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Abstract. This paper deals with a generalization of the classical Choquet theorem. We con-
sider metric spaces which are endowed with an abstract notion of convexity. Convex combi-
nations are obtained by the solutions of variational inequalities. A generalized Krein-Milman
theorem is derived from our Choquet theorem. We end with an example based on hyperbolic
geometry.
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1. Motivation and introduction

Let M be a convex subset of a normed linear space (E, ‖ · ‖), let a, b ∈ E and λ ∈ [0, 1].
The element z = (1− λ) a + λ b of M fulfils the variational inequality

‖z − u‖ ≤ (1− λ)‖a− u‖+ λ‖b− u‖ (u ∈ M). (1.1)

This inequality can be reformulated: Define a measure µ := (1− λ) δa + λ δb, where δa

and δb denote the Dirac measures of a and b, respectively, and note that the set ex (K)
of extreme points of the convex and compact line segment K = [a, b] consists precisely
of a and b:

‖z − u‖ ≤
∫

ex(K)

‖t− u‖ dµ(t) (u ∈ M). (1.2)

By the classical Choquet theorem (see R. R. Phelps [10]), inequality (1.2) has a gener-
alization to arbitrary compact convex sets K ⊆ M . More precisely, if K ⊆ M is convex
and compact, then every z ∈ K is assigned to a representing probability measure µz

such that
‖z − u‖ ≤

∫

ex(K)

‖t− u‖dµz(t) (u ∈ M). (1.3)

For an arbitrary metric space (M, d), S. Doss [4] has introduced the notion of a
mean Bλ(a, b) of a, b ∈ M (and λ ∈ [0, 1]) by

Bλ(a, b) =
{

x ∈ M : d(x, u) ≤ (1− λ) d(a, u) + λ d(b, u) (u ∈ M)
}

. (1.4)
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This mean neither must be non-empty nor must be a singleton: Consider the spherical
space and Example 1 in Section 4, respectively. M. Fréchet [7] asked whether this mean
(he called the elements of Bλ(a, b) generalized means) is a singleton in every Banach
space. S. Gähler and G. Murphy [5] showed that Bλ(a, b) is a singleton in every normed
linear space and they gave a complete characterization of the metric d being induced by
a norm. W. Takahashi [15] assumed non-emptyness of Bλ(a, b) and considered metric
spaces with a convex structure induced by a selector of the means. He used this to
generalize the fixed point theorems of F. Browder and W. A. Kirk for non-expansive
mappings (see [15] and the references therein). The developement continued by several
authors (see, e.g., M. D. Guay, K. L. Singh and J. H. M. Whitfield [6], B. E. Rhoades,
K. L. Singh and J. H. M. Whitfield [11], L. A. Talman [16], and I. Beg and A. Azam [2]).
More general concepts of convexity can be found in C. D. Horvath [9] and A. Wieczorek
[17, 18]. For general reference to abstract convexity see V. P. Soltan [14] and I. Singer
[13].

Our considerations are based on an a priori arbitrary set-valued selector of Doss’
mean. Section 2 supplies basic definitions related to convexity in metric spaces and some
basic results we need. Section 3 contains the main result which is a direct extension of
inequality (1.3) and, therefore, in some sense a Choquet theorem. As a corollary we get
a theorem of Krein-Milman type. Section 4 illustrates the results by two examples.

2. Notation and basic concepts

M denotes always the underlying set of a metric space (M,d). By 2M we denote the
power set of M . By maps we mean set-valued maps with non-empty values. If the value
of a map is a singleton, we indentify the singleton and its element. Purely single-valued
maps are called functions. By a functional we mean a real-valued function.

For a compact set ∅ 6= K ⊆ M the space of all continuous functionals on K endowed
with the supremum norm is denoted by C(K). The topological dual of C(K), the space
of all finite signed Radon measures on K, is denoted by M(K). An element µ of
M(K) is considered both as measure and functional. Especially, µ(K) = µ(1) is the
total mass of µ. Here, 1 denotes the functional with constant value 1. M+(K) and
M+

1 (K) denote the positive and probability measures inM(K), respectively. Especially,
δx (x ∈ K) denote the Dirac measures on K. Recall that C(K) is a lattice and that
every µ ∈M+(K) is a positive operator with norm ‖µ‖ equal to µ(1).

The basic concept of the following expositions is to consider a selector of Doss’
mean. This selector induces a convex structure on the underlying metric space (M, d).
To simplify notation, throughout this paper the selector under consideration is called
convex structure, too. To be more precise we give

Definition 1. A map E : [0, 1]×M ×M → 2M is called convex structure if for all
a, b ∈ M , λ ∈ [0, 1] and x ∈ E(λ, a, b) the variational inequality

d(x, u) ≤ (1− λ) d(a, u) + λ d(b, u) (u ∈ M) (2.1)

holds.
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Direct consequences of inequality (2.1) are

E(0, a, b) = a and E(1, a, b) = b. (2.2)

Every x ∈ E(λ, a, b) lies between a and b in the metric sense. Precisely, we have

d(a, x) = λ d(a, b) and d(b, x) = (1− λ) d(a, b). (2.3)

Indeed, in (2.1) consider u = a and u = b. Then (2.1) reads as d(x, a) ≤ λ d(b, a) and
d(x, b) ≤ (1− λ) d(a, b), respectively. Application of the triangle inequality to the left-
hand sides of these estimates supplies the inverse estimates. Notice also that if a 6= b,
we have

λ =
d(a, x)
d(a, b)

= 1− d(b, x)
d(a, b)

for any x ∈ E(λ, a, b).
In the following we suppose the existence of a convex structure on the metric space

(M, d). We fix one of this structures and denote it by E. In particular, we suppose
that E has non-empty values, i.e., for any a, b ∈ M and λ ∈ [0, 1] inequality (2.1) has
at least one solution.

Definition 2. A functional f : M → R is called convex if for all a, b ∈ M , λ ∈ [0, 1]
and x ∈ E(λ, a, b)

f(x) ≤ (1− λ)f(a) + λf(b), (2.4)

and it is called concave if −f is convex. The functional f is called affine if it is convex
and concave. If in (2.4) equality holds for λ ∈ {0, 1} or a = b only, we call f strictly
convex or strictly concave, respectively.

If the functionals f, g are convex, so is f + g. If f is convex and α is a positive
(negative) real scalar, then αf is convex (concave). If (fγ) is a family of convex (concave)
functionals which is bounded from above (below), then supγ fγ is convex (infγ fγ is
concave).

By C(M) we denote the set of all continuous functionals f : M → R, and by
Cc(M) we denote all continuous functionals f : M → R which are convex. So A(M) =
(−Cc(M)) ∩ Cc(M) is the set of all continuous affine functionals. By (2.1) we have
{d(·, u) : u ∈ M} ⊆ Cc(M). Therefore Cc(M) separates M .

An analogue of a theorem of Hervé, see e.g. [1], shows that compactness of (M, d)
is sufficient for the existence of a continuous strictly convex functional.

Theorem 1. Let the metric space (M, d) be compact. Then there exists a continu-
ous strictly convex functional on M .

Proof. Choose a dense sequence (xn) in M . The functional f : M → R defined by

f(x) =
∞∑

n=1

2−nd(x, xn) (x ∈ M)

is continuous and convex. Suppose that f is not strictly convex, i.e., there are different
a, b ∈ M , λ ∈ (0, 1) and x ∈ E(λ, a, b) such that f(x) = (1− λ)f(a) + λf(b). Then

d(x, xn) = (1− λ) d(a, xn) + λ d(b, xn) (n ∈ N).

Now we get a contradiction by considering a subsequence (xnk
) of (xn) that converges

to x
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All constant functionals are affine. In general nothing can be stated about the
existence of non-constant affine continuous functionals. However, if there are enough
functionals to separate M , we can stop here for the following reason:

Theorem 2. Let (M,d) be a compact metric space. If A(M) separates the points
of M , then the convex structure E is necessarily a function, i.e. single-valued, and there
exists an affine embedding of (M,d) into a locally convex linear space.

Proof. A(M) is a linear space over the scalar field R. Let P be the algebraic dual
of A(M) endowed with the linear topology induced by pointwise convergence. Define
Φ : M → P by Φ(x)(f) = f(x) (f ∈ A(M), x ∈ M). The map Φ is affine, i.e., for
all a, b ∈ M and λ ∈ [0, 1] we have Φ(x) = (1 − λ)Φ(a) + λΦ(b) for all x ∈ E(λ, a, b).
Since A(M) seperates the points of M , Φ is injective and E must be single-valued. Φ
is continuous and a bijection onto its image. So, by the compactness of (M,d), Φ is an
embedding

Definition 3. Let the functional f : M → R be bounded from below or above.
We call the functionals f̃ and f̂ defined by

f̃(x) =
{

supϕ(x) : ϕ ∈ Cc(M), ϕ ≤ f
}

(x ∈ M)

and
f̂(x) =

{
inf ϕ(x) : ϕ ∈ −Cc(M), f ≤ ϕ

}
(x ∈ M)

the lower envelope and upper envelope of f , respectively.

A lower envelope is always a convex functional and an upper envelope a concave
functional. If f is bounded, then f̃ is lower semicontinuous and f̂ is upper semicontin-
uous. Especially, for bounded f both f̃ and f̂ are measurable and µ(f̃) as well as µ(f̂)
are defined for any µ ∈M(K).

The proof of the following lemma can be carried through as in the linear setting,
for which we refer to E. M. Alfsen [1: Proposition I.1.6].

Lemma 1. Let the functionals f, g : M → R be bounded from above and α ≥ 0.
Then:

(i) α̂f = αf̂ .

(ii) f̂ + g ≤ f̂ + ĝ.

(iii) f̂ = −(−̃f
)
.

Definition 4. A subset A ⊆ M is called convex (with respect to the given convex
structure E) if E([0, 1] × A × A) ⊆ A. The convex hull, in symbols conv (A), of A
is the smallest convex subset of M that contains A. I.e., conv (A) = ∩{

B : A ⊆
B and B convex

}
.

So a necessary condition that a subset A of M is convex is that the convex structure
E of M restricted to [0, 1]×A×A is a convex structure for A.
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Definition 5. Let ∅ 6= K ⊆ M be convex. A point x ∈ K is called an extreme
point (with respect to E) of K if, for all a, b ∈ K and λ ∈ (0, 1), x ∈ E(λ, a, b) implies
a = x = b. By ex(K) we denote the set of all extreme points of K.

We arrive at our last preliminary lemma.

Lemma 2. Let f ∈ Cc(K) be strictly convex. Then the measurable set {f̂ = f} is
contained in ex(K).

Proof. The measurability of {f̂ = f} results from the upper semicontinuity of f̂
and the continuity of f . To prove the inclusion let x /∈ ex(K). Then there are different
a, b ∈ K and λ ∈ (0, 1) such that x ∈ E(λ, a, b). We calculate

f(x) < (1− λ)f(a) + λf(b) ≤ (1− λ)f̂(a) + λf̂(b) ≤ f̂(x).

So x cannot be an element of {f̂ = f}

3. Main results

Let ∅ 6= K ⊆ M be a compact convex subset of M .

3.1 A Choquet type theorem. The main result of our expositions is a generalization
of the variational inequality (1.3) and the classical Choquet theorem (see R. R. Phelps
[10]).

Theorem 3. For all z ∈ K there exists µz ∈M+
1 (K) such that

ϕ(z) ≤
∫

ex(K)

ϕ(t) dµz(t) (ϕ ∈ Cc(M)). (3.1)

Remark. We note at this point that there is no need to show that ex(K) is a
measurable subset of K with respect to the Borel σ-algebra induced by the restriction
of d to K. Precisely, the measure µz above is induced by an element of M+

1 (K) and
defined on the trace σ-algebra on ex (K).

The proof of the above theorem is given at the end of this section. We need some
calculations beforehand.

Lemma 3 to Corollary 2 below can be easily proved by adapting the expositions
given in Alfsen’s monograph [1] to our nonlinear setting. However, to keep the paper
self-contained we outline the proofs.

Set P(K) := Cc(K)− Cc(K).

Lemma 3. P(K) is a real lattice in C(K) and, by the theorem of Stone, dense in
C(K).

Proof. By the remarks following Definition 2, P(K) is a real linear space. Constant
functionals belong to Cc(K), so they belong to P(K). The functionals d(·, u) (u ∈ K)
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belong to P(K), too, and they separate K. Since Cc(K) is closed under forming suprema
and, for f, g, h, i ∈ Cc(K),

sup{f − g, h− i} = sup{f + i, g + h} − (g + i)

inf{f − g, h− i} = (f + h)− sup{g + h, f + i},

the hypotheses of the Stone theorem are fullfilled and, therefore, P(K) is dense in C(K)

We define a partial order ¹ on M(K), the dual of C(K), by

µ ¹ ν :⇐⇒ µ(f) ≤ ν(f) (f ∈ Cc(K))

for µ, ν ∈ M(K). Indeed, ¹ is a partial order: reflexivity and transitivity are obvious
and antisymmetry follows from the foregoing lemma.

To motivate the following definition notice that if (3.1) holds for a measure µ1 ∈
M+

1 (K) (with integration over the whole space K instead of ex(K)) and there exist
a, b ∈ K, λ ∈ (0, 1) and x ∈ E(λ, a, b) such that µ1({x}) > 0, then for the measure
µ2 := µ1 + µ1({x})

(
(1− λ) δa + λ δb − δx) inequality (3.1) also holds and, furthermore,

µ1 ¹ µ2 and µ2({x}) = 0. Obviously, x does not belong to ex(K), so we can in some
way say that µ2 has its mass more near to ex(K) than µ1. As a matter of fact we will
see that measures for which (3.1) holds are to be found among the maximal elements
of the partial order ¹.

So it is natural to give

Definition 6. A measure µ ∈M+(K) is called a boundary measure, if it is maximal
with respect to ¹.

Note that a necessary condition for two measures µ1 and µ2 to be comparable with
respect to ¹ is that they have the same total mass: µ1(1) = µ2(1).

The existence of maximal elements follows from Zorn’s Lemma:

Theorem 4. Let µ ∈M+(K). Then there exists a boundary measure ν ∈M+(K)
such that µ ¹ ν.

Proof. We consider Mµ := {ν ∈ M+(K) : µ ¹ ν} as a partial ordered subset
of the dual of C(K). To apply Zorn’s Lemma let N be a chain in Mµ. This chain is
relatively weak∗-compact and it turns out that the weak∗-accumulation points of N are
upper bounds of N in Mµ. Zorn’s Lemma provides the existence of maximal elements
in Mµ which are maximal in M+(K), too, and therefore, boundary measures

In the special case of a Dirac measure the above theorem reads as

Corollary 1. For every z ∈ K there exists a boundary measure µz ∈M+
1 (K) such

that δz ¹ µz.

It remains to show that the mass of the measure µz of the last corollary is concen-
trated on the extreme points of K. We start with
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Theorem 5. Let µ ∈ M+(K) and f ∈ C(K). Then there exists ν ∈ M+(K) such
that µ ¹ ν and ν(f) = µ(f̂).

Proof. Consider the functional Φ : C(K) → R defined by

Φ(g) = µ(ĝ) (g ∈ C(K)).

By Lemma 1, Φ is subadditive and positive homogeneous. Define v : span(f) → R by
the linear extension of Φ|{f}. It turns out that v is dominated by the sublinear functional
Φ|span{f}. By the Hahn-Banach theorem there exists a linear extension ν : C(K) → R
of v which is dominated by Φ. Precisely,

ν(f) = µ(f̂)

and
ν(g) ≤ µ(ĝ) (g ∈ C(K)). (3.2)

Note that for g ∈ −Cc(K) we have ĝ = g and 0 ∈ −Cc(K). Let 0 ≤ g ∈ C(K). Then
−g ≤ 0 and −̂g ≤ 0. So ν(g) = −ν(−g) ≥ −µ(−̂g) ≥ 0. I.e., ν is positive. By (3.2)
ν(1) = µ(1). So ν ∈ M+(K). It remains to show µ ¹ ν. This follows again from (3.2)
for −Cc(K) ⊆ C(K)

Corollary 2. For a measure µ ∈M+(K) the following statements are equivalent:

(i) µ is maximal with respect to ¹.

(ii) µ(f̂) = µ(f) for all f ∈ C(K).

(iii) µ(f̂) = µ(f) for all f ∈ Cc(K).

Proof. (ii) ⇒ (iii) is trivial and (i) ⇒ (ii) follows directly from the last theorem.
To prove (iii) ⇒ (i) suppose (iii) and choose ν ∈ M+(K) such that µ ¹ ν. To show
µ = ν it is sufficient to show ν(f) ≤ µ(f) for f ∈ Cc(K). Note first that µ ¹ ν means
ν(g) ≤ µ(g) for g ∈ −Cc(K). So for any f ∈ Cc(K) we have ν(f) ≤ ν(f̂) ≤ µ(f̂). By
(iii) the latter one is equal to µ(f) which is the desired assertion

We are now able to prove our main result.

Proof of Theorem 3. Let z ∈ K be fixed and µz be the boundary measure given
by Corollary 1. Formula (3.1) is equivalent to δz ¹ µz if one can show that the mass
of µz is concentrated on ex(K). Theorem 1 supplies the existence of a strictly convex
functional f ∈ Cc(K) and Corollary 2 shows that the maximality of µz enforces the
mass of µz to be concentrated on {f̂ = f} which is by Lemma 2 a measurable subset of
ex(K)

Recall that the functionals d(·, u) (u ∈ M) are convex. So we obtain as a general-
ization of (1.3) the following

Corollary 3. For all z ∈ K there exists µz ∈M+
1 (K) such that

d(z, u) ≤
∫

ex(K)

d(t, u) dµz(t) (u ∈ M). (3.3)
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Now we deal with the converse question: Given a measure µ ∈M+
1 (K), does there

exist a point z ∈ K such that (3.1) holds? And additionally, if the answer is affirmative,
is this point uniquely determined as in the case of a compact convex subset K of a
normed linear space?

The answer to the second question is negative: if we suppose that the set{
n∑

i=1

αi d(xi, ·) + α : α, αi ∈ [0,∞), xi ∈ K, n ∈ N
}

is dense in Cc(K), what means that (3.1) and (3.3) are equivalent, then (see Example 1
in Section 4) z is in general not uniquely determined by the measure µ. The answer to
the first question is positive:

Theorem 6. Let ∅ 6= K ⊆ M be convex and compact and let µ ∈ M+
1 (K). Then

there exists z ∈ K such that (3.1) holds with µz = µ.

Proof. Define

Mϕ :=
{

x ∈ K : ϕ(x) ≤
∫

K

ϕ(t) dµ(t)
}

(ϕ ∈ Cc(K)).

We have to show that ∩ϕ∈Cc(K)Mϕ 6= ∅. For Mϕ being closed subsets of the compact
set K it is sufficient to verify that (Mϕ)ϕ∈Cc(K) has the finite intersection property.

Fix ϕ1, . . . , ϕn ∈ Cc(K) and define ψ := (ϕ1, . . . , ϕn). Since Mϕ = Mϕ+c for any
constant c ∈ R we can suppose ψ ≥ 0. To show that the point p =

∫
K

ψ(t) dµ(t)
belongs to the image of T : K → 2R

n

given by T (x) = {y ∈ Rn : y ≥ ψ(x)} (x ∈ K)
we suppose p /∈ T (K). It can be easily seen that T (K) is convex and closed. Therefore
there exists a ∈ Rn, a ≥ 0 and ‖a‖ = 1, such that infy∈T (K)〈a, y〉 > 〈a, p〉. The
functional η := 〈a, ψ〉 is an element of Cc(K) and we obtain

µ(η) = 〈a, p〉 < inf
y∈T (K)

〈a, y〉 ≤
〈

a,

∫

K

ψ(t) dµ(t)
〉

= µ(η)

which is a contradiction

3.2 A Krein-Milman type theorem. The existence of extremal points can be proved
directly by the lemma of Zorn. However, Theorem 3 tells us that ex(K) is non-empty
and allows us to omit the existence part in order to prove the Krein-Milman Theorem.

For the proof we need some additional property of the underlying convex structure
which is an extension of the notion of negative curvature of W. Herer [8]. For the
motivation of the following definition see also Example 2 in Section 4 and [12].

Definition 7. A metric space (M, d) with a convex structure E is said to be of
negative curvature if for all a, b, c, d ∈ M , λ ∈ [0, 1] and x ∈ E(λ, a, b) there exists
x′ ∈ E(λ, c, d) such that

d(x, x′) ≤ (1− λ) d(a, c) + λ d(b, d). (3.4)

Note that for c = d = u this is precisely the variational inequality (2.1).
Recall that a map A : M ×M → 2M is lower semicontinuous if for all x ∈ M ×M ,

y ∈ A(x) and all sequences xn → x in M × M there exists a sequence yn → y in M
such that yn ∈ A(xn) (n ∈ N).
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Theorem 7. Let (M,d) be a metric space endowed with a convex structure E which
is of negative curvature, and suppose the maps E(λ, ·, ·) (λ ∈ [0, 1]) are lower semicon-
tinuous. If ∅ 6= K ⊆ M is compact and convex, then K = conv ex(K).

Proof. Suppose the contrary, i.e., there exists x ∈ K \H where H = conv ex (K).
The functional d(·,H) defined by d(y, H) = inf{d(y, h) : h ∈ H} (y ∈ K) is continuous.
By the lower semicontinuity of E(λ, ·, ·) (λ ∈ [0, 1]) the set H is convex and, therefore,
by the negative curvature of the space (K, d) the functional d(·, H) turns out to be
convex. Indeed, for any a, b ∈ K, λ ∈ [0, 1] and x ∈ E(λ, a, b) there exist c, d ∈ H such
that d(a, c) = d(a, H) and d(b, d) = d(b, H). If we choose x′ as in the definition above
we have

d(x,H) ≤ d(x, x′) ≤ (1− λ) d(a, c) + λ d(b, d) = (1− λ) d(a,H) + λ d(b,H).

I.e., d(·,H) ∈ Cc(K). Theorem 3 assures the existence of µx ∈ M+
1 (K) such that (3.1)

holds. Then with the contradiction

0 < d(x,H) ≤
∫

ex (K)

d(t,H) dµx(t) = 0

the statement is proved

4. Examples

As a first example we consider the case that there is more than one solution of (2.1).

Example 1 (a set-valued convex structure). If M is a linear space and its metric d
is induced by a norm then, there exists precisely one convex structure which is given by
E(λ, a, b) = {(1− λ) a + λ b} (λ ∈ [0, 1]; a, b ∈ M). This has been shown by S. Gähler
and G. Murphy [5]. An essential asssumption to prove the uniqueness in this case is
that u in (2.1) varies in elements which are not contained in the convex hull of {a, b}.
If one considers only a convex subset K of M , the situation can change drastically as
we will see now.

Let M be the Euclidean triangle

M =
{

(a1, a2) ∈ R2 : 0 ≤ a2 ≤ a1 ≤ 1
}

.

