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Abstract. We describe some connections between three different fields: combinatorics (um-
bral calculus), functional analysis (linear functionals and operators) and harmonic analysis
(convolutions on group-like structures). Systematic usage of cancellative semigroups, their
convolution algebras, and tokens between them provides a common language for description of
objects from these three fields.
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1. Introduction

We discuss some interactions between the representation theory of semigroups, umbral
calculus in combinatorics, and linear operators in functional analysis. Our main bridge
between them is the notion of cancellative semigroups, convolution algebras over them
and tokens from such a semigroup to another.

We look for a vocabulary, which is reasonably general and allows us to translate
without alterations as much about umbral calculus as possible. The language we select
relies on convolution algebras. Such algebras arise from essentially different sources like
groups, posets, or linear operators. The goal of the present paper is to study properties
of convolutions algebras, which are independent from their origins.

Umbral calculus was known long ago but it was not well understood till very recent
time. During its history it took many different faces: linear functionals [14], Hopf
algebras [13], axiomatic definition [19] to list only few different interpretations.

The goal of our paper is to give a model, which realizes described features by means
of common objects. What is the purpose of such models? One can think on the Poincaré
model of non-Euclidean geometry in a disk. The model does not only demonstrate the
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logical consistency of Lobachevski’s geometry. Another (no less important) psycho-
logical function is to express the unusual geometry via objects of the intuitive classic
geometry. The logical consistence of umbral calculus is evident (from papers [13, 14,
19], for example). But it is our feeling that some more links with fundamental objects
are still desirable.

The paper presents basic definitions and properties of cancellative semigroups, to-
kens, convolution algebras, and their relations with umbral calculus. We will illustrate
our consideration mostly by the simplest example: the cancellative semigroup of non-
negative integers N+. More non-trivial examples will be present elsewhere.

The layout is as follows. In Section 2 we sketch three different interpretations of
umbral calculus from papers [13, 14, 19]. Section 3 introduces cancellative semigroups,
convolutions, and tokens and their basic properties. We use them in Section 4 to describe
principal combinatorial objects like delta families, generating functions, and recurrence
operators. We conclude the paper with Section 5 which links our construction with
three realizations of umbral calculus from [13, 14, 19] recalled in Section 2.

2. Umbral calculus

Umbral calculus was put on a solid ground by G.-C. Rota and collaborates [11, 13, 14,
19] in three different ways at least. We repeat here some essential definitions from these
papers.

2.1 Finite operator description. The three ways are based essentially on the two
following fundamental notions [16]:

1. A polynomial sequence of binomial type, that is, a sequence of polynomials
pn (deg pn = n) with complex coefficients, satisfying the identities

pn(x + y) =
n∑

k=0

pk(x)pn−k(y). (2.1)

Our definition is different from the original one – we take polynomials divided by n!.
Our choice will be explained shortly in connection with the group property. Such form
of the defining identity together with the more accurate name polynomial sequence of
integral type were used in [4]. Paper [10] also start from this formula, the polynomials
are called there convolution polynomials and their investigation is made with the help
of Mathematica software.

2. A shift-invariant operator, namely a linear operator S on the vector space P of
all such polynomials, which commutes with the ordinary derivative Dp = p′, that is, an
operator S with the property TDp = DTp for all polynomials p. Within shift invariant
operators the following one plays an exceptional role: an operator Q is said to be a delta
operator (associated to a polynomial sequence pn) when

Qpn = pn−1 or, more general, Qkpn = pn−k. (2.2)
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2.2 Hopf algebras description. There is a canonical isomorphism between shift-
invariant operators and linear functionals (see Proposition 3.11), thus we can think
on powers of delta Qk as functionals qk on polynomials connected with an associated
polynomial sequence pn by duality:

〈qk, pn〉 = δkn (2.3)

which easily follows from (2.2). Here δkn is the Kronecker delta 1). We are going to
show that delta operators and polynomial sequences are not only dual notions, but two
faces of the same object – tokens between cancellative semigroups (Examples 3.15 and
3.16).

2.3 The semantic description. This subsection contains definitions from [18, 19].

Definition 2.1 (see [18]). An umbral calculus is an ordered quadruple, consisting
of the following items:

1. A commutative integral domain D whose quotient field is of characteristic zero.

2. An alphabet A whose elements are termed umbrae and denoted by Greek letters.
This alphabet generates the polynomial ring D[A], the elements of which are termed
umbral polynomials.

3. A linear functional eval: D[A] → D, such that eval (1) = 1, i.e. eval leaves D
fixed, and such that

eval (αiβj · · · γk) = eval (αi) eval (βj) · · · eval (γk) (2.4)

where α, β, . . . , γ are distinct umbrae.
4. A distinguished umbrae ε in A, such that eval (εi) = δi,0. The umbrae ε is

sometimes called the augmentation.

Definition 2.2 (see [18]). Let f and g be two umbral polynomials in D[A]. Then
f and g are said to be umbrally equivalent, written f ' g, when eval (f) = eval (g).

Definition 2.3 (see [18]). Two umbral polynomials p and q are termed exchange-
able, written p ≡ q, when pn ' qn for all n ≥ 0.

1) We use the same letter δ to denote also the Dirac delta function. The Kronecker delta δkn

and the Dirac function δ(x) can be distinguished by their arguments.
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3. Cancellative semigroups and tokens

3.1 Cancellative semigroups: definition and examples. Our consideration is
based on the following notion of semigroups with cancellation or cancellative semigroups
[3: Section IV.1.1].

Definition 3.1. A semigroup C is called a left or a right cancellative semigroup
if for any a, b, c ∈ C the identity ca = cