1$ the point $t_1 = \frac{1}{1-c}$ lies in [0,1] and from the
second equation of (3.3) we obtain that $d(t_1) = \frac{1}{1-a}d(t_0)$. Putting $m = \min\{\frac{1}{a}, \frac{1}{1-a}\}$
and
 $t_{n+1} = \begin{cases} \frac{1}{c}t$ and $\begin{aligned}\n\epsilon \left[0, 1\right] \text{ and the nr} \\
\leq 1 \text{ the point } t_1 \\
\text{hat } d(t_1) &= \frac{1}{1-a} d\n\end{aligned}$ $\frac{1}{c} t_n \quad \text{for } 0 \leq t_n$ $\frac{t_n - c}{1 - c} \quad \text{for } c < t_n$ \therefore However, in view $\varphi = \varphi_a \varphi_c^{-1} \text{ of } sys$ $c^{\gamma_j} q_c^{-j} = \sum_{j=0}^{\infty} a^{\gamma_j} q_c^{-j}$

$$
t_{n+1} = \begin{cases} \frac{1}{c}t_n & \text{for } 0 \le t_n \le c\\ \frac{t_n - c}{1 - c} & \text{for } c < t_n \le 1 \end{cases}
$$

where $n \in \mathbb{N}$, we get $d(t_n) \ge m^n d(t_0)$. However, in view of $m > 1$ this is a contradiction to the boundedness of $\varphi \blacksquare$.

Proposition 3.3. The solution $\varphi = \varphi_a \varphi_c^{-1}$ of system (3.3) has the representation

$$
m^{n}d(t_{0}).
$$
 However, in view of $m > 1$ this is a contradiction
solution $\varphi = \varphi_{a}\varphi_{c}^{-1}$ of system (3.3) has the representation

$$
\varphi\left(\sum_{j=0}^{\infty} c^{\gamma_{j}} q_{c}^{j}\right) = \sum_{j=0}^{\infty} a^{\gamma_{j}} q_{a}^{j}
$$
(3.4)
 $\gamma_{j} \in \mathbb{N}$ and $\gamma_{0} < \gamma_{1} < \gamma_{2} < ...$ Moreover, for $\ell \in \mathbb{N}$ and

$$
+ c^{\ell}q_{c}^{\nu(k)}\varphi_{c}(\tau) = \varphi_{a}\left(\frac{k}{2^{\ell}}\right) + a^{\ell}q_{a}^{\nu(k)}\varphi_{a}(\tau)
$$
(3.5)

where $n \in \mathbb{N}$, we get $d(t_n)$

to the boundedness of φ **P**
 Proposition 3.3. *T*
 Where $q_a = \frac{1-a}{a}$ *,* $q_c = \frac{1-a}{c}$ *
* $k = 0, 1, ..., 2^{\ell} - 1$ *we have* $\frac{-c}{c}$, $\gamma_j \in \mathbb{N}$ and $\gamma_0 < \gamma_1 < \gamma_2 < ...$. Moreover, for $\ell \in \mathbb{N}$ and $k = 0, 1, ..., 2^{l} - 1$ *we have*

$$
\varphi\Big(\varphi_c\Big(\frac{k}{2^\ell}\Big)+c^\ell q_c^{\nu(k)}\varphi_c(\tau)\Big)=\varphi_a\Big(\frac{k}{2^\ell}\Big)+a^\ell q_a^{\nu(k)}\varphi_a(\tau) \qquad (3.5)
$$

for $0 \leq \tau \leq 1$. *In the case of* $a \neq c$ *the solution* φ *of system* (3.3) is strictly singular *and its derivative is* 0 *whenever it exists.*

Proof. Representation (3.4) follows from (1.2) in view of $\varphi(\varphi_c(t)) = \varphi_a(t)$ with **Example 3.4) De Rham's Singular Function** 233
 Proof. Representation (3.4) follows from (1.2) in view of $\varphi(\varphi_c(t)) = \varphi_a(t)$ with $\varphi(\varphi_c(t)) = \varphi_a(t) = \frac{k+r}{2t}$ we also get (3.5) by twofold use (2.9), but once with *c* i of (2.9), but once with *c* instead of a. De Rham's Singular Function 233

