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De Rham’s Singular Function

and
Related Functions

L. Berg and M. Kriippel

Abstract. For dé Rham’s singular function we derive new properties, in particular some for-
mulas which express its self-similarity. Inversions and compositions of de Rham’s function are
considered as well as generalizations of de Rham’s functional equations which have a connection
to the (3n + 1)-iteration of Collatz.
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1. Introduction
It is well known that for a fixed a € (0, 1) the system of functional equations
t
¢(5) = av®
(t €[0,1]) (1.1)
() =a+(-a)e®
2

has a unique bounded solution. This solution ¢ is continuous, strictly increasing with
¢(0) = 0 and it has the representation

¢(22—7j) =za'15qj (1.2)

Jj=0 =0
whereg=1=%, y;e Nandpo < <712 < ..., in pa.rficular (p(,i—,) =aand p(1)=1. In
the case of need it will be denoted more precisely by ¢,. The case a = % is elementary,

namely o(t) = t. However, in the case of a # % the solution ¢ has the interesting
property that it is a strictly singular function, i.e. a continuous and strictly increasing
function with derivative zero almost everywhere. This solution ¢ was first constructed
by de Rham [9], so that it is called de Rham’s function (cf. (3], where a detailed history
of the whole context can be found). Formula (1.2) defines a continuous solution of
system (1.1) also in the case of complex a with |a] <1 and [1—@a| < 1.

Both authors: FB Math. der Univ., Universitatspl. 1, D-18051 Rostock

ISSN 0232-2064 / $ 2.50 © Heldermann Verlag Berlin



228 L. Berg and M. Kruppel

In the following we derive some new properties for de Rham'’s singular function ¢
and for some similar functions which are solutions of generalized de Rham’s functional
equations. We consider the self-similarity of de Rham’s function, show that the inverse of
a singular function is also singular, and deal with compositions of the studied functions.
Finally, a connection to the (3n + 1)-iteration of Collatz is pointed out.

2. De Rham'’s singular function

If for t € [0,1] we introduce the dyadic representation t = 0.d;ds - - - with d; € {0,1},
then according to de Rham [8], the formula ¢(0) = 0 and representation (1.2) can be
gathered up as

oo
o(t) = Za1+1dj+lqdl+...+d,» (2.1)
Jj=0

since we have dj4) =1 for j + 1 = v; and dj4; = 0 else, so that d; + ... + d; =i. The
series in (2.1) appears also in [6], however, in another context. For t = 2% sum (2.1)
terminates: .

-1 :
99(%) =D @ty gttt (2.2)

=0

For non-negative integers k with the dyadic representation k = §, b2+ 6, (65 € {0,1})
we need the binary sum-of-digits function (cf. [1})

v(k) =6 + ..+ 60 : (2.3)

which satisfies the equations

v(2k) = v(k)
. (2.4)
v(2k + 1) = v(k) +1
Next, we shall show that the terms
Za(t) = dngrgtttde (2.5)

appearing in (2.2) are step functions with special properties, so that (2.1) is a represen-
tation of ¢ by a series of step functions.

Proposition 2.1. Fort € [0,1) functions (2.5) satisfy the recursions A

20(t) =0, znyi(t) =za(2t).  for0<t<} } (2.6)

zo(t) =1, zn41(t) = qzn(2t—1) for % <t<l1
and if we extend zo(t) for ¢t > 1 by

zo(t) = ¢"®zo(t — k) (2.7)
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where k € N and k = [t], then
za(t) = z0(2"t) (2.8)
for0<t<1. .

Proof. For the numbers d; from the dyadic representation t = 0.d;dz - let us
write dj = d;(t). In the case of 0 <t < 1 we have d; = 0 and d;(2t) = dj4.1(t) for
j € N. In the case of } <t < 1 we have d; = 1 and d,(2t — 1) = d;j4.(t). Hence, (2.5)
immediately implies (2.6). Solving (2.6) recursively, we find z,(t) = g"®zo(2"t — k)
for k €£2"t < k+1 < 2" and according to (2.7) finally (2.8)

Proposition 2.2. The solution ¢ of system (1.1) satisfies the functional equations

w(%) = w(%) +a‘q"Wyp(r) - (29)

where £€ N, k =0,1,...,2° =1, 7 € [0,1], and for t = 2—"; with k=0,1,...,2¢ it has the
finite representation -

<p(§) = al;q"(j) . (2.10)

_ Proof. In view of (2.3) representation (2.1) can be written as

-1 ' =)

1+1 di+...+d; 4 k )+ 1 d ot deyje

o(t) = za)+ djs1q vhetd; g qV( )ZGJ+ deyjr1q a1+ Fdey;
j=0 . j=0

with k = [2%]. Substituting t = "—2¥ with 7 € {0,1], the first sum on the right-hand
side is equal to (,9(27"() in view of (2.2). Since 7 = 2% — k has the dyadic representation
T = 0.dg41de42 - - -, the last series is equal to ¢(7), so that (2.9) is proved. Now, in view

of ¢(1) = 1, representation (2.10) follows from (2.9) with 7 = 1 by summation il

Note that equations (2.2) and (2.10) are quite different in their external shépe.
Equation (2.9) has the following counterpart with respect to the left of 7"[:

va(%) = w(%) - a'q"<*;'>so1-a(r) (2.11)

where k = 1,2,...,2¢ and 7 € [0,1), which can easily be derived from (2.9) by means
of the later formula (2.12). Equations (2.9) and (2.11) express very distinctly the self-
similarity of de Rham’s function (with respect to the dyadic points), which is well known
in the theory of fractals (cf. [5]).

Proposition 2.3. The solution @, from system (1.1) with0 <t <land0<a<1
is also strictly increasing with respect to a. It has the property

Pr-al(t) =1—.(1-1). (2.12)
The family of all curves y = u(t) with 0 < a < 1 fills out the whole open square
O<ty<l. ' .
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Proof. If h is a differentiable strictly increasing function of @ with 0 < h < 1 for
0 < a <1, then the function a — a + (1 — a)h(a) is strictly increasing. Since @,( I)=a
is a strictly increasing polynomial, the specialization of system (1.1)

) oo ()
4
oA(B8) v aen ()

with 0 < k < 2% shows by induction that all functions <pa(2i‘) are also strictly increasing
polynomials in a. Hence, at arbitrarily fixed t € (0, 1), the function a — ¢, is at least
(improper) increasing, and we have to exclude intervals of constancy. In order to do
this we show that, for |a] < 1 and |1 — a| < 1, the function ¢, is holomorphic. Namely,
choosing fa| < land [1 —a|<1-e<1lin rcpresent,atlon (1.2) with t = Z;’io 277 we
obtain the estimate

oo
. . ]
lpa(®)] < }Zolal" lL-af < §, -y =g
= 1=

in view of j < ;. Thisimplies that series (1.2) of polynomials is uniformly convergent in
every compact subset of the domain {a : (|a] < 1)N(]1 - a| < 1}}. Consequently, in this
domain ¢, is holomorphic. If it would by constant in a certain real interval, then it would
be constant everywhere. But this is impossible since in view of j < «; representation
(1.2) implies limg—0 ¢a(t) = 0 and lim,; p.(t) = 1 for 0 < ¢t < 1. Moreover, the both
last relations imply in connection with the continuity that the curves fill out the whole
open unit square.

If in system (1.1) we replace the constant a by 1 — a and t by 1 — ¢, we obtain
1-t '
1o =) =(1-@pra(1-1)

t .
pi-a(1=3) =1-a+api_a(l-1)

and if we further replace ¢)_4(1 —t) = 1 — ¢(t), we again obtain system (1.1), only
with interchanged equations. Since in the space of continuous functions system (1.1) is
uniquely solvable, the proposition is proved i

1

0.5

0.5 T

Figure 1: VThe graphs of de Rham’s fuﬁct.ion for a = 0.1(0.1)0.9
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Proposition 2.3 is illustrated by means of Figure 1, which shows de Rham’s function
for different parameters a (cf. also [6]).

Let us mention a connection to a functional equatien, which was studied by Klemmt
(4], and which gives us a new possibility to prove that ¢ is a singular function in the
case of a # ;. The equations in system (1.1) easily imply for 0 <t <1

o (3)+e(57) =20

almost everywhere. According to [4], ¢’ must be constant almost everywhere: p'(t)y=c
with ¢ > 0. Hence ct < ¢(t), and in view of <p(2L,,) = a" for n € N we obtain 0 <
¢ < (2a)" and therefore ¢ = 0 in the case of 0 < @ < ;. The case ; < a < 1 can be

transferred to the foregoing one by means of (2.12).

3. Related functions

Since de Rham’s function ¢ is continuous and strictly increasing in t, its inverse ¢~!
exist and we can deal with it.

Proposition 3.1. If f is a strictly singular function, then the inverse g = f1 s
also strictly singular. '

Proof. Since g is strictly increasing, g is differentiable almost everywhere with
¢'(r) > 0. For arbitrary 0 < a < f let E4 g be the set of all 7 such that ¢'(7) exists
and @ < ¢g'(7) £ 6. Denote by |Eq,g| the Lebesgue measure of the measurable set E, g.
According to f'(g(7)) = 7—5 we have f'(t) > 3 for all t € g(Eq,p), which implies that
|9(Ea.p)| = 0 since f'is singular. In view of g (7‘) > afor r € E, g we have the estimate
&|Eq gl < |9(Eap)| (cf. [7: p. 234]). Consequently, |Eq g] =0 for 0 < a < . Since the
set E of all T with ¢'(7) > 0 is representable as countable union of such sets, we obtain
|E| = 0. Hence ¢' = 0 almost everywhere

There is another possibility to prove Proposition 3.1 by means of measure theory.
Namely, if f is an increasing singular function, then it generates a Stieltjes measure
which is singular with respect to the Lebesgue measure. If, moreover, z = f(t) is
continuous and strictly increasing, then the inverse function t = f~!(z) generates au-
tomatically also a measure singular to the Lebesgue measure, i.e. f~! is also a singular
function.

In particular, for fixed a # % the inverse ¢! of de Rham’s function is also strictly
singular with respect to t. System (1.1) implies that

e = B (O o
e Na+(-a)t)=1+ %tp_l(t)} (0<t<l) (3.1)

(cf. [2)). Moreover, from (2.12) we obtain that

L =1-p'1-t) (32)
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for0<t<1.
Systems (1.1) and (3.1) can be generalized by

p(ct) = ap(t)
ple+(l—c)t) =a+(1-a)ep(t)

} (t e [0,1]) (3.3)

with fixed 0 < a,c < 1.

Proposition 3.2. The following assertions are valid:

(i) The composition o(t) = pa(pI}(t)) is the unique bounded solution of the func-
tional equations (3.3).

(ii) This solution is continuous, strictly increasing and maps [0,1] onto [0,1].
Proof. It can easily be checked that the composition waps! satisfies equations
(3.3):
alps (b)) = wa (5921 (1)) = apa(er (1)
and ' .
va(r e+ (1)) = wa(} + 307" (t) =a+ (1 - a)pa(e])(t)) .
Moreover, ¢ = wap;! has in fact properties (ii). »

Now, let ¢ be a further solution of equations (3.3). For 0 £t <1 we put d(t) =

lo(t) — wa(p7!(t))]. Assume that there exists a point t, € [0,1] with d(2p) > 0. If
to < c, then for t;, = 1t; we have t, € [0,1] and the first equation of (3.3) implies that

d(t) = %d(to). In the case of ¢ < t5 < 1 the point ¢; = 319_;: lies in {0,1] and from the

second equation of (3.3) we obtain that d(t;) = ;2-d(t;). Putting m = min{1, L}
and

tn=c forc<t, <1

‘ %t,, for0<t, <c
thy1 =
l1—c

where n € N, we get d(t,) > m™d(ty). However, in view of m > 1 this is a contradiction
to the boundedness of o B

Proposition 3.3. The solution ¢ = wap;! of system (3.3) has the representation
[e o] ) o0 )
“’(Z qc’) =Y ave (34)
. \j=o - =0 :

1—a

where g, = —2, qc = 'C;C, vi€ENaendy <y < v < ... Moreover, for £ € N and
k=0,1,..,2¢ = 1 we have

0(ve(32) + e 0n) = ou (£) + gt Dy (r) (3:5)

for 0 < 7 < 1. In the case of a # c the solution @ of system (3.3) is strictly singular
and its derivative is 0 whenever it erists.
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Proof. Representation (3.4) follows from (1.2) in view of p(p.(t)) = a(t) with
t = Z;:o 27% . From p(pc(t)) = pa(t) with t = "—;}1 we also get (3.5) by twofold use
of (2.9), but once with c instead of a.

Let be z € [0,1] such that ¢'(z) exists. For n € N choose integers k,, with 0 < k, <
2" - l1land z, = (pc(gl,}), Yn = goc(%—;ﬂ) so that z, < £ < y,. From (2.9) and (3.5)
with 7 = 0 respectively 7 = 1 we obtain

_ n v(kn)
D, = ¢(yn) — o(zn) =2 q:(k y #'(z) {(n — c0)
Yn = In ctge "

owing to ¢(0) = 0 and (1) = 1. Now,'putting Zn = Zn + c(yn — zn), there are two
possibilities, either z, < £ < z, or z, < z < y,. From (2.9) and (3.5) with 7 = 0,

T = % respectively 7 = 1 we get in view .of ¢(c) = a that

#(2n) — p(za) _ ®p.  and  Pm)—¢(zm) _ l-ap
Zn — Tn c Yn — 2n l1—c¢

At least one of both possibilities mentioned before occurs infinitely many times. Con-

l1-a

sequently, ¢'(z) = 2¢'(z) or ¢'(z) = =%¢'(z). Hence ¢'(z) = 0 in view of a # c i

Denoting the solution of system (3.3) by yg4,, we easily see the validity of the
relations

1. @a,5(?5,c(t)) = Pa,c(t)

2. 7 u(t) = pc,a(t)

3. Ya, (1 —t)=1-p1-a,1-c(t)
for arbitrary 0 < a,b,¢c < 1.

Next, we consider the generalization of system (1.1)

o(3) = st 0<t<1) 55)
g(%):a—i—cy(t) (0<t<])

with |a| < 1 and |¢] < 1. A bounded solution of system (3.6) must have the particular
values g(0) = 0, g(1) = 7%; and ¢(}) = %, where also g(+0) = 0. However, in the
case of a + ¢ # 1 it cannot be right-continuous in all points, since g(3 + 0) = a # g(3).
However, system (3.6) possesses the left-continuous solution

j(Zz‘”ﬁ) =) a%g (3.7)
j=0 j=0

with 1 < v; < 7j41 and ¢ = £ (cf. (1.2)). On the other side, for

a

) n n-1 B . . .. .
th=) 27 =) 27 4 i PR (3.8)
=0 j=0

7=0
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with n > 0 we have

n-1 oo n
g(tn) - Z avi qJ + Z a"ln+j+lqn+j and g(tn + 0) = Z aVi qi ,

=0 j=0 =0
and in view of - .
w41 nty _ ¥t  avtign 3.9
Za ¢ T AT T 1o c (3.9)
3=0 q
consequently
atng”
g(tn +0) ~ g(tn) = 1—_qc(l—a—c). (3.10)

Hence, the solution g is discontinuous at all dyadic points, so far as a # 1 — c. However,
it is bounded and Lebesgue integrable as limit of uniformly converging step functions.
According to (3.10) it is not increasing for a + ¢ > 1.

Proposition 3.4. In the case of 0 < a,c and a + ¢ < 1 the solution g of system
(3.6) 1s strictly increasing and continuous ezcept in the dyadic points t = t, from (3.8)
where

9(tn —0) = g(tn) < g(ta +0) (3.11)
with jumps (3.10). Moreover, g' = 0 almost everywhere.

Proof. Assuming that t,t' € (0,1] have the representations

1
277

WE

t= i 277 and t =
J=0 0

.
Il

with -; as before respectively 7;» then t > ' if and only if there exists an integer m
such that 7; = 7} for j =0,...,m - 1 and 7/, > 7 + 1. Owing to (8.7) we have

oo m-—1
9(t) = Zav,'qj > Z aYigl +a'mg™
j=0 7=0

since ¢ = £ > 0. Moreover, v}, > ¥ + 1 implies that 'y:,,ﬂ 2Ym+1+jforalj>0
so that in view of 0 < ag = ¢ < 1 we get

oo

m-—1 o] m—1
g#)= P alg+ 3 ahg < Y angl + Y ammtitignti
j=0 j=0

j=m j=0

Hence, according to (3.9) and a < 1~c we obtain g(t) > g(t'), i.e. g is strictly increasing.

It follows that the intervals (g(tn), g(tn + 0)) are disjoint. Since the set of all dyadic
points is dense in [0,1] the union

2

oo 2°—1
G= U U (9(25:11)’9(2;;11 +0))

=0

~

o
»
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is an open Cantor set with Lebesgue measure

o0

Gl=3"3

tn

(cf. (3.10) where we have to sum over all dyadic ¢, of (0,1)). Since there are (:)
possibilities for y, to be equal to k + 1 we find that

Zavn Zq Z( ) k+l=§ak+l(l+q)k=_l___‘;—__

[of
tn n=0

in view of ag = c. Therefore we obtain that |G| =
increasing function g cannot have further jumps.

For the set M = [0,1] \ U{t.} we have |M| =1 and-jg(M)| = 0 which implies that
¢' = 0 almost everywhere (cf. [7: p. 234]). Hence, the proposition is proved

g(l) Consequently, the

Remarks
[0, To c] \ G is a perfect Cantor set with measure zero.

2. Note that the boundary points t = 0 and ¢ = 1 do not belong to the points (3.8).

3. The results can easily be transferred to the case that the first equation in system
(3.6) is valid for 0 < t < 1 and the second equation for 0‘5 t < 1, where the solution
is determined by g(1) = %, ¢( Z 027%) = Z;‘=o a% ¢? and right continuity with ¢
and +y; as before. :

Supplement. Finally, we consider the generalization of systems (1.1) and (3.6)
i(5) =af)
t+1 .
1(5) =t +es®

where we admit that the solution is not defined for all ¢t € (0, 1).

(3.12)

Proposition 3.5. Fora #0, {a] < 1, |¢] <1 and 0 < t < 1, system (3.12) has the

left-continuous solution
) S
)b v
f<Z2 ) Z S g (3.13)
j=0 j=0 ’
with v; € N, 75 < vj41 and g = £, If1 < a, 0 < band 0 < ¢ < 1, then every
y> f(1) = infinitely many inverse images under f.

Proof. If g is the solution (8.7) of system (3.6), then f = %g is the solution of
system (3.12). If |g| < 1, but |a] > 1, then the right-hand side of {3.13) can diverge,
and f remains undefined at the corresponding points of (0, 1] However, for ¢ # 1 the
solution of system (3.12) always possesses the value f(1) = Now let 1 <a,0<b,
0<c<1andy> f(1). Welook for a sequence v; such that

k-1 .
b L avgk
L (Sorws ) cust (Seres

j=0

a'h+l k.

(3.14)
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for infinitely many k. For k = 0 this inequality means

and determines v, uniquely in view of @ > 1. If Y0,--»Yn are already determined,
we choose an arbitrary integer k > n depending on n, define Y = Yn +j —n for
J=n+1,..,k~1, and determine v; out of (3.14). The last step is uniquely possible,
since in view of

k-1
a”’,"q" vi a“lk-x'qu
— aVig? —_ 7
l-c¢ JZ;} e+ 1—-c¢

there always exits such a v > v¢—; + 1. In this way we find infinitely many sequences
7; such that the right-hand side of (3.13) is equal to y B

Let |a] > 1. If we define £ = m:’;-, the series at- the right-hand side of (3.13) is

convergent for £ < 1 — :—:-H and divergent for £ > 1 — :%H in view of the root test. In
the "periodic” case vpj4x = rj + gk for sufficiently great j and k =0,1,...,p — 1, where
t= z,ﬁo 277 is rational, we have ¢ = 3

From system (3.12) we can derive further functional equations. Namely, for k =
0,1,...,2¢ — 1 with € € N, the dyadic representation k = dyd; - - -dp, dj € {0,1}, where
d; =0 is allowed, and 0 < t < 1 we find

=
t+ky g bty Lt (k)
f(T) = bjz_o a’djiiq +a'¢" ™ f(1)

(cf. (2.9) and (2.2)). For |a| > 1 this formula shows that f is unbounded in every
subinterval of (0,1], since f(35%) = a" f(t).

Let us mention a curious connection to the (3n + 1)-problem of L. Collatz, which
for negative n is equivalent to the (3n — 1)-problem, i.e. to the iteration of the function

1
_J3n for n even
t(n) _'{ 3(3n —1) for n odd. ’ (3.15)

The iterates of n € N under ¢ have the fixed point 1 and the two cycles (5, 7, 10) as well
as (17, 25, 37, 55, 82, 41, 61, 91, 136, 68, 34), and one conjectures that all t-trajectories
eventually end in one of these three sets (cf. [10: p. 13]). It suffices to restrict ourselves
to odd n and to replace t(n) for such n by T(n) = 2-P»(3n — 1) if 27~{(3n — 1) but
2P~*1 f(3n — 1), pn € N. The equation for T can be inverted by

n=1142"T(n)) . (3.16)
We denote the iterates of T by Ti(n) = T(Tk—1(n)) with To(n) = n, and for a fixed n

we introduce the notations yp = 1 and v =14 pry(n) + -+ PTu_,(n) for £ > 1. Then
(3.16) implies the representation

1 1 1
J— Yo —_oMm Ye-1 Y
n= 6(2 + 32 +...+ 3k—12 + 3k_12 Tk(n))

for every odd n, and for k — oo the right-hand side converges to the right-hand side of

(3.13) witha=2,b= Le= % and therefore ¢ = .
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