We endow M with the metric d which is induced by the maximum norm on R2. For
λ ∈ [0, 1] and a = (a1, a2), b = (b1, b2) in M define

E(λ, a, b) =
{(

(1− λ) a1 + λ b1, c2

)
: c2 ∈

{
(1− λ) a2 + λ b2, b

′
2

}}
,

where
b′2 = max

{
(1− λ) a2 + λ b2, min{λ, 1− λ}|a1 − b1|

}
.

Because of
min{λ, 1− λ}|a1 − b1| ≤ (1− λ) a1 + λ b1, (4.1)
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E maps on M . To show the variational inequality (2.1) let u = (u1, u2) ∈ M . We
only have to consider the case where the definition of E differs from the usual affine
combination in R2. So we can suppose that

(1− λ) a2 + λ b2 ≤ min{λ, 1− λ}|a1 − b1|

and that the left-hand side of (2.1) is equal to
∣∣u2 −min{λ, 1− λ}|a1 − b1|

∣∣.

Now (2.1) follows from

∣∣u2 −min{λ, 1− λ}|a1 − b1|
∣∣ =

{
u2 −min{λ, 1− λ}|a1 − b1|
min{λ, 1− λ}|a1 − b1| − u2

≤
{

u2 −
(
(1− λ) a2 + λ b2

)
min{λ, 1− λ}|a1 − b1|

≤
{

(1− λ)|u2 − a2|+ λ|u2 − b2|
(1− λ)|u1 − a1|+ λ|u1 − b1|

≤ (1− λ) d(u, a) + λ d(u, b).

So E is a convex structure on (M, d).
Consider now the points a = (0, 0), b = (1, 0) and c =

(
1
2 , 1

2

)
in M . We have

E
(

1
2 , a, b

)
= {( 1

2 , 0
)
, c}. Define K := conv{a, b}. This is the Euclidean triangle with

edges {a, b, c}. Indeed, for any a = (a1, a2) and b = (b1, b2) in the triangle we have
estimate (4.1) and

min{λ, 1− λ}|a1 − b1| ≤ 1− (
(1− λ) a1 + λ b1

)

which means that E([0, 1], a, b) lies under the graphs of the identity and x 7→ 1 − x,
respectively. I.e., the triangle is a closed convex set and it contains K. That the triangle
is contained in K is obvious.

By considering the first coordinate we see that a and b are extremal points of K. So
we have ex(K) = {a, b} and z in Corollary 3 is not uniquely determined by the measure
µz = 1

2δa + 1
2δb.

Example 2 (spaces with curvature ≤ 0). This example deals with the inner metric
structure of metric spaces. For definitions and a detailed background we refer to R.
Rinow [12].

By (2.3) a necessary condition for a point x to be an element of E(λ, a, b) is that
x lies between a and b. I.e., the space (M, d) must be convex in the metric sense. By
a theorem of K. Menger a complete metric space which is convex in the metric sense
is a space with inner metric, and for every two different points a, b ∈ M there exists a
shortest curve C = C(a, b) connecting them.

If we suppose the existence of a continuous function f from M ×M to the space
of all shortest curves in M (with reduced parametrization) and suppose (M, d) has
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curvature ≤ 0, then [12: Section 47/Subsection 1] tells us that for any a, b, c, d ∈ M the
function λ 7→ d

(
f(a, b)(λ), f(c, d)(λ)

)
is continuous and convex. So with E(λ, a, b) :=

f(a, b)(λ) (a, b ∈ M,λ ∈ [0, 1]) we obtain a convex structure and (M, d) is of negative
curvature in the sense of Definition 7. Also, we have E(λ, ·, ·) (λ ∈ [0, 1]) is continuous
since f is continuous.

To get a more concrete example consider a complete simple connected Riemannian
manifold with geodesic metric which is of non-positive sectional curvature, e.g. the
hyperbolic plane (see H. Busemann [3], S. Gähler and G. Murphy [5], respectively).
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