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Abstract. In the paper asymptotic expansions for second-order moments of integral func-
tionals of a family of random processes are considered. The random processes are assumed 
to be wide-sense stationary and c-correlated, i.e. the values are not correlated excluding an 
c-neighbourhood of each point. The asymptotic expansions are derived for e - 0. Using a 
special weak assumption there are found easier expansions as in the case of general weakly 
correlated random processes. Expansions are given for integral functionals of real-valued as 
well as of complex vector-valued processes. 
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1. Introduction	 - 
In this paper asymptotic expansions for second-order moments of integral functionals 
of the type

:= IV Q(s)'f (s) ds	.	 (1) 

are considered, where Q is a deterministic function on an interval V C R and ( df)>o de-
notes a family of random functions, indexed by a parameter c which describes the range 
of correlation. The random functions are defined on a probability space (, 21, P), the 
expectation operator for random variables on this space is denoted by E{ . }. Such inte-
gral functionals play an important role in many theoretical and practical mathematical 
problems. For example, differential equations with an inhomogeneous term containing 
Cf often possess solutionswhich can be represented in such a way (cf. Examples 2 and 
3 in this paper). For an approximate description of those solutions and their character-
istics asymptotic expansions with respect to e - 0 can be used if the values of f are 
correlated or stochastically dependent only in an i—neighbourhood of each point. 

We will suppose the validity of the following 

Assumption 1. 
1. If ( > 0) are wide-sense stationary processes with correlation functions 

E{ 'f (s) 'f (t)) = CR(j - s). 
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2. cf (e > 0) are centered, i.e. E{ Cf(s)} = 0 for .s E R. 
3 Cf (c > 0) are e-correlated, i.e. tRjj (s) = 0 for Isl > E. 
4. TheEorrelation functions Rjj (e > 0) are generated by a correlation function 

R of a 1-correlated wide-sense stationary process, i.e. tRjj(s) = R(l) (s E 
e > 0). 

5. The correlation function R is continuous on R, hence the processes ej (c > 0) 
are continuous in mean square on R. 

The integral in (1) is assumed to exist in mean square sense, under weak conditions 
it coincides a.s. with the pathwise integral. From condition 2 of Assumption 1 it follows 
that the random variables Cr (c > 0) are centered, i.e. E{ Cr) = 0. 

In the first part of the paper we consider real-valued processes, after that .complex 
vector-valued processes are investigated. 

For example, ( ef)>o can be a family of so-called weakly correlated random pro-
cesses. In the theory of these processes (cf. [8, 9]) asymptotic expansions with respect 
to e - 0 of the type

 + o(ei)	for even m E{Crir2Crm}=

	

I 
C- T 

 C ne 2	 m +o(e) forodd>1 

with some real constants Cm are derived. The indices 1 to m refer to deterministic 
functions Qi,... , Q, and intervals V1 ,.. , V which are involved in the corresponding 
integral functionals. Here we will consider only second-order moments and propose a 
new method of obtaining such asymptotic expansions, which seems to be easier and 
clarifies in a certain sense the structure of asymptotic expansions in the case of correla-
tion functions. The main difference to the general theory of weakly correlated random 
processes consists in the explicitely given generating condition 4 of Assumption 1 for 
the correlation functions CR1 (e > 0). 

In the following treatment the concept of correlation moments of wide-sense sta-
tionary processes is used. 

Definition 1. Let R be a real continuous correlation function of a wide-sense sta-
tionary process and j E No = 10, 1,2 .... } with 

focoo
IsVIR(s)Ids <. 

Then	
00	 JO	 for odd = J s'R(s)ds	

2 f sR(s)ds for even 
is called the correlation moment of j-th order of the correlation function or the random 
process and

LI = f oo I s I' R(s ) ds = 2j s3R(s)ds 

is called the absolute correlation moment of j-th order
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We remark some properties of correlation moments for real-valued wide-sense sta-
tionary processes: 

1. From the positive definiteness of the correlation function, Po = 110 > 0 follows. 
2. Property 1 is not true for higher-order correlation moments, i.e. there exist 

correlation functions and numbers j E N with u <0. 
3. For c-correlated wide-sense stationary processes correlation moments of all orders 

exist and	ii, = lim_	= 0 holds. 
We also note that for 1-correlated wide-sense stationary random processes the fol-

lowing version of the Shannon- Kotelnikovsampling theorem (see, e.g., [3)) is valid: 
Proposition 1. Let 

S(a) = --- / R(s)exp(—ias)ds	
1 r' 

	

2rj_	 R(s) cos(as) ds 

denote the spectral density of a 1-correlated wide-sense stationary random process. Then 
the representation	

m sin(a - nit) 

	

5(a) = lim	 S(nir) 

	

m—	 a — flit
- m 

holds for all a E R, with sn 0 

For a non-negative correlation function of a 1-correlated wide-sense stationary ran-
dom process the corresponding spectral density is a positive definite function. In this 
case the correlation moments pi are closely related to the spectral moments and there-
fore to the variances of the mean-square derivatives of the adjoint stationary. process 
(cf., e.g., [5: p. 368]). 

In the following we will also suppose that the function Q satisfies 
Assumption 2. The deterministic function Q is N times continuously differen-

tiable on the interval V (N E No), Q(N) is absolutely continuous on V and the deriva-
tives of Q up to the order N + 1 belong to the space L2 (V) fl L'(V). 

For such functions the Taylor expansion formula with exact integral representation 
of the remainder (cf., e.g., [4: Section 5.4)) is valid, for the integration by parts formula 
for absolutely continuous functions see, e.g., [6: Chapter IX/7]. 

2. Expansions of variances 

From (1) and Assumption 1 it follows that 

E{ er2 = LL Q(s)Q(t)E{ 'f (s) f(t)}dsdt 

= fL Q(s)Q(t) CR(t - s) dsdt 

= fJ Q(s)Q(t) R(-_--)dsdt.
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The substitution of the variables t = I and u =	gives 

E{ Er2} = EJf Q(i - eu)Q(t)R(u) didu 

with the transformed domain of integration V' = { ( t, u) E R 2 : tED and i — eu E V}. 
In order to show how the method works the case V = R is considered explicitely. 

We deal with the random variables 

er f Q(s) 'f(s)d	(e>O) 

where
E{ e2 } = e fmfQ(i - eu)Q(t)R(u) didu 

=
 ef

R(u) 
fCO 

(i - eu)Q(i) didu 
—1  

can be obtained. Using the notation 

(u) 
=	

Q(t - u)Q(i)dt 

we write
Ef er2 } = ef q5(cu)R(u) du 

and it can be seen that the value of the variances depends on the correlation function 
R and the behavior of the function 0 in a neighbourhood of zero. Now the Taylor 
expansion of the function 0 is applied. From Assumption 2 we find for all I E R and 

E [-1,1]

Q(i - cu) =
	

Q)(i) (_)) + N+i (I, u, e) 

with
1	t 

pN31( t , U , C) = - 
N! 

1 —" Q(N+l)(v)(i - cu - vdv, 

and
N	l)i6i+I	00	 1	 -	- 

E{ e2} = i:	j!	f Q(t)Q(j)(i)di . f_ &R(u)du

(2) 

+
	1

1 ooi—eu 

-11-00 f	Q(N+1)fl(t - eu - v)'Q(i)R(u)dvdtdu 

follows. Integration by parts with respect to the quantities 

=CO 
Q(t)Q ) (i) di	(j =	, N)	 (3)
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which do not depend on the random processes leads to 

	

JC Q(t)Q ) (t) dt = [Q(t)Q('')(t)]	
-	

Q'(t)Q(')(t) dt 
CO	

= _L00Q'(t)Q(J-')(tdt


=  

	

(—I)j	 Q(')(t)Q(t) dt 

Then
q2k = (i)k 

Loo	(j)12ft	(k = 0,..., [i]) 

/	2k+1	 N-1 q2k+1 =-.L)	q2k+1 =u	I,	n 

follows and the following asymptotic expansion for E{ Cr2 } can be given: 

Theorem 1. Let ( ef)>o be a family of random processes satisfying Assumption 1 
and Q a function satisfying Assumption 2 with V = R and N E N0 . Then 

N 
E{ er2} = ;;; -j- q3 /23 + PN+1(C), 

where pi denotes the correlation moment of j-th order of the correlation function 1?, q, 
is given in (3) and pN+I(e) is the last term in (2). 