Proof. Representation (3.4) follows from (1.2) in view of $\varphi(\varphi_c(t)) = \varphi_a(t)$ with
 $t = \sum_{j=0}^{\infty} 2^{-\gamma_j}$. From $\varphi(\varphi_c(t)) = \varphi_a(t)$ with $t = \frac{k+r}{2}$ we also get (3.5) by twofold use

of (2

Let be $x \in [0,1]$ such that $\varphi'(x)$ exists. For $n \in \mathbb{N}$ choose integers k_n with $0 \leq k_n \leq$ with $\tau = 0$ respectively $\tau = 1$ we obtain From $\varphi(\varphi_c(t))$

e with c instead
 $[0,1]$ such that φ
 $[\varphi_c(\frac{t_n}{2^n}), y_n] =$
 $[\varphi_c(\frac{t_n}{2^n}), y_n] - \varphi$
 $D_n = \frac{\varphi(y_n) - \varphi}{y_n - x}$
 $= 0$ and $\varphi(1) =$ (3.4) follows

(3.4) follows

(b) = $\varphi_a(t)$

ead of a.
 $t \varphi'(x)$ exist
 $= \varphi_c(\frac{k_n+1}{2^n})$
 $= \varphi_c(x_n)$
 $= x_n$

= 1. Now,
 $\langle z_n \text{ or } z_n \rangle$ vists. For $n \in \mathbb{N}$ of $\frac{1}{n}$ of that x_n :

in
 $= \frac{a^n q_a^{\nu(k_n)}}{c^n q_c^{\nu(k_n)}} \longrightarrow \varphi'$ $\begin{aligned} \text{choose integers } k \leq x \leq y_n. \text{ From} \\\\ (x) \qquad (n \to \infty) \end{aligned}$ at $\varphi'(x)$ exists. For *n*
 $n_n = \varphi_c\left(\frac{k_n+1}{2^n}\right)$ so then
 $\frac{1}{2} \operatorname{Re}(k_n) = \frac{a^n q_a^{\nu(k_n)}}{c^n q_c^{\nu(k_n)}}$
 $\frac{1}{2} = 1$. Now, putting
 $\frac{1}{2} \leq n$ or $z_n < x \leq$
 $\frac{1}{2}$ get in view of $\varphi(c)$
 $\frac{1}{2} = \frac{a}{c} D_n$ and
 $\varphi'(x)$ exists. For $n \in \mathbb{N}$ choose integers $k = \varphi_c\left(\frac{k_n+1}{2^n}\right)$ so that $x_n \le x \le y_n$. From
we obtain
 $\frac{\varphi(x_n)}{x_n} = \frac{a^n q_a^{\nu(k_n)}}{c^n q_c^{\nu(k_n)}} \to \varphi'(x) \qquad (n \to \infty)$
= 1. Now, putting $z_n = x_n + c(y_n - x_n)$
 z_n or $z_n < x \le y_n$

$$
D_n = \frac{\varphi(y_n) - \varphi(x_n)}{y_n - x_n} = \frac{a^n q_a^{\nu(k_n)}}{c^n q_c^{\nu(k_n)}} \to \varphi'(x) \qquad (n \to \infty)
$$

owing to $\varphi(0) = 0$ and $\varphi(1) = 1$. Now, putting $z_n = x_n + c(y_n - x_n)$, there are two possibilities, either $x_n \leq x \leq z_n$ or $z_n < x \leq y_n$. From (2.9) and (3.5) with $\tau = 0$, $T = \frac{1}{2}$ respectively $T = 1$ we get in view of $\varphi(c) = a$ that $\frac{\varphi(z_n) - \varphi(x_n)}{\varphi(z_n)} = \frac{a}{2} D$, and $\frac{\varphi(y_n) - \varphi(z_n)}{\varphi(z_n)} = \frac{1 - a}{2} D$ $\begin{aligned} \n\mathbf{g} &= \mathbf{y} \cdot \mathbf{y} = \mathbf{y} \cdot \mathbf{y} \quad (n \to \infty), \\ \n\mathbf{g} &= x_n + c(y_n - x_n) \\ \n\mathbf{g} &= a \text{ that} \\ \n\mathbf{g} &= a \text{ that} \\ \n\mathbf{g} &= \frac{\mathbf{g} \cdot \mathbf{g}}{\mathbf{y} \cdot \mathbf{y}} = \frac{\mathbf{g} \cdot \mathbf{g}}{\mathbf{y} \cdot \mathbf{g}} = \frac{1 - a}{1 - c} \n\end{aligned}$

