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On Infinite-Horizon Optimal Control Problems 
S. Effati, A. V. Kamyad and R. A. Kamyabi-Gol 

Abstract. In this paper, we consider infinite-horizon optimal control problems. First, by a 
suitable change of variable, we transform the problem to a finite-horizon nonlinear optimal 
control problem. Then the problem is modified into one consisting of the minimization of a 
linear functional over a set of positive Radon measure. The optimal measure is approximated 
by a finite combination of atomic measures and the approximate solution of the fist problem is 
find by the optimal solution of a finite-dimensional linear programming problem. The solution 
of this problem is used to find a piecewise constant control for the original one, and finally by 
using the approximate control signals we obtain the approximate trajectories. 
Keywords: Infinite-horizon problems, measure theory, optimal control, linear programming 
AMS subject classification: 49 J 15 

1. Introduction 
A powerful method has recently been used to solve optimal control problems, replacing 
the classical problem by problems in measure spaces (see, for example, Wilson and Rubio 
[18], Rubio [13 - 14], Karnyad et al. [10], Farahi et al. [8], and Effati [61). Smirnov 
[16] presents necessary conditions of optimality for an infinite-horizon optimal control 
problem (see also [8]). The maximum principle for this problem without transversality 
conditions at infinity appeared in [4, 12]. Transversality conditions were derived by 
Aubin and Clarke [1], Michel [11] (a non-smooth version of this result appeared in [7, 
19] for some dynamical optimization problems arising from mathematical economics). 

In this paper, we transform the infinite-horizon problem to a finite-horizon problem, 
that is, the interval [0, oo) to [0, 1). First we construct a sequence of compact intervals 
{ [0,1 -] } fl> which approach [0,1) when n - . Hence by constructing a sequence, 
we reduce the above problem to the known cases, that is to a problem on compact sets. 
By choosing a big positive number n = no we obtain an approximate solution of the 
problem in the closed interval [0,1 -n 	Of course, if we choose no be very large, we o 
could get a better approximation for the original problem. The aim of this paper is to 
derive optimal control ft and the corresponding trajectory for infinite-horizon optimal 
control problem by using measure theory. We now consider infinite-horizon optimal 
control problems with fixed and point x(0) = x 0 and lim_ x(t) =	= 0. 

Let us consider the problem 

inf 10 "o (i, x(t), u(i)) di	 (1)
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subject to

X, (t) = 1(1, x(t), u(t))	 (2) 
u(t) E U C RkU compact	 (3) 
x(0)x°,limx(t)x'O	 (4) 
x(t) E A C R', A compact 

where
f: [0, ) x R' x U - 

[0,00)xR'1xU-_R 
are Lebesgue integrable functions so that they are continuously differentiable in x, and 

(i)>O for all t[0,00). Apair

fx [0, oo) - 
W = [x,u]	with	

U: [O,00) 

is said to be admissible if u is measurable and bounded, the trajectory function x is 
absolutely continuous, and conditions (2) - (4) are satisfied. We say that an admissible 
pair w = [,u] is an optimal solution of problem (1) - (4) if 

f(i, x(i), u(t)) di > 
j	

(t, (t), (t)) di. 

for any admissible pair w = [x, u]. Also, we assume that the set T of all admissible 
pairs is non-empty. 

2. Transformation of infinite- to finite-horizon problems 

In this section, by a change o* f variable, we transform the interval [0, oo) to [0, 1), and 
then obtain optimal control and the corresponding trajectory in this interval. The 
change of variable is

tan — '(t)	or	t= tan (f9).	 (5) 

Then the above problem is transformed into the variational nonlinear optimal control 
problem

infJc( tan (9),x( tan (9)),u(tan(!9))) sec 2(i9)do 

subject to

x'(tan (fG)) = f(tan ( fO),x(tan (0)),u(tan (8)) 

u(tan(0)) E  ç R  

x(0)=x°,lirnx(tan(9))=x' =0 

x(tan(f9)) E Ac R'.
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Assume
y(0) =x( tan (9)) 
v(9) = u(tan (9)). 

Then we get the variational problem 

infJ (tan(9),y(0),v(9))sec2 (fO )dO	 (6) 
[0,1) 

subject to

y'(0) = f( tan (0),y(0),v(9))sec2 (f O)	 (7) 
v(9) E UcRk	 (8) 
y(0)=y°=x°,lirny(9)=y' =0	 (9)

Y(0) E A c RTh. 

3. Classical control problems 

We may transform the above control problems to an infinite-dimensional linear program-
ming problem. Let us consider Q = J x A x U, where J = 10, 1). Assume J = [0, 1 — e] 
and Q, = J, x A x U. Since Je, U and A are compact subsets of R, R' and R', re-
spectively, then Q, is a compact subset of RI+k+n, and Q, approaches to ci as C —* 0. 
Let w = [y, v] be an admissible pair for the variational problem and B an open ball in 
R containing J x A. Let C'(B) be the space of all bounded real-valued continuously 
differentiable functions on B such that the first derivative is also bounded. 

Let 0 E C'(B) and define the function 0 9 by 

9(0, y(&), v(8)) =	(B, y(0)) g(G, y ( o), v(9)) + 080, y(&))	 (10) 

with (9,y(8),v(9)) E ci for all BE [0, 1), where the function g : Il —* R' is defined by 

= f(tan ( fO) ,y(0),v(9))f sec2 (f 0). 

Further, define the function fo : ci —* R by 

fo(B,y(0),v(0)) = p( tan (9),y(9),v(9))fsec2 (8). 

By these definitions, the problem in Section 2 is transformed to the problem to find the 
infimum of the functional

I[y,v] = f	fo(8,y(9),v(0))d8	 (11) 
[0,1)
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subject to

	

= g(O, y(8), v(8))	 (12) 
v(8) E U ç 1Rc	 (13) 
Y(0) = = x0 , urn y(8) = = 0	 (14) 

Y(0) E A ç R. 

Since w [y, v] is an admissible pair, we have 

flo ") 
c9(8,y(0),v(9))d8 =	(0 y 	+ (8,y(8))) dO 

 =

 

' 0' (0, y (0 )) dO
.	 (15) 

= ( 1 1 yI ) _(0,YO) 

=L 

for all q E C'(B). Let D(P) be the space of infinitely differentiable real-valued 
functions with compact support in J° (see [17)), where J° = (0, 1). Define 

&j(O,y(0),v(0)) = y(8)0'(0) + MG, y(0),v(0))(0)	 (16) 

for j = 1,2,..., ri 1 and all 0 E D(P). Then, if w = [y, v) is an admissible pair, we have 
for  = 1,2,...,n 1 and	E D(J0) 

J[ 0,1)	 flo") 
j(O, y(&), v(0)) dO = 	fto, 

y(0)b'(0) dO +gj(O, y(0), v(0))b(0)
1) 

	

= yj(8)(8)j - f	(y(0) - gj(O,y(0),v(0)))(0)d8 
[0,1) 

=0 

since the trajectory and control functions in an admissible pair satisfy (12) on J°, and 
since the function 0 has compact support in J°, i,b(0) = ( 1) = 0. And also, by choosing 
a functions which depend only to the variable 9, we have 

	

flo , 1) 
f (0, y(0), v(0)) dO = af	(1 E C1 (cu)) 

where C1 () is a subspace of the space C() of all bounded continuous functions on 
depending only on the variable 0. 

The mapping

F
 . J

F(8,y(0),v(9))dO	(FE Coo()) 
J
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defines a positive linear functional on C00 (1), the space of all bounded continuous 
functions with compact support. By the Riesz representation theorem (see [15: p. 
40/Theorem 2.14]) there exists a unique positive Radon measure It on Q such that 

	

A(F) 
= j F(9,y(8),v(8))dO = fa Fdp p(F)	(Fe Coo(l)). 

Thus, the minimization of the functional (11) over T is equivalent to the minimization 
of

I(P) = urn J fodP = in fodE(fo)ER	 (17) 

over the set of all measures p corresponding to admissible pairs w, which satisfy 

= Lq (0 E C'(B)	 .1 
p(j) = 0 (j = 1,2,.1.,ni; b E D(J°))	 (18) 
1L(f)=af (1 eC1(Q)).	 J 

We shall consider the minimization of (17) over the set Q of all positive Radon measures 
on 1 satisfying (18). This is an infinite-dimensional linear programming problem, and 
all the functions in (17) - (18) are linear with respect to the measure A. Furthermore, 
the measure p is required to be positive. 