Example 1. For the function Q(i) = exp(—-), 

00 (i)k 

	

E{Cr2 } =	4kk! p2kC2 
k=O 

holds for all E > 0. This equation can be proved using the formula 

t2 
QW(t) = (-1)'H,(t)exp (- 

where H, denotes the Hermite polynomial of l-th order with the representation 

	

k	 (2k)!	j2(k_i) H2k(t) =	(_i)i 2ij!(2k - 2j)! 
j=o 

for even values 1 = 2k (k E N). The convergence to zero of the remainder can be shown 
using, for example, (1: Estimation 22.14.171.
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3. Expansion of correlation functions 

Now the mean square continuous wide-sense stationary processes 

1COg (t) :=	 Q(t - s)l(s) ds =J Q(u) df(t - u) du	(e > 0) 
 0 

are examined where the deterministic function Q satisfies Assumption 2 on IR+. In this 
case the correlation functions can be written as 

ER99(r)	E{ eg( t ) C9( + r)} 

f f 
t	t+r 

CO =  

= 1 f Q(ui)Q(u2)CRJJ(r+u1 
0 0 

Substituting the variables we get 
'0	 100 

CRgg (r) =	CRJJ(r+vi)J . Q(vi +v2)Q(v2)dv2dvj f -V1 

+ f C(r + vi ) J Q(v i +v2)Q(v2)dv2dv1 

=

 f
C( + v i ) I Q(v2 )Q(v2 - vi)dv2dvi 

-00  

+1 'Rff 	Q(vi 

= f  C( + v i ) f Q(y2 + IviI)Q(v2)dv2dvi 
00	 0 

= f C)() fo W 
Q(u +1 w - T I)Q(u ) dudw 

= J R () J Q(u +1 w - rI)Q(u)diidw 

= ci 
1	100" 
R(v)Q(u + 1ev -rI)Q(u)dudv. 
- 

Applying the Taylor expansion of the function Q(u + 1ev - r I) in neighbourhoods* of the 
points u+Irl,

N 1 
Q(u + IEV - TI)= : —j Q'(u + Ir I)(Iev - TI - IrI)j + N+1(u,v,e,r) 

j=0 

follows with a remainder term ,N+1(u,v,e,r). Hence 

Nf
Q(j) =	 (u + IrI)Q(u)du f R(v)(ev -TI -IrI)2dv + PN+1(E,T)  -1 j=0



Asymptotic Expansions of Integral Functionals	261 

with

PN+1(C,T) - f i	Jo 
R(v) / /3N+l(u,v,e,7-)Q(u)dudv 

holds. Evaluation of the integral terms containing the correlation function R for r 0 
leads to

J ;R(v)(Iev_TI_IrI)'dv 

= I
7AI

R(v)(7--ev—r)3 dv+	 R(v)(ev—r—r)2dv IM Al 

1 LA1	 (1 
= /	R(v)(—ev)3 dv + I	R(v)(ev - 2r)'dv 

= L R(v)(—cv) 2 dv + J R(v)[(ev -	- (—,-v)'] dv 

= (E)'pj + 1( O c)(T)f R(v)[(ev - 2r)' - (—ev)] dv 

where a A b := min(a, b), and analogously for r 0 leads to 

f R(v)(cv - TI - 

= c' + 1(_e,o](T)fR(V)[(cV - 2 1 r 1)' - (_cv)i ] dv. 

Using that ji = 0 for odd j we have finally: 

Theorem 2. Let ( ef) c >o be a family of random processes satisfying Assumption 1 
and Q a function satisfying Assumption 2 with V = R+ and N E N 0 . Then 

NN 
ER99 (r)	1: 	q,(r)ij + 1(_e,t)(T)	---- q,(-r)c,(r) + pNf1(E, r)	(4) 

j even
j=1 

with the quantities

qj(r) = or Q'(u + ITI)Q(u)du 

and

cj(r) = J R(v) RV - 2 1) - (_v)2 ] d. 

For fixed values of r and c —i 0 the expansions 
N 

R99(0)= qj0)v+o(c'') 

>	_—qj(r)uj+o(c') 

j even
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are valid. We can see that a discontinuity in the expansions of the correlation function 
at the point T = 0 arises if q(0) or u3 for odd values j do not vanish. 

Examining asymptotic expansions of 'R99 (r) as a function of r it is necessary to 
consider not only the first terms in (4) but also the correction terms in the second sum 
of (4) for IT i < e. 

Example 2. The stationary solution of the second-order linear differential equa-
tion with constant coefficients and a random weakly correlated wide-sense stationary 
inhomogeneous term

i + 25 + wx = 

is given by
1 f 

X(t)	
- J

e 6	sin(w(t - s)) el (s) ds 
W 00 

with w =	-52,0 < S < wo. In this case the kernel function of the integral 
functional reads as

Q(u) = ---e	sin(wu) 

and straightforward calculations lead to 

q,(-) = aje_ÔITI cos(wiri) + bje_ôInI sin( w I r I)	(j E N, r E R) 

with

J	.
	fe a3	 (_5)lwJ_1_2	 2 sin (w + (j - l)) sin(wu)du I 

1=0	
S	 I 

00 

b =	())(_5)1)_1_2 f e26Lcos (
	+i - 1)) sin(wu)du. 

J 1=0 

For example, from the relations 

00 

0
e - 2 bu sin2(wu)du = 1

	w2 
45(52 +w2) 

0	
1w '

} J
—26u cos(wu) sin(wu) du = 52 + w2' 

00 

C 

for 	0,1,2 and r ER

e_ôInI	
cos(WITI)	

1	'. qo(r)=	 -	+—sin(iri)) I 4(52 +w2 )	 w	/ I 

______	 I' q i (r) 
= - 45w sin(L) IT I)	 I


e- 61rl
—	

j 
q2(r)=	(-cos(w	+ lri)	

1 
W sin(wiri))
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follows. Choosing the hat-like correlation function 

t
l - Ivi for lvl<1 
o otherwise 

the correlation moments can be found by
2 

= (j+1)(+2) 
for even values of j, and for the correction terms we get by setting a :=


c(r) = jR(v)[(v - 2a) - (—v)'] dv 

2(-1)3+' (a - 1)& + (1 - 2a)J2 - ( - 1))


	

- j+i	 (j+1)(j+2) 
Especially,

1  
ci(T) =— a+a2 - 1 a3 

C2(T) = — 2	2 --a + 2a - 2a3 
+ 

24
 

4. Expansion of covariance matrices 
Now complex vector-valued processes are investigated. In this case the non-commutativ-
ity of matrix multiplication has to be taken into account. 

We assume the validity ot the corresponding versions of Assumption 1 for C's - valued 
wide-sense stationary processes Cf ( e > 0), and of Assumption 2 for in x n-matrix-valued 
deterministic functions Q (in, n E N). So for the matrix correlation functions of the C's -
valued wide-sense stationary processes Ef (e > 0) 

CR(s) := E{ 'f (t) Cf*(t + s)} = R () 

holds according to condition 4 of Assumption 1. Here * denotes the conjugate-complex 
transposed of matrices and vectors where vectors are assumed to be columns. From the 
relation R(s) = R*(_s) we find in this case for the correlation moments 

=J_ sRs1s =	+(- 1Y[v1' 
cc 

+	 =	
s'R(s)ds = z4 +Eii]1 

with	= f0 .s'R(.$)ds, hence	= (—l)'z, and ii, = &i hold. For functionals of the 
type

erjQ(s) .'f(s)ds	(>) 

we get
00 00 

E{Erer*} = ef	Q(i - eu)R(u)Q(t)dtdu 

and we find in the same way as for real-valued processes:
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Theorem 3. Let (df) >o be a family of e-correlated C" -valuedwide-sense station-
ary random processes satisfying Assumption 1 and Q a matrix-valued function satisfying 
Assumption 2 on V = R and N E N 0 . Then 

N 
E{erer*} = E — j—qj +pN+I(e) 

j=0 

with

qj = _ CO 

Q(J)(t)i;Q*(t) dt 

and the remainder term

CO	i—eu 
PN+1(E) 

= E 
j J f	Q(N+l)(v)(t - - v)NR(u)Q*(t)dvdjdu. 

5. Expansion of matrix correlation functions 

Considering the complex vector-valued wide-sense stationary processes 

19(t):= J 
Q(t —s) el(s) ds 

= J Q(u) df(t - u) du	(e> 0) 
-	 0 

the matrix correlation functions can be written as 

00

CR99(7)	E{eg(t)eg(tr)} = 10 F, Q(u1)R11(r+ui _°2)Q*(u2)du2dui 

and it can be obtained 

to	too 
=
 J J

Q(vi +v2)CRIJ(r+vi)Q*(v2)dv2dvi 
-	—v 

+ f J Q(vi + V2)'Rff ( + v 1 )Q(v2 ) dv2dvj 

=
 J f Q(v2)eR11(r + vi)Q*(v2 - vi)dv2dvj 

— 00 0 

+ J J Q(v i + v2)eR11(r + vi)Q(v2)dv2dvi 

= J f Q(v2 +v)eRjj(r+vi)Q*(v2 +v)dv2dvi 

f
a 00 

Q(u 

— 00 0 

= + (w - r)Rjj (w)Q(u + (w - r))dudw 

=
 cf f Q(u + (cv - r))R(v)Q(u + (cv - r))dndv. 

