Choquet Theory in Metric Spaces

T. Okon

Abstract. This paper deals with a generalization of the classical Choquet theorem. We consider metric spaces which are endowed with an abstract notion of convexity. Convex combinations are obtained by the solutions of variational inequalities. A generalized Krein-Milman theorem is derived from our Choquet theorem. We end with an example based on hyperbolic geometry.

Keywords: Abstract convexity in metric spaces, Choquet theorem, Krein-Milman theorem, hyperbolic geometry

AMS subject classification: Primary 46 A 55, 52 A 07, secondary 52 A 30, 52 A 40, 52 A 41, 52 A 55

1. Motivation and introduction

Let *M* be a convex subset of a normed linear space $(E, \|\cdot\|)$, let $a, b \in E$ and $\lambda \in [0, 1]$. The element $z = (1 - \lambda) a + \lambda b$ of *M* fulfils the variational inequality

$$||z - u|| \le (1 - \lambda)||a - u|| + \lambda ||b - u|| \qquad (u \in M).$$
(1.1)

This inequality can be reformulated: Define a measure $\mu := (1 - \lambda) \delta_a + \lambda \delta_b$, where δ_a and δ_b denote the Dirac measures of a and b, respectively, and note that the set ex (K) of extreme points of the convex and compact line segment K = [a, b] consists precisely of a and b:

$$||z - u|| \le \int_{\text{ex}(K)} ||t - u|| \, d\mu(t) \qquad (u \in M).$$
(1.2)

By the classical Choquet theorem (see R. R. Phelps [10]), inequality (1.2) has a generalization to arbitrary compact convex sets $K \subseteq M$. More precisely, if $K \subseteq M$ is convex and compact, then every $z \in K$ is assigned to a representing probability measure μ_z such that

$$|z - u|| \le \int_{\text{ex}(K)} ||t - u|| d\mu_z(t) \qquad (u \in M).$$
 (1.3)

For an arbitrary metric space (M, d), S. Doss [4] has introduced the notion of a mean $B_{\lambda}(a, b)$ of $a, b \in M$ (and $\lambda \in [0, 1]$) by

$$B_{\lambda}(a,b) = \Big\{ x \in M : d(x,u) \le (1-\lambda) d(a,u) + \lambda d(b,u) \ (u \in M) \Big\}.$$
(1.4)

T. Okon, Inst. Anal., Fachrichtung Math. und Naturwiss. der Tech. Univ., D-01062 Dresden

ISSN 0232-2064 / \$ 2.50 © Heldermann Verlag Berlin

This mean neither must be non-empty nor must be a singleton: Consider the spherical space and Example 1 in Section 4, respectively. M. Fréchet [7] asked whether this mean (he called the elements of $B_{\lambda}(a, b)$ generalized means) is a singleton in every Banach space. S. Gähler and G. Murphy [5] showed that $B_{\lambda}(a, b)$ is a singleton in every normed linear space and they gave a complete characterization of the metric d being induced by a norm. W. Takahashi [15] assumed non-emptyness of $B_{\lambda}(a, b)$ and considered metric spaces with a convex structure induced by a selector of the means. He used this to generalize the fixed point theorems of F. Browder and W. A. Kirk for non-expansive mappings (see [15] and the references therein). The developement continued by several authors (see, e.g., M. D. Guay, K. L. Singh and J. H. M. Whitfield [6], B. E. Rhoades, K. L. Singh and J. H. M. Whitfield [11], L. A. Talman [16], and I. Beg and A. Azam [2]). More general concepts of convexity can be found in C. D. Horvath [9] and A. Wieczorek [17, 18]. For general reference to abstract convexity see V. P. Soltan [14] and I. Singer [13].

Our considerations are based on an a priori arbitrary set-valued selector of Doss' mean. Section 2 supplies basic definitions related to convexity in metric spaces and some basic results we need. Section 3 contains the main result which is a direct extension of inequality (1.3) and, therefore, in some sense a Choquet theorem. As a corollary we get a theorem of Krein-Milman type. Section 4 illustrates the results by two examples.

2. Notation and basic concepts

M denotes always the underlying set of a metric space (M, d). By 2^M we denote the power set of M. By maps we mean set-valued maps with non-empty values. If the value of a map is a singleton, we indentify the singleton and its element. Purely single-valued maps are called functions. By a functional we mean a real-valued function.