$$
\frac{\varphi(z_n) - \varphi(x_n)}{z_n - x_n} = \frac{a}{c} D_n \quad \text{and} \quad \frac{\varphi(y_n) - \varphi(z_n)}{y_n - z_n} = \frac{1 - a}{1 - c} D_n
$$

At least one of both possibilities mentioned before occurs infinitely many times. Consequently, $\varphi'(x) = \frac{a}{c}\varphi'(x)$ or $\varphi'(x) = \frac{1-a}{1-c}\varphi'(x)$. Hence $\varphi'(x) = 0$ in view of $a \neq c$

Denoting the solution of system (3.3) by $\varphi_{a,c}$, we easily see the validity of the relations

1. $\varphi_{a,b}(\varphi_{b,c}(t)) = \varphi_{a,c}(t)$ 2. $\varphi_{a,c}^{-1}(t) = \varphi_{c,a}(t)$ 3. $\varphi_{a,c}(1-t) = 1 - \varphi_{1-a,1-c}(t)$

for arbitrary $0 < a, b, c < 1$.

Next, we consider the generalization of system (1.1)

$$
f(x) = \frac{1-a}{1-c}\varphi'(x).
$$
 Hence $\varphi'(x) = 0$ in view of $a \neq c$
\nOn of system (3.3) by $\varphi_{a,c}$, we easily see the validity of the
\n $a_{a,c}(t)$
\n $\varphi_{1-a,1-c}(t)$
\n $\langle 1$.
\n $g\left(\frac{t}{2}\right) = a g(t)$ $(0 \leq t \leq 1)$
\n $g\left(\frac{t+1}{2}\right) = a + cg(t)$ $(0 < t \leq 1)$
\n $\frac{1}{1-c}$ and $g\left(\frac{1}{2}\right) = \frac{a^2}{1-c}$, where also $g(+0) = 0$. However, in the

with $|a| < 1$ and $|c| < 1$. A bounded solution of system (3.6) must have the particular values $g(0) = 0$, $g(1) = \frac{a}{1-c}$ and $g(\frac{1}{2}) = \frac{a^2}{1-c}$, where also $g(+0) = 0$. However, in the case of $a + c \neq 1$ it cannot be right-continuous in all points, since $g(\frac{1}{2} + 0) = a \neq g(\frac{1}{2})$. However, system (3.6) possesses the left-continuous solution *g*(*i*) $\left(\frac{e}{2}\right) = a g(t)$ (0 $\le t \le 1$)
 g(*i*) (0 $\le t \le 1$) (3.6)
 g(*i*) (0 $\lt t \le 1$) (3.6)
 g($\frac{1}{2}$) = $\frac{a^2}{1-\epsilon}$, where also $g(0+0) = 0$. However, in the ight-continuous in all points, since $g(\frac{1}{2}$ t) $(0 < t \le 1)$

on of system (3.6) must have the particular
 $\frac{2}{t-c}$, where also $g(+0) = 0$. However, in the

ous in all points, since $g(\frac{1}{2} + 0) = a \neq g(\frac{1}{2})$.

differentiation
 $= \sum_{j=0}^{\infty} a^{\gamma_j} q^j$ (3.7)

On th

$$
g\left(\sum_{j=0}^{\infty} 2^{-\gamma_j}\right) = \sum_{j=0}^{\infty} a^{\gamma_j} q^j \tag{3.7}
$$

with $1 \leq \gamma_j < \gamma_{j+1}$ and $q = \frac{c}{a}$ (cf. (1.2)). On the other side, for

$$
\sqrt{j=0} \qquad j=0
$$

d $q = \frac{c}{a}$ (cf. (1.2)). On the other side, for

$$
t_n = \sum_{j=0}^{n} 2^{-\gamma_j} = \sum_{j=0}^{n-1} 2^{-\gamma_j} + \sum_{j=0}^{\infty} 2^{-\gamma_n - j - 1}
$$
(3.8)

with $n \geq 0$ we have

L. Berg and M. Krüppel
\n
$$
\geq 0 \text{ we have}
$$
\n
$$
g(t_n) = \sum_{j=0}^{n-1} a^{\gamma_j} q^j + \sum_{j=0}^{\infty} a^{\gamma_n+j+1} q^{n+j} \quad \text{and} \quad g(t_n + 0) = \sum_{j=0}^{n} a^{\gamma_j} q^j,
$$
\nview of\n
$$
\sum_{j=0}^{\infty} a^{\gamma_n+j+1} q^{n+j} = \frac{a^{\gamma_n+1} q^n}{1-aq} = \frac{a^{\gamma_n+1} q^n}{1-c} \quad (3.9)
$$
\nently\n
$$
g(t_n + 0) - g(t_n) = \frac{a^{\gamma_n} q^n}{1-c} (1 - a - c) \quad (3.10)
$$
\nthe solution *g* is discontinuous at all dyadic points, so far as $a \neq 1 - c$. However, and ded and Lebesgue integrable as limit of uniformly converging step functions.
\n \log to (3.10) it is not increasing for $a + c > 1$.

and in view of

$$
\sum_{j=0}^{\infty} a^{\gamma_n+j+1} q^{n+j} = \frac{a^{\gamma_n+1} q^n}{1 - aq} = \frac{a^{\gamma_n+1} q^n}{1 - c}
$$
(3.9)

consequently

$$
g(t_n + 0) - g(t_n) = \frac{a^{\gamma_n} q^n}{1 - c} (1 - a - c) \tag{3.10}
$$

Hence, the solution *g* is discontinuous at all dyadic points, so far as $a \neq 1 - c$. However, it is bounded and Lebesgue integrable as limit of uniformly converging step functions. According to (3.10) it is not increasing for $a + c > 1$.

Proposition 3.4. In the case of $0 < a$, c and $a + c < 1$ the solution g of system (3.6) is strictly increasing and continuous except in the dyadic points $t = t_n$ from (3.8) *where* $g(t_n) - g(t_n) = \frac{a^{\gamma_n} q^n}{1 - aq} = \frac{1}{1 - c}$ (3.9)
 $g(t_n) = \frac{a^{\gamma_n} q^n}{1 - c} (1 - a - c)$. (3.10)
 $g(t_n) = \frac{a^{\gamma_n} q^n}{1 - c} (1 - a - c)$. (3.10)
 $g(t_n) = \frac{a^{\gamma_n} q^n}{1 - c} (1 - a - c)$. (3.10)
 $g(t_n) = \frac{a^{\gamma_n} q^n}{1 - c} (1 - a - c)$. (3.11)
 $g(t_n) = \frac{a^{\gamma_n$

$$
g(t_n - 0) = g(t_n) < g(t_n + 0) \tag{3.11}
$$

with jumps (3.10). Moreover, $g' = 0$ almost everywhere.

Proof. Assuming that $t, t' \in (0, 1]$ have the representations

$$
g(t_n - 0) = g(t_n) < g(t_n + 0)
$$
\neover, $g' = 0$ almost everywhere.
\nhat $t, t' \in (0, 1]$ have the representation\n
$$
t = \sum_{j=0}^{\infty} 2^{-\gamma_j}
$$
 and
$$
t' = \sum_{j=0}^{\infty} 2^{-\gamma_j'}
$$

Froot. Assuming that $t, t \in (0, 1]$ have the representations
 $t = \sum_{j=0}^{\infty} 2^{-\gamma_j}$ and $t' = \sum_{j=0}^{\infty} 2^{-\gamma'_j}$

with γ_j as before respectively γ'_j , then $t > t'$ if and only if there exists an integer *m*

such th such that $\gamma_j = \gamma'_j$ for $j = 0, ..., m-1$ and $\gamma'_m \ge \gamma_m + 1$. Owing to (3.7) we have

$$
g(t) = \sum_{j=0}^{\infty} a^{\gamma_j} q^j \ge \sum_{j=0}^{m-1} a^{\gamma_j} q^j + a^{\gamma_m} q^m
$$

since $q = \frac{c}{a} > 0$. Moreover, $\gamma'_m \ge \gamma_m + 1$ implies that $\gamma'_{m+j} \ge \gamma_m + 1 + j$ for all $j \ge 0$ so that in view of $0 < aq = c < 1$ we get

$$
\sum_{j=0}^{n} \cdots \sum_{j=0
$$

Hence, according to (3.9) and $a < 1-c$ we obtain $g(t) > g(t')$, i.e. g is strictly increasing.

It follows that the intervals $(g(t_n), g(t_n + 0))$ are disjoint. Since the set of all dyadic
 *t*s is dense in [0,1] the union
 $G = \bigcup_{\ell=0}^{\infty} \bigcup_{k=0}^{2^{\ell}-1} \left(g\left(\frac{2k+1}{2^{\ell+1}} \right), g\left(\frac{2k+1}{2^{\ell+1}} + 0 \right) \right)$ points is dense in [0,1] the union

$$
G = \bigcup_{\ell=0}^{\infty} \bigcup_{k=0}^{2^{\ell}-1} \left(g\left(\frac{2k+1}{2^{\ell+1}}\right), g\left(\frac{2k+1}{2^{\ell+1}}+0\right) \right)
$$

is an open Cantor set with Lebesgue measure

$$
|G|=\sum_{t_n}^{\infty}\frac{a^{\gamma_n}q^n}{1-c}(1-a-c)
$$

(cf. (3.10) where we have to sum over all dyadic t_n of $(0,1)$). Since there are $\binom{r}{n}$ possibilities for γ_n to be equal to $k + 1$ we find that

Caator set with Lebesgue measure

\n
$$
|G| = \sum_{t_n}^{\infty} \frac{a^{\gamma_n} q^n}{1 - c} (1 - a - c)
$$
\nwhere we have to sum over all dyadic t_n of $(0, 1)$. Since the s for γ_n to be equal to $k + 1$ we find that

\n
$$
\sum_{t_n}^{\infty} a^{\gamma_n} q^n = \sum_{n=0}^{\infty} q^n \sum_{k=n}^{\infty} {k \choose n} a^{k+1} = \sum_{k=0}^{\infty} a^{k+1} (1 + q)^k = \frac{a}{1 - a - c}
$$
\nand

\n
$$
aq = c.
$$
\nTherefore we obtain that

\n
$$
|G| = \frac{a}{1 - c} = g(1).
$$
\nConseq

\nfunction g cannot have further jumps.

in view of $aq = c$. Therefore we obtain that $|G| = \frac{a}{1-c} = g(1)$. Consequently, the increasing function g cannot have further jumps.

For the set $M = [0,1] \setminus \bigcup \{t_n\}$ we have $|M| = 1$ and $|g(M)| = 0$ which implies that $g' = 0$ almost everywhere (cf. [7: p. 234]). Hence, the proposition is proved \blacksquare

Remarks.

1. $P = \left[0, \frac{a}{1-c}\right] \setminus G$ is a perfect Cantor set with measure zero.

2. Note that the boundary points $t = 0$ and $t = 1$ do not belong to the points (3.8).

3. The results can easily be transferred to the case that the first equation in system 1. $P = [0, \frac{a}{1-c}] \setminus G$ is a perfect Cantor set with measure zero.
2. Note that the boundary points $t = 0$ and $t = 1$ do not belong to the points (3.8).
3. The results can easily be transferred to the case that the first e $g' = 0$ almost everywhere (cf. [7: p. 234]). Hence, the
 Remarks.