—I 0
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Now, Taylor expansion of the matrix function Q in neighbourhoods of the points u + ri 
is considered. In the case of r = 0, 

r 1 too 
eRgg() = e / / Q(u + icvI)R(v)Q*(tz)dudv 

Jo Jo 
fO too 

+ C I I Q(u)R(v)Q(u + IevDdudv 
J—i Jo 

N	 00 

=	_9_ { j
 j QW(u)v)R(v)Q(u)dudv 

+ [
j

 j Q(')(u)v3R(v)Q'(u)dudv] } + p+ i (e, 0) 

N 

= i —j — { qj + q} + pNf1(C,0) 

with
Co 

qj = jQ(u)u]Q*(u)du. 

In an analogous manner to Section 3 we obtain for r > 0 

N 
eRgg (r) =

j=o
f 00	 2r"' 

• 1(0,e)(T)	Q'(u +r)J (__ R(v) dv Q*(u) du 1 C) 

+ (-1)' 
1000 

Q(u) IvR(v) dv [Q(u + r )I du 	 + pN+1( e , r) 
 J 

with
qj(r) = j 

Co

 
Q(u)j[Q(u + r)]*du 

and the following theorem holds: 

Theorem 4. Let ( ef) e >o be a family of Ca -valued random processes satisfying 
Assumption 1 and Q a matrix-valued function satisfying Assumption 2 on V = 
and NNo. Then for r>0 

N 
'R99 (r) =	—i-- {q,(r) + 1(0,)(T)cj(T)} + PN+1(6, r) 

j=o 

with
qj(r) = 

00 

Q(u)fQ(u + r)]0du 
0 
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and

c(r) = 
j00 

QC7 )( +r)J (_ )'R(v)dvQ*(u)du 

+ (-1)'' 
1000 

Q(u)fv 3 R(v)dv[Q (3) (u + r)J'du. 

For r = 0, the relation

N 
ERgg(0) 

=
f qj+ q} + pN+1(e,0) 

is valid with

qj = fQ(j)(u)uQ(u)du 

and the values for r < 0 can be calculated from the relation 'R 99 (r) = 'R;9(—r). 

Example 3. Let us consider a system of n ordinary differential equations of first or-
der with constant coefficients and an e-correlated wide-sense stationary inhomogeneous 
term

1x=Ax+ Ef. 
The matrix A is assumed to be stable (i.e. all eigenvalues A 1 ,... , A. have negative 
real parts) and diagonalizable ( i.e. A = VAV' with A = diag(A 1 ,. . . ,A,)). Then a 
stationary solution

= f	Ef(s) ds 

of the system exists (see, e.g., [2, 7, 9]). 
Then for r = 0

N
+ q,} + o(E') 

as e - 0 with
cc 

qi =VA3JeBjeduV* =_v( bklA2k1	* 
o	 Ak + Al k,l=1 

B3 = (bk,), 1 = V'u,[V]' 

and for fixed . 7- > 0
N 

ER(r) =	 + 

as E - 0 with

n 
qj(T) = V 1000 

e Cj edu[A3]*e n 1/ 	_ V cJ kIe	

1 \ A, + A1	k,l=1 
C = (ck,) ,11 = VizflV] 

holds.
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6. Conclusion 

Asymptotic expansions as c - 0 of variances or correlation functions of integral func-
tionals involving c-correlated wide-sense stationary random functions have been derived. 
In these expansions the influence of the deterministic kernel function and of the random 
function can be separated using the concept of correlation moments and certain charac-
teristics of the kernel function. In the case of random variables the expansions have the 
form of a power series in c, in the case of a correlation function additional correction 
terms for ri < c arise. For given kernel functions and a generating correlation function 
it is easy to compute (at least numerically) the terms of the expansion. An estimation 
of the remainder term is also possible. 

With respect to applications it is worth to note that the asymptotic expansions can 
over- or underestimate the true value. The statement of the overestimation of the true 
value in [9: p. 491 results from the special type of the correlation functions considered 
there. 

Further expansions of second-order characteristics of integral functionals of random 
processes can be found in 110, 111. An extension of the results to scalar- or vector-valued 
random fields and certain classes of non-stationary processes is also possible and will be 
considered in a subsequent paper. 
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