For a compact set $\emptyset \neq K \subseteq M$ the space of all continuous functionals on K endowed with the supremum norm is denoted by $\mathcal{C}(K)$. The topological dual of $\mathcal{C}(K)$, the space of all finite signed Radon measures on K, is denoted by $\mathcal{M}(K)$. An element μ of $\mathcal{M}(K)$ is considered both as measure and functional. Especially, $\mu(K) = \mu(1)$ is the total mass of μ . Here, 1 denotes the functional with constant value 1. $\mathcal{M}^+(K)$ and $\mathcal{M}_1^+(K)$ denote the positive and probability measures in $\mathcal{M}(K)$, respectively. Especially, δ_x ($x \in K$) denote the Dirac measures on K. Recall that $\mathcal{C}(K)$ is a lattice and that every $\mu \in \mathcal{M}^+(K)$ is a positive operator with norm $\|\mu\|$ equal to $\mu(1)$.

The basic concept of the following expositions is to consider a selector of Doss' mean. This selector induces a convex structure on the underlying metric space (M, d). To simplify notation, throughout this paper the selector under consideration is called *convex structure*, too. To be more precise we give

Definition 1. A map $E : [0,1] \times M \times M \to 2^M$ is called *convex structure* if for all $a, b \in M, \lambda \in [0,1]$ and $x \in E(\lambda, a, b)$ the variational inequality

$$d(x, u) \le (1 - \lambda) d(a, u) + \lambda d(b, u) \qquad (u \in M)$$

$$(2.1)$$

holds.

Direct consequences of inequality (2.1) are

$$E(0, a, b) = a$$
 and $E(1, a, b) = b.$ (2.2)

Every $x \in E(\lambda, a, b)$ lies between a and b in the metric sense. Precisely, we have

$$d(a, x) = \lambda d(a, b) \qquad \text{and} \qquad d(b, x) = (1 - \lambda) d(a, b). \tag{2.3}$$

Indeed, in (2.1) consider u = a and u = b. Then (2.1) reads as $d(x, a) \leq \lambda d(b, a)$ and $d(x, b) \leq (1 - \lambda) d(a, b)$, respectively. Application of the triangle inequality to the left-hand sides of these estimates supplies the inverse estimates. Notice also that if $a \neq b$, we have

$$\lambda = \frac{d(a,x)}{d(a,b)} = 1 - \frac{d(b,x)}{d(a,b)}$$

for any $x \in E(\lambda, a, b)$.

In the following we suppose the existence of a convex structure on the metric space (M, d). We fix one of this structures and denote it by E. In particular, we suppose that E has non-empty values, i.e., for any $a, b \in M$ and $\lambda \in [0, 1]$ inequality (2.1) has at least one solution.

Definition 2. A functional $f: M \to \mathbb{R}$ is called *convex* if for all $a, b \in M, \lambda \in [0, 1]$ and $x \in E(\lambda, a, b)$

$$f(x) \le (1 - \lambda)f(a) + \lambda f(b), \tag{2.4}$$

and it is called *concave* if -f is convex. The functional f is called *affine* if it is convex and concave. If in (2.4) equality holds for $\lambda \in \{0, 1\}$ or a = b only, we call f strictly convex or strictly concave, respectively.

If the functionals f, g are convex, so is f + g. If f is convex and α is a positive (negative) real scalar, then αf is convex (concave). If (f_{γ}) is a family of convex (concave) functionals which is bounded from above (below), then $\sup_{\gamma} f_{\gamma}$ is convex ($\inf_{\gamma} f_{\gamma}$ is concave).

By $\mathcal{C}(M)$ we denote the set of all continuous functionals $f : M \to \mathbb{R}$, and by $\mathcal{C}_c(M)$ we denote all continuous functionals $f : M \to \mathbb{R}$ which are convex. So $\mathcal{A}(M) = (-\mathcal{C}_c(M)) \cap \mathcal{C}_c(M)$ is the set of all continuous affine functionals. By (2.1) we have $\{d(\cdot, u) : u \in M\} \subseteq \mathcal{C}_c(M)$. Therefore $\mathcal{C}_c(M)$ separates M.

An analogue of a theorem of Hervé, see e.g. [1], shows that compactness of (M, d) is sufficient for the existence of a continuous strictly convex functional.

Theorem 1. Let the metric space (M,d) be compact. Then there exists a continuous strictly convex functional on M.

Proof. Choose a dense sequence (x_n) in M. The functional $f: M \to \mathbb{R}$ defined by

$$f(x) = \sum_{n=1}^{\infty} 2^{-n} d(x, x_n) \qquad (x \in M)$$

is continuous and convex. Suppose that f is not strictly convex, i.e., there are different $a, b \in M, \lambda \in (0, 1)$ and $x \in E(\lambda, a, b)$ such that $f(x) = (1 - \lambda)f(a) + \lambda f(b)$. Then

$$d(x, x_n) = (1 - \lambda) d(a, x_n) + \lambda d(b, x_n) \qquad (n \in \mathbb{N}).$$

Now we get a contradiction by considering a subsequence (x_{n_k}) of (x_n) that converges to $x \blacksquare$

All constant functionals are affine. In general nothing can be stated about the existence of non-constant affine continuous functionals. However, if there are enough functionals to separate M, we can stop here for the following reason:

Theorem 2. Let (M, d) be a compact metric space. If $\mathcal{A}(M)$ separates the points of M, then the convex structure E is necessarily a function, i.e. single-valued, and there exists an affine embedding of (M, d) into a locally convex linear space.

Proof. $\mathcal{A}(M)$ is a linear space over the scalar field \mathbb{R} . Let P be the algebraic dual of $\mathcal{A}(M)$ endowed with the linear topology induced by pointwise convergence. Define $\Phi: M \to P$ by $\Phi(x)(f) = f(x)$ $(f \in \mathcal{A}(M), x \in M)$. The map Φ is affine, i.e., for all $a, b \in M$ and $\lambda \in [0, 1]$ we have $\Phi(x) = (1 - \lambda)\Phi(a) + \lambda\Phi(b)$ for all $x \in E(\lambda, a, b)$. Since $\mathcal{A}(M)$ separates the points of M, Φ is injective and E must be single-valued. Φ is continuous and a bijection onto its image. So, by the compactness of (M, d), Φ is an embedding

Definition 3. Let the functional $f: M \to \mathbb{R}$ be bounded from below or above. We call the functionals \tilde{f} and \hat{f} defined by

$$\widetilde{f}(x) = \left\{ \sup \varphi(x) : \varphi \in \mathcal{C}_c(M), \ \varphi \le f \right\} \quad (x \in M)$$

and

$$\widehat{f}(x) = \left\{ \inf \varphi(x) : \varphi \in -\mathcal{C}_c(M), \quad f \le \varphi \right\} \qquad (x \in M)$$

the lower envelope and upper envelope of f, respectively.

A lower envelope is always a convex functional and an upper envelope a concave functional. If f is bounded, then \tilde{f} is lower semicontinuous and \hat{f} is upper semicontinuous. Especially, for bounded f both \tilde{f} and \hat{f} are measurable and $\mu(\tilde{f})$ as well as $\mu(\hat{f})$ are defined for any $\mu \in \mathcal{M}(K)$.

The proof of the following lemma can be carried through as in the linear setting, for which we refer to E. M. Alfsen [1: Proposition I.1.6].

Lemma 1. Let the functionals $f, g : M \to \mathbb{R}$ be bounded from above and $\alpha \ge 0$. Then:

(i) $\widehat{\alpha f} = \alpha \widehat{f}$. (ii) $\widehat{f+g} \le \widehat{f} + \widehat{g}$. (iii) $\widehat{f} = -(\widetilde{-f})$.

Definition 4. A subset $A \subseteq M$ is called *convex* (with respect to the given convex structure E) if $E([0,1] \times A \times A) \subseteq A$. The *convex hull*, in symbols conv(A), of A is the smallest convex subset of M that contains A. I.e., $\operatorname{conv}(A) = \cap \{B : A \subseteq B \text{ and } B \text{ convex}\}$.

So a necessary condition that a subset A of M is convex is that the convex structure E of M restricted to $[0,1] \times A \times A$ is a convex structure for A.

Definition 5. Let $\emptyset \neq K \subseteq M$ be convex. A point $x \in K$ is called an *extreme* point (with respect to E) of K if, for all $a, b \in K$ and $\lambda \in (0, 1), x \in E(\lambda, a, b)$ implies a = x = b. By ex(K) we denote the set of all extreme points of K.

We arrive at our last preliminary lemma.

Lemma 2. Let $f \in C_c(K)$ be strictly convex. Then the measurable set $\{\widehat{f} = f\}$ is contained in ex(K).

Proof. The measurability of $\{\widehat{f} = f\}$ results from the upper semicontinuity of \widehat{f} and the continuity of f. To prove the inclusion let $x \notin ex(K)$. Then there are different $a, b \in K$ and $\lambda \in (0, 1)$ such that $x \in E(\lambda, a, b)$. We calculate

$$f(x) < (1-\lambda)f(a) + \lambda f(b) \le (1-\lambda)\widehat{f}(a) + \lambda \widehat{f}(b) \le \widehat{f}(x).$$

So x cannot be an element of $\{\widehat{f} = f\}$

3. Main results

Let $\emptyset \neq K \subseteq M$ be a compact convex subset of M.

3.1 A Choquet type theorem. The main result of our expositions is a generalization of the variational inequality (1.3) and the classical Choquet theorem (see R. R. Phelps [10]).

Theorem 3. For all $z \in K$ there exists $\mu_z \in \mathcal{M}_1^+(K)$ such that

$$\varphi(z) \le \int_{\text{ex}(K)} \varphi(t) \, d\mu_z(t) \qquad (\varphi \in \mathcal{C}_c(M)).$$
 (3.1)

Remark. We note at this point that there is no need to show that ex(K) is a measurable subset of K with respect to the Borel σ -algebra induced by the restriction of d to K. Precisely, the measure μ_z above is induced by an element of $\mathcal{M}_1^+(K)$ and defined on the trace σ -algebra on ex(K).

The proof of the above theorem is given at the end of this section. We need some calculations beforehand.

Lemma 3 to Corollary 2 below can be easily proved by adapting the expositions given in Alfsen's monograph [1] to our nonlinear setting. However, to keep the paper self-contained we outline the proofs.

Set $\mathcal{P}(K) := \mathcal{C}_c(K) - \mathcal{C}_c(K)$.

Lemma 3. $\mathcal{P}(K)$ is a real lattice in $\mathcal{C}(K)$ and, by the theorem of Stone, dense in $\mathcal{C}(K)$.

Proof. By the remarks following Definition 2, $\mathcal{P}(K)$ is a real linear space. Constant functionals belong to $\mathcal{C}_c(K)$, so they belong to $\mathcal{P}(K)$. The functionals $d(\cdot, u) \quad (u \in K)$

belong to $\mathcal{P}(K)$, too, and they separate K. Since $\mathcal{C}_c(K)$ is closed under forming suprema and, for $f, g, h, i \in \mathcal{C}_c(K)$,

$$\sup\{f - g, h - i\} = \sup\{f + i, g + h\} - (g + i)$$
$$\inf\{f - g, h - i\} = (f + h) - \sup\{g + h, f + i\},$$

the hypotheses of the Stone theorem are fulfilled and, therefore, $\mathcal{P}(K)$ is dense in $\mathcal{C}(K)$

We define a partial order \leq on $\mathcal{M}(K)$, the dual of $\mathcal{C}(K)$, by

$$\mu \leq \nu \quad : \iff \quad \mu(f) \leq \nu(f) \quad (f \in \mathcal{C}_c(K))$$

for $\mu, \nu \in \mathcal{M}(K)$. Indeed, \leq is a partial order: reflexivity and transitivity are obvious and antisymmetry follows from the foregoing lemma.

To motivate the following definition notice that if (3.1) holds for a measure $\mu_1 \in \mathcal{M}_1^+(K)$ (with integration over the whole space K instead of $\operatorname{ex}(K)$) and there exist $a, b \in K, \lambda \in (0, 1)$ and $x \in E(\lambda, a, b)$ such that $\mu_1(\{x\}) > 0$, then for the measure $\mu_2 := \mu_1 + \mu_1(\{x\})((1-\lambda)\delta_a + \lambda\delta_b - \delta_x)$ inequality (3.1) also holds and, furthermore, $\mu_1 \preceq \mu_2$ and $\mu_2(\{x\}) = 0$. Obviously, x does not belong to $\operatorname{ex}(K)$, so we can in some way say that μ_2 has its mass more near to $\operatorname{ex}(K)$ than μ_1 . As a matter of fact we will see that measures for which (3.1) holds are to be found among the maximal elements of the partial order \preceq .

So it is natural to give

Definition 6. A measure $\mu \in \mathcal{M}^+(K)$ is called a *boundary measure*, if it is maximal with respect to \leq .

Note that a necessary condition for two measures μ_1 and μ_2 to be comparable with respect to \leq is that they have the same total mass: $\mu_1(1) = \mu_2(1)$.

The existence of maximal elements follows from Zorn's Lemma:

Theorem 4. Let $\mu \in \mathcal{M}^+(K)$. Then there exists a boundary measure $\nu \in \mathcal{M}^+(K)$ such that $\mu \leq \nu$.

Proof. We consider $\mathcal{M}_{\mu} := \{\nu \in \mathcal{M}^+(K) : \mu \leq \nu\}$ as a partial ordered subset of the dual of $\mathcal{C}(K)$. To apply Zorn's Lemma let \mathcal{N} be a chain in \mathcal{M}_{μ} . This chain is relatively weak*-compact and it turns out that the weak*-accumulation points of \mathcal{N} are upper bounds of \mathcal{N} in \mathcal{M}_{μ} . Zorn's Lemma provides the existence of maximal elements in \mathcal{M}_{μ} which are maximal in $\mathcal{M}^+(K)$, too, and therefore, boundary measures

In the special case of a Dirac measure the above theorem reads as

Corollary 1. For every $z \in K$ there exists a boundary measure $\mu_z \in \mathcal{M}_1^+(K)$ such that $\delta_z \leq \mu_z$.