1. $P = \left[0, \frac{a}{1-c}\right] \setminus G$ is a perfect Cantor set with n

2. Note that the boundary points $t = 0$ and $t = 1$

3. The results can easily be transferred $a^{\gamma_j} q^j$ and right continuity with *q* and γ_i as before.

Supplement. Finally, we consider the generalization of systems (1.1) and (3.6)

if we have
$$
|M| = 1
$$
 and $|g(M)| = 0$ which implies that
\n $[p. 234]$). Hence, the proposition is proved **1**
\nfect Cantor set with measure zero.
\npoints $t = 0$ and $t = 1$ do not belong to the points (3.8).
\ntransferred to the case that the first equation in system
\nthe second equation for $0 \le t \le 1$, where the solution
\n $\sum_{j=0}^{n} 2^{-\gamma_j} = \sum_{j=0}^{n} a^{\gamma_j} q^j$ and right continuity with q
\nconsider the generalization of systems (1.1) and (3.6)
\n $f(\frac{t}{2}) = a f(t)$
\n $f(\frac{t+1}{2}) = b + c f(t)$ (3.12)

where we admit that the solution is not defined for all $t \in (0,1)$.

Proposition 3.5. For $a \neq 0$, $|a| < 1$, $|c| < 1$ and $0 < t \leq 1$, system (3.12) has the *left-continuous solution*

$$
f\left(\sum_{j=0}^{\infty} 2^{-\gamma_j}\right) = \frac{b}{a} \sum_{j=0}^{\infty} a^{\gamma_j} q^j \tag{3.13}
$$

with $\gamma_j \in \mathbb{N}$, $\gamma_j < \gamma_{j+1}$ and $q = \frac{c}{a}$. If $1 < a$, $0 < b$ and $0 < c < 1$, then every $y > f(1) = \frac{b}{1-c}$ has infinitely many inverse images under f.

Proof. If g is the solution (3.7) of system (3.6), then $f = \frac{b}{a}g$ is the solution of system (3.12). If $|q| < 1$, but $|a| > 1$, then the right-hand side of (3.13) can diverge, and *f* remains undefined at the corresponding points of $(0,1]$. However, for $c \neq 1$ the solution of system (3.12) always possesses the value $f(1) = \frac{b}{1-c}$. Now, let $1 < a, 0 < b$, $0 < c < 1$ and $y > f(1)$. We look for a sequence γ_i such that *b*
 b
 has infinitely *t*
 has infinitely *t*
 p is the solution

If $|q| < 1$, but

undefined at them (3.12) alway
 $\gamma > f(1)$. We lo
 $\frac{b}{a} \left(\sum_{j=0}^{k-1} a^{\gamma_j} q^j + \cdots \right)$ *k)* $\left(\frac{1}{j=0}\right)$ a $\frac{1}{j=0}$
 d $q = \frac{c}{a}$. If $1 < a, 0 < b$ and $0 < a$
 y many inverse images under *f*.

ion (3.7) of system (3.6), then $f = \frac{b}{a}$

it $|a| > 1$, then the right-hand side of

the corresponding points $c < 1$, then
g is the solut:
(3.13) can divever, for $c \neq$
ow, let $1 < a$,
 $\frac{1}{a}$,
 $\frac{1}{b}$

$$
\frac{b}{a} \left(\sum_{j=0}^{k-1} a^{\gamma_j} q^j + \frac{a^{\gamma_k} q^k}{1-c} \right) < y \leq \frac{b}{a} \left(\sum_{j=0}^{k-1} a^{\gamma_j} q^j + \frac{a^{\gamma_k+1} q^k}{1-c} \right) \tag{3.14}
$$

for infinitely many k . For $k = 0$ this inequality means

this inequality mean
\n
$$
\frac{ba^{\gamma_0 - 1}}{1 - c} < y \le \frac{ba^{\gamma_0}}{1 - c}
$$
\n
$$
\text{view of } a > 1. \text{ If } c
$$
\n
$$
k > n \text{ depending on}
$$

236 L. Berg and M. Krüppel

for infinitely many k. For $k = 0$ this inequality means
 $\frac{ba^{\gamma_0 - 1}}{1 - c} < y \le \frac{ba^{\gamma_0}}{1 - c}$

and determines γ_0 uniquely in view of $a > 1$. If $\gamma_0, ..., \gamma_n$ are already determined, 236 L. Berg and M. Krüppel

for infinitely many k. For $k = 0$ this inequality means
 $\frac{ba^{\gamma_0 - 1}}{1 - c} < y \le \frac{ba^{\gamma_0}}{1 - c}$

and determines γ_0 uniquely in view of $a > 1$. If $\gamma_0, ..., \gamma_n$ are already determined,

we ch $j = n + 1, ..., k - 1$, and determine γ_k out of (3.14). The last step is uniquely possible, since in view of

$$
\frac{a^{\gamma_n}q^n}{1-c} = \sum_{j=n}^{k-1} a^{\gamma_j} q^j + \frac{a^{\gamma_{k-1}+1}q^k}{1-c}
$$

there always exits such a $\gamma_k \geq \gamma_{k-1} + 1$. In this way we find infinitely many sequences γ_j such that the right-hand side of (3.13) is equal to y

Let $|a| > 1$. If we define $\ell = \overline{\lim_{i} \mathcal{I}_{i}}$, the series at the right-hand side of (3.13) is For $k = 0$ this in
 $\frac{ba^{\gamma_0}}{1-a}$

quely in view c

integer $k > r$

determine γ_k of
 $\frac{a^{\gamma_n}q^n}{1-c} = \sum_{j=1}^{k-1}$

a $\gamma_k \geq \gamma_{k-1} + 1$

and side of (3.1

define $\ell = \overline{\lim_{\vert n \vert} \frac{a \vert}{\vert a \vert}}$ and diverg
 $\ell = \nu_k$ there always exits such a $\gamma_k \ge \gamma_{k-1} + 1$. In this way we find infinitely many sequences
 γ_j such that the right-hand side of (3.13) is equal to $y \blacksquare$

Let $|a| > 1$. If we define $\ell = \overline{\lim} \frac{\gamma_j}{j}$, the series at the "periodic" case $\gamma_{p_j+k} = r_j + \varrho_k$ for sufficiently great *j* and $k = 0, 1, ..., p - 1$, where alient alway
 i such the Let $|a$
 b
 b = $\sum_{j=0}^{\infty}$
 From
 b
 b
 c $t = \sum_{j=0}^{\infty} 2^{-\gamma_j}$ is rational, we have $\ell = \frac{r}{p}$.

From system (3.12) we can derive further functional equations. Namely, for $k =$ *0,1,...,* $2^{\ell} - 1$ with $\ell \in \mathbb{N}$, the dyadic representation $k = d_1 d_2 \cdots d_n$, $d_j \in \{0, 1\}$, where $d_1 = 0$ is allowed, and $0 < t \le 1$ we find
 $f\left(\frac{t+k}{2^{\ell}}\right) = b \sum_{j=0}^{\ell-1} a^j d_{j+1} q^{d_1 + \cdots + d_j} + a^{\ell} q^{\nu(k)} f(t)$ $d_1 = 0$ is allowed, and $0 < t \leq 1$ we find

$$
f\left(\frac{t+k}{2^{\ell}}\right) = b \sum_{j=0}^{\ell-1} a^j d_{j+1} q^{d_1 + \ldots + d_j} + a^{\ell} q^{\nu(k)} f(t)
$$

(cf. (2.9) and (2.2)). For $|a| > 1$ this formula shows that f is unbounded in every subinterval of $(0, 1]$, since $f(\frac{t}{2^n}) = a^n f(t)$.