Let M+() be the set of all positive Radon measures on ft The functional I: Q - 
R defined by

I(p)=ffodpp(fo)ER	(it EQ) 

is a linear continuous functional on the set Q with weak-topology. Let e =	and 
= [0,1 - x A x U for n E N. Denote now 

Q. = {p E M(1 11 ) : p satisfies (18)}. 

Lemma 3.1. Suppose rn,n E N and n > m. Then 

QmCQnC ... CQ.	 (19) 
Proof. Since M( i1 m) C M(1 1 ) C ... C M(l), this implies (19)1 

	

Lemma 3.2. If 1(p) = f- fodp, 1 = iflfQ 1(p) and I	infq I(p), then 
1* - Ti 

Proof. From Lemma 3.1, for n > in we have 

- oo < infI(p) = P infl(p) = I	infl(p) — P - m Q 

Therefore the sequence {1} is non-increasing and bounded below; it converges, to a 
number c > infQ I(p). Suppose that c> infQ I(p). Then there is a v E Q such that 

c> 1(v) ^! inf I(p ) .	 (20) 

By Lemma 3.1 there is an h E N such that v e Qh . We have 1(v) ^! infQ h I(p) = I. 
Then 1(v) > c and this is a contradiction to (20). Thus c = infQ 1(p) I
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Lemma 3.3. Let m, n E N with rn > ii, I(j) = f-	fodu and I(p) = fn fod,u.
Then lim n _ infQ I() infQ I(s). 

Proof. Since fo is non-negative on [0, 1) and 

In ( it) < Im() < ... <I(z) = j fod, 

it follows that
infI(p)	inflm(p)	...	infI().	 (21) 

Thus, the sequence {inf Q In(/i)} is increasing and bounded from above; so 

urn infI() = sup (infln (ii)) = infI(j) 
n—.00 Q 

(for the second equality see (21)) U 

Theorem 3.1. If I(z) = j	fodi and 1(p) = fn fodp, then 

urn infI(p) = inf 1(p). 
n—ooQ,	 Q 

Proof. From Lemmas 3.2 and 3.3 we have 

lim inf I(p) = lirn infI(p) = inf I(p) n —.ooQ,,	n —00 Q	Q 

and since
infI(p) :^ i5ifI(p) 

Thus lim_, inf Q I ( p ) = infQ I(p) and the statement is proved U 

Remark 3.1. Note that ci here is not a compact space. For the compact case 
Rubio in [131 has shown that Q is weak*cornpact. But in our situation, by using the 
Banach-Alaoglu Theorem, one can show that Q actually is weak-compact. 

4. Approximation 

We now estimate the optimal control by a nearly-optimal piecewise constant control. 
We first assume n be a large number n = n0 . Then we minimize the functional 

In. (/,) = f	fdp 

over a subset of M( 110 ) which is defined by requiring only a finite number of the 
constraints in (18) to be satidfied (still infinite-dimensional). This will be achieved 
by choosing countable sets of functions whose linear combinations are dense in the 
appropriate spaces, and then selecting a finite number of them. In the first step, we
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obtain an approximation to the optimal measure p t by a finite combination of atomic 
measures, that is from [13: Theorem A.5j jf has the form 

=	a & .	(a, ^! O, z,' E 1I). 

Here 6 is the unitary atomic measure characterized by ö(F) = F(z) where F E 
C00 ( 110 ) and z e Then we construct a piecewise constant control function 
corresponding to the finite-dimensional problem. Therefore in the infinte- dimensional 
linear programming problem (17) with restriction defined by (18) we shall consider only 
a finite number M1 of the functions 0 of the type 

1	2i	2 'Pn+1 = Yi , Yn+2 = 112' 

and, also, only a finite number of functions 1 (k = 1,2,..., M2 ) defined in (16), when 
the functions 0 in (16) are of the form sin(27rr9), 1 - cos(27rr0) (r E N) are considered. 
Also, only a finite number L of functions I of the type 

	

f1 if 	 = 
O otherwise	

(J f(0)	 with J,	,) (s = 

will be considered. The set	=	x A x U will be covered with a grid, where
the grid will be defined by taking all points in ci 110 as 

Z, = (9,yI3,y23,...,yn3,v13,v23,...,vk); 

the points in the grid will be numbered sequentially from 1 t N. Of course, we only need 
to construct the control function, since the trajectory is then simply the corresponding 
solution of the differential equation (12), which can be estimated numerically. Thus, 
instead of the infinite-dimensional linear programming problem (17) with restriction 
defined by (18) can be approximated by the following linear programming problem 
which Zi for i = 1,... ,N belongs to a dense subset 

The linear programming problem consists of minimizing the linear form 

afo(Z,) 

over the set a 3 2 0, subject to 

E aj 0? (Zj)=A0i(i=1,...,Mi) 

= 0 (k = 1,...,M2) 

-	- 

Eaj f,(tj ) = af (s = 1,..., L).
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Therefore, by solving this problem, we get the coefficients a 3 (j = 1,..., N), and then 
we construct a piecewise constant control function; that is, from analysis Rubio (see 
(131) we obtain the piecewise constant control function v, and then from (12) obtains 
the trajectory function y. 

5. Numerical example 
Consider the problem

inf 1 foo(X2(t) + au2(t))dt, 

a constant, subject to
x"(t) = —x'(t) + u(t) 

where x(0) = x'(0) = 0.1 and lim i._x(i) = limj...x'(t) = 0. Suppose x i (t) = 
X2( t ) = x'(l), and a = 4. Then the above problem transform into the form 

inf 1 10(X(j) +4 u2(t))di 

subject to
x'1(t) = x2(t) 

X (t) = 7x2(t) + u(t) 

where x i (0) = x2 (0) = 0.1 and lim t _.x i (t) = limi_x2 (t) = 0. Using the Euler-
Lagrange equations (see [17]), we obtain the optimal paths as 

/ 
X I (t) = [0.1 + (o.1 + —0.1 tJ exp () 

= [o.i - (0.1 +)
	] exp (). J 

Now by a suitable change of variable in (5), the problem is transformed into the varia-
tional problem

inff (y(9) +4	se (9)dO 
[0,1) 

subject to
= 131 y(0)sec2 (9) 

Y (9) = f( — y2(0) + v(9)) sec2 (9) 
where y i(0) = y2(0 ) = 0.1 and lim9....1- y ' (0) = urn9 .... 1 - y2(0 ) = 0. 

Let 9 E J110 = (0,1 -	), - = 0.01, and 1/(9) = [yI(0),y2(9)] E A = A 1 x A2,
where A 1 = [0,0.1] and A2 = [-0.08,0.1]. And let the set J1,,, 0 = [0,1— -] be divided o 
into 15 equal subintervals, the sets A 1 , A2 and U = [-1,1] be devided into 10 equal 
subintervals, so thatQ I/no = x A x U is devided into 15000 equal subsets. We 
assumed

zp = ( OP ,yI,y29 ,vp)	(p = 1,..., 15000)
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where ij=.. 
p=i+10(,-1)+100(k-1)+1000(l-1)	

k	1.	10

	

1	15 

Yi p = j-(i)	Y2, = -	+ j-(i)	u = —1 +	(k) 

	

10

1 08(1)	 for l	1,... 110 
9,= ' 0.9+0.02(1-10) for l=11,...,14

	

115(0	for l=15, 

M1 = 2, M2 = 8 and L = 15. In this example, the optimal value of the cost function is 
0.1102. Graphs of the piecewise constant control function and the trajectory functions 
can be' seen in Figure 1 - 3. 
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Figure 1: Piecewise constant optimal control
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Figure 2: Solid line precise solution	Figure 3: Solid line precise solution
(00000 represents approximate solution) 

Note. One should note that we have not discussed the rate of accuracy near the 
end point: that is when the index is making larger, we get a better accuracy, but what 
is the rate of this accuracy? 

This problem needs more work and we appreciate the referees for evaluate sugges-
tions and especially for this note which brings to our attention.
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