It remains to show that the mass of the measure μ_z of the last corollary is concentrated on the extreme points of K. We start with

Theorem 5. Let $\mu \in \mathcal{M}^+(K)$ and $f \in \mathcal{C}(K)$. Then there exists $\nu \in \mathcal{M}^+(K)$ such that $\mu \leq \nu$ and $\nu(f) = \mu(\widehat{f})$.

Proof. Consider the functional $\Phi : \mathcal{C}(K) \to \mathbb{R}$ defined by

$$\Phi(g) = \mu(\widehat{g}) \qquad (g \in \mathcal{C}(K)).$$

By Lemma 1, Φ is subadditive and positive homogeneous. Define $v : \operatorname{span}(f) \to \mathbb{R}$ by the linear extension of $\Phi|_{\{f\}}$. It turns out that v is dominated by the sublinear functional $\Phi|_{\operatorname{span}\{f\}}$. By the Hahn-Banach theorem there exists a linear extension $\nu : \mathcal{C}(K) \to \mathbb{R}$ of v which is dominated by Φ . Precisely,

$$\nu(f) = \mu(\widehat{f})$$

and

$$\nu(g) \le \mu(\widehat{g}) \qquad (g \in \mathcal{C}(K)). \tag{3.2}$$

Note that for $g \in -\mathcal{C}_c(K)$ we have $\widehat{g} = g$ and $0 \in -\mathcal{C}_c(K)$. Let $0 \leq g \in \mathcal{C}(K)$. Then $-g \leq 0$ and $\widehat{-g} \leq 0$. So $\nu(g) = -\nu(-g) \geq -\mu(\widehat{-g}) \geq 0$. I.e., ν is positive. By (3.2) $\nu(1) = \mu(1)$. So $\nu \in \mathcal{M}^+(K)$. It remains to show $\mu \preceq \nu$. This follows again from (3.2) for $-\mathcal{C}_c(K) \subseteq \mathcal{C}(K) \blacksquare$

Corollary 2. For a measure $\mu \in \mathcal{M}^+(K)$ the following statements are equivalent:

- (i) μ is maximal with respect to \leq .
- (ii) $\mu(\widehat{f}) = \mu(f)$ for all $f \in \mathcal{C}(K)$.
- (iii) $\mu(\widehat{f}) = \mu(f)$ for all $f \in \mathcal{C}_c(K)$.

Proof. $(ii) \Rightarrow (iii)$ is trivial and $(i) \Rightarrow (ii)$ follows directly from the last theorem. To prove $(iii) \Rightarrow (i)$ suppose (iii) and choose $\nu \in \mathcal{M}^+(K)$ such that $\mu \preceq \nu$. To show $\mu = \nu$ it is sufficient to show $\nu(f) \leq \mu(f)$ for $f \in \mathcal{C}_c(K)$. Note first that $\mu \preceq \nu$ means $\nu(g) \leq \mu(g)$ for $g \in -\mathcal{C}_c(K)$. So for any $f \in \mathcal{C}_c(K)$ we have $\nu(f) \leq \nu(\widehat{f}) \leq \mu(\widehat{f})$. By (iii) the latter one is equal to $\mu(f)$ which is the desired assertion

We are now able to prove our main result.

Proof of Theorem 3. Let $z \in K$ be fixed and μ_z be the boundary measure given by Corollary 1. Formula (3.1) is equivalent to $\delta_z \preceq \mu_z$ if one can show that the mass of μ_z is concentrated on ex(K). Theorem 1 supplies the existence of a strictly convex functional $f \in C_c(K)$ and Corollary 2 shows that the maximality of μ_z enforces the mass of μ_z to be concentrated on $\{\widehat{f} = f\}$ which is by Lemma 2 a measurable subset of $ex(K) \blacksquare$

Recall that the functionals $d(\cdot, u)$ $(u \in M)$ are convex. So we obtain as a generalization of (1.3) the following

Corollary 3. For all $z \in K$ there exists $\mu_z \in \mathcal{M}_1^+(K)$ such that

$$d(z,u) \le \int_{\text{ex}(K)} d(t,u) \, d\mu_z(t) \qquad (u \in M).$$
(3.3)

310 T. Okon

Now we deal with the converse question: Given a measure $\mu \in \mathcal{M}_1^+(K)$, does there exist a point $z \in K$ such that (3.1) holds? And additionally, if the answer is affirmative, is this point uniquely determined as in the case of a compact convex subset K of a normed linear space?

The answer to the second question is negative: if we suppose that the set

$$\left\{\sum_{i=1}^{n} \alpha_i \, d(x_i, \cdot) + \alpha : \, \alpha, \alpha_i \in [0, \infty), \, \, x_i \in K, \, \, n \in \mathbb{N}\right\}$$

is dense in $C_c(K)$, what means that (3.1) and (3.3) are equivalent, then (see Example 1 in Section 4) z is in general not uniquely determined by the measure μ . The answer to the first question is positive:

Theorem 6. Let $\emptyset \neq K \subseteq M$ be convex and compact and let $\mu \in \mathcal{M}_1^+(K)$. Then there exists $z \in K$ such that (3.1) holds with $\mu_z = \mu$.

Proof. Define

$$M_{\varphi} := \left\{ x \in K : \, \varphi(x) \le \int_{K} \varphi(t) \, d\mu(t) \right\} \qquad (\varphi \in \mathcal{C}_{c}(K)).$$

We have to show that $\bigcap_{\varphi \in \mathcal{C}_c(K)} M_{\varphi} \neq \emptyset$. For M_{φ} being closed subsets of the compact set K it is sufficient to verify that $(M_{\varphi})_{\varphi \in \mathcal{C}_c(K)}$ has the finite intersection property.

Fix $\varphi_1, \ldots, \varphi_n \in \mathcal{C}_c(K)$ and define $\psi := (\varphi_1, \ldots, \varphi_n)$. Since $M_{\varphi} = M_{\varphi+c}$ for any constant $c \in \mathbb{R}$ we can suppose $\psi \ge 0$. To show that the point $p = \int_K \psi(t) d\mu(t)$ belongs to the image of $T : K \to 2^{\mathbb{R}^n}$ given by $T(x) = \{y \in \mathbb{R}^n : y \ge \psi(x)\}$ $(x \in K)$ we suppose $p \notin T(K)$. It can be easily seen that T(K) is convex and closed. Therefore there exists $a \in \mathbb{R}^n$, $a \ge 0$ and ||a|| = 1, such that $\inf_{y \in T(K)} \langle a, y \rangle > \langle a, p \rangle$. The functional $\eta := \langle a, \psi \rangle$ is an element of $\mathcal{C}_c(K)$ and we obtain

$$\mu(\eta) = \langle a, p \rangle < \inf_{y \in T(K)} \langle a, y \rangle \le \left\langle a, \int_{K} \psi(t) \, d\mu(t) \right\rangle = \mu(\eta)$$

which is a contradiction \blacksquare

3.2 A Krein-Milman type theorem. The existence of extremal points can be proved directly by the lemma of Zorn. However, Theorem 3 tells us that ex(K) is non-empty and allows us to omit the existence part in order to prove the Krein-Milman Theorem.

For the proof we need some additional property of the underlying convex structure which is an extension of the notion of negative curvature of W. Herer [8]. For the motivation of the following definition see also Example 2 in Section 4 and [12].

Definition 7. A metric space (M, d) with a convex structure E is said to be of *negative curvature* if for all $a, b, c, d \in M$, $\lambda \in [0, 1]$ and $x \in E(\lambda, a, b)$ there exists $x' \in E(\lambda, c, d)$ such that

$$d(x, x') \le (1 - \lambda) d(a, c) + \lambda d(b, d).$$

$$(3.4)$$

Note that for c = d = u this is precisely the variational inequality (2.1).

Recall that a map $A: M \times M \to 2^M$ is *lower semicontinuous* if for all $x \in M \times M$, $y \in A(x)$ and all sequences $x_n \to x$ in $M \times M$ there exists a sequence $y_n \to y$ in M such that $y_n \in A(x_n)$ $(n \in \mathbb{N})$. **Theorem 7.** Let (M, d) be a metric space endowed with a convex structure E which is of negative curvature, and suppose the maps $E(\lambda, \cdot, \cdot)$ $(\lambda \in [0, 1])$ are lower semicontinuous. If $\emptyset \neq K \subseteq M$ is compact and convex, then $K = \text{conv} \exp(K)$.

Proof. Suppose the contrary, i.e., there exists $x \in K \setminus H$ where $H = \operatorname{conv} \operatorname{ex}(K)$. The functional $d(\cdot, H)$ defined by $d(y, H) = \inf\{d(y, h) : h \in H\}$ $(y \in K)$ is continuous. By the lower semicontinuity of $E(\lambda, \cdot, \cdot)$ $(\lambda \in [0, 1])$ the set H is convex and, therefore, by the negative curvature of the space (K, d) the functional $d(\cdot, H)$ turns out to be convex. Indeed, for any $a, b \in K, \lambda \in [0, 1]$ and $x \in E(\lambda, a, b)$ there exist $c, d \in H$ such that d(a, c) = d(a, H) and d(b, d) = d(b, H). If we choose x' as in the definition above we have

$$d(x,H) \le d(x,x') \le (1-\lambda) d(a,c) + \lambda d(b,d) = (1-\lambda) d(a,H) + \lambda d(b,H).$$

I.e., $d(\cdot, H) \in \mathcal{C}_c(K)$. Theorem 3 assures the existence of $\mu_x \in \mathcal{M}_1^+(K)$ such that (3.1) holds. Then with the contradiction

$$0 < d(x, H) \le \int_{\exp(K)} d(t, H) \, d\mu_x(t) = 0$$

the statement is proved \blacksquare

4. Examples

As a first example we consider the case that there is more than one solution of (2.1).