Let us mention a curious connection to the $(3n + 1)$ -problem of L. Collatz, which Let us mention a curious connection to the $(3n + 1)$ -problem of L. Collatz, which
for negative *n* is equivalent to the $(3n - 1)$ -problem, i.e. to the iteration of the function
 $t(n) = \begin{cases} \frac{1}{2}n & \text{for } n \text{ even} \\ \frac{1}{2}(3n - 1)$

$$
t(n) = \begin{cases} \frac{1}{2}n & \text{for } n \text{ even} \\ \frac{1}{2}(3n-1) & \text{for } n \text{ odd.} \end{cases}
$$
 (3.15)

The iterates of $n \in \mathbb{N}$ under *t* have the fixed point 1 and the two cycles $(5, 7, 10)$ as well as *(17, 25, 37, 55, 82, 41, 61, 91, 136, 68, 34),* and one conjectures that all t-trajectories eventually end in one of these three sets (cf. [10: p. 13]). It suffices to restrict ourselves to odd *n* and to replace $t(n)$ for such *n* by $T(n) = 2^{-p_n}(3n - 1)$ if $2^{p_n}[(3n - 1)$ but *2Pn⁺¹* $\{(3n-1), p_n \in \mathbb{N} \}$ *.* The equation for *T* can be inverted by $n = \frac{1}{3}(1 + 2^{p_n}T(n))$ (3.16)

$$
n = \frac{1}{3}(1 + 2^{p_n}T(n)) \tag{3.16}
$$

We denote the iterates of *T* by $T_k(n) = T(T_{k-1}(n))$ with $T_0(n) = n$, and for a fixed *n* we introduce the notations $\gamma_0 = 1$ and $\gamma_k = 1 + p_{T_0(n)} + ... + p_{T_{k-1}(n)}$ for $k \ge 1$. Then (3.16) implies the representation
 $n = \frac{1}{6} \left(2^{\gamma_0} + \frac{1}{3} 2^{\gamma_1} + ... + \frac{1}{3^{k-1}} 2^{\gamma_{k-1}} + \frac{1}{3^{k-1}} 2^{\gamma_k} T_k(n) \right)$

for eve *(3.16)* implies the representation

$$
n = \frac{1}{6} \left(2^{\gamma_0} + \frac{1}{3} 2^{\gamma_1} + \ldots + \frac{1}{3^{k-1}} 2^{\gamma_{k-1}} + \frac{1}{3^{k-1}} 2^{\gamma_k} T_k(n) \right)
$$

for every odd n, and for $k \to \infty$ the right-hand side converges to the right-hand side of (3.13) with $a = 2$, $b = \frac{1}{3}$, $c = \frac{2}{3}$ and therefore $q = \frac{1}{3}$.

Acknowledgement. The authors wish to express their thanks to the referees for their hints to the references *[6, 8]* and to other improvements of the text.

References

- [1] Berg, L. and M. Krüppel: *Cantor sets and integral-functional equations. Z.* Anal. Anw. 17 (1998), 997 - 1020.
- [2] Borwein, J. M. and R. Girgensohn: *Addition theorems and binary expansions.* Canad. J. Math. 47 (1995), 262 - 273.
- [3] Kairies, H.-H.: *Functional equations for peculiar functions.* Aequationes Math. 53 (1997), $207 - 241.$
- *[4] Klemmt, H.-J.: Ein mafltheoretischer Satz mit Anwendungen auf Funktionalgleichungen.* Archiv Math. 36 (1981), 537 - 540.
- [5] Lauwerier, H.: *Fractals.* Princeton (NJ): Univ. Press 1991.
- *[6] Milnor, J.: Fubini foiled: Katok's paradoxical example in measure theory.* Math. Intelligencer 19 (2) (1997), 30 - 32.
- *[7) Natanson, 1. P.: Theorie der Funktionen einer reellen Verdnderlichen.* Berlin: Akademie-Verlag 1969.
- [8] do Rham, G.: Sur certaines equations fonctionelles. École Polytechnique de l'Université de Lausanne, Ouvrage publié a l'occasion de son Centinaire (1953), 95 - 97.
- *[9] de Rham, C.: Sur quelques courbes définies par des equations fonctionelles.* Rend. Sem. Mat. Torino 16 (1956), 101 - 113.
- *[10] Wirsching, G. J.: The Dynamical System Generated by the 3n +* 1 *Function.* Lect. Notes Math. 1681 (1998), 1 - 158.

Received 07.05.1999; in revised form 19.11.1999