Example 1 (a set-valued convex structure). If M is a linear space and its metric d is induced by a norm then, there exists precisely one convex structure which is given by $E(\lambda, a, b) = \{(1 - \lambda) a + \lambda b\}$ ($\lambda \in [0, 1]; a, b \in M$). This has been shown by S. Gähler and G. Murphy [5]. An essential assumption to prove the uniqueness in this case is that u in (2.1) varies in elements which are not contained in the convex hull of $\{a, b\}$. If one considers only a convex subset K of M, the situation can change drastically as we will see now.

Let M be the Euclidean triangle

$$M = \Big\{ (a_1, a_2) \in \mathbb{R}^2 : 0 \le a_2 \le a_1 \le 1 \Big\}.$$

We endow M with the metric d which is induced by the maximum norm on \mathbb{R}^2 . For $\lambda \in [0,1]$ and $a = (a_1, a_2), b = (b_1, b_2)$ in M define

$$E(\lambda, a, b) = \left\{ \left((1 - \lambda) a_1 + \lambda b_1, c_2 \right) : c_2 \in \left\{ (1 - \lambda) a_2 + \lambda b_2, b_2' \right\} \right\},\$$

where

$$b'_{2} = \max \left\{ (1 - \lambda) a_{2} + \lambda b_{2}, \min \{\lambda, 1 - \lambda\} |a_{1} - b_{1}| \right\}.$$

Because of

$$\min\{\lambda, 1 - \lambda\} |a_1 - b_1| \le (1 - \lambda) a_1 + \lambda b_1, \tag{4.1}$$

E maps on M. To show the variational inequality (2.1) let $u = (u_1, u_2) \in M$. We only have to consider the case where the definition of E differs from the usual affine combination in \mathbb{R}^2 . So we can suppose that

$$(1-\lambda) a_2 + \lambda b_2 \le \min\{\lambda, 1-\lambda\} |a_1 - b_1|$$

and that the left-hand side of (2.1) is equal to

$$\left|u_2 - \min\{\lambda, 1 - \lambda\}|a_1 - b_1|\right|$$

Now (2.1) follows from

$$|u_{2} - \min\{\lambda, 1 - \lambda\}|a_{1} - b_{1}|| = \begin{cases} u_{2} - \min\{\lambda, 1 - \lambda\}|a_{1} - b_{1}|\\ \min\{\lambda, 1 - \lambda\}|a_{1} - b_{1}| - u_{2} \end{cases}$$
$$\leq \begin{cases} u_{2} - ((1 - \lambda)a_{2} + \lambda b_{2})\\ \min\{\lambda, 1 - \lambda\}|a_{1} - b_{1}|\\ \leq \begin{cases} (1 - \lambda)|u_{2} - a_{2}| + \lambda|u_{2} - b_{2}|\\ (1 - \lambda)|u_{1} - a_{1}| + \lambda|u_{1} - b_{1}|\\ \leq (1 - \lambda)d(u, a) + \lambda d(u, b). \end{cases}$$

So E is a convex structure on (M, d).

Consider now the points a = (0,0), b = (1,0) and $c = (\frac{1}{2}, \frac{1}{2})$ in M. We have $E(\frac{1}{2}, a, b) = \{(\frac{1}{2}, 0), c\}$. Define $K := \overline{\operatorname{conv}\{a, b\}}$. This is the Euclidean triangle with edges $\{a, b, c\}$. Indeed, for any $a = (a_1, a_2)$ and $b = (b_1, b_2)$ in the triangle we have estimate (4.1) and

$$\min\{\lambda, 1 - \lambda\} |a_1 - b_1| \le 1 - ((1 - \lambda) a_1 + \lambda b_1)$$

which means that E([0, 1], a, b) lies under the graphs of the identity and $x \mapsto 1 - x$, respectively. I.e., the triangle is a closed convex set and it contains K. That the triangle is contained in K is obvious.

By considering the first coordinate we see that a and b are extremal points of K. So we have $ex(K) = \{a, b\}$ and z in Corollary 3 is not uniquely determined by the measure $\mu_z = \frac{1}{2}\delta_a + \frac{1}{2}\delta_b$.

Example 2 (spaces with curvature ≤ 0). This example deals with the inner metric structure of metric spaces. For definitions and a detailed background we refer to R. Rinow [12].

By (2.3) a necessary condition for a point x to be an element of $E(\lambda, a, b)$ is that x lies between a and b. I.e., the space (M, d) must be convex in the metric sense. By a theorem of K. Menger a complete metric space which is convex in the metric sense is a space with inner metric, and for every two different points $a, b \in M$ there exists a shortest curve C = C(a, b) connecting them.

If we suppose the existence of a continuous function f from $M \times M$ to the space of all shortest curves in M (with reduced parametrization) and suppose (M, d) has curvature ≤ 0 , then [12: Section 47/Subsection 1] tells us that for any $a, b, c, d \in M$ the function $\lambda \mapsto d(f(a, b)(\lambda), f(c, d)(\lambda))$ is continuous and convex. So with $E(\lambda, a, b) := f(a, b)(\lambda)$ $(a, b \in M, \lambda \in [0, 1])$ we obtain a convex structure and (M, d) is of negative curvature in the sense of Definition 7. Also, we have $E(\lambda, \cdot, \cdot)$ $(\lambda \in [0, 1])$ is continuous since f is continuous.

To get a more concrete example consider a complete simple connected Riemannian manifold with geodesic metric which is of non-positive sectional curvature, e.g. the hyperbolic plane (see H. Busemann [3], S. Gähler and G. Murphy [5], respectively).

Acknowledgement. The author thanks the members of the Institute for Analysis and Prof. U. Brehm of the Institute for Geometry of the Technical University of Dresden for inspiring comments and discussions.

References

- [1] Alfsen, E. M.: Compact Convex Sets and Boundary Integrals. Berlin, Heidelberg, New York: Springer 1971.
- Beg, I. and A. Azam: Construction of fixed points for generalized nonexpansive mappings. Indian J. Math. 38 (1996), 161 – 170.
- [3] Busemann, H.: Spaces with non-positive curvature. Acta. Math. 80 (1948), 259 311.
- [4] Doss, S.: Sur la moyenne d'un élément aléatoire dans un espace distancé. Bull. Sci. Math. 73 (1949), 1 – 26.
- [5] Gähler, G. and G. Murphy: A metric characterization of normed linear spaces. Math. Nachr. 102 (1981), 297 – 309.
- [6] Guay, M. D., Singh, K. L. and J. H. M. Whitfield: Fixed point theorems for nonexpansive mappings in convex metric spaces. In: Nonlinear Analysis and Applications. Proc. Int. Conf., St. John's/Newfoundland 1981 (Lect. Notes Pure Appl. Math.: Vol. 80). New York - Basel: Marcel Dekker 1982, pp. 179 – 189.
- [7] Fréchet, M.: Définitions de la somme et du produit par scalaire en termes de distance.
 Ann. Sci. Ec. Norm. super., III Ser. 75 (1958), 223 255.
- [8] Herer, W.: Mathematical expectation and strong law of large numbers for random variables with values in a metric space of negative curvature. Prob. Math. Stat. 13 (1992), 59 – 70.
- [9] Horvath, C. D.: Contractibility and generalized convexity. J. Anal. Appl. 156 (1991), 341 - 357.
- [10] Phelps, R. R.: Lectures on Choquet's Theorem. Princeton et al.: van Nostrand 1966.
- [11] Rhoades, B. E., Singh, K. L. and H. M. Whitfield: Fixed points for generalized nonexpansive mappings. Comment. Math. Univ. Carol. 23 (1982), 443 – 451.
- [12] Rinow, W.: Die innere Geometrie der metrischen Räume. Berlin Göttingen Heidelberg: Springer-Verlag 1961.
- [13] Singer, I.: Abstract Convex Analysis. New York: Wiley 1997.
- [14] Soltan, V. P.: Introduction to Axiomatic Convexity Theory (Russian, with summary in English and French). Kishinev: Stiinca 1984.
- [15] Takahashi, W.: A convexity in metric space and nonexpansive mappings I. Kodai Math. Semin. Rep. 22 (1970), 142 – 149.

- [16] Talman, L. A.: Fixed points for condensing multifunctions in metric spaces with convex structure. Kodai Math. Semin. Rep. 29 (1977), 62 – 70.
- [17] Wieczorek, A.: Spot functions and peripherals: Krein-Milman theorems in an abstract setting. J. Math. Anal. Appl. 138 (1989), 293 - 310.
- [18] Wieczorek, A.: The Kakutani property and the fixed point property of topological spaces with abstract convexity. J. Math. Anal. Appl. 168 (1992), 483 – 499.

Received 15.02.1999; in revised form 17.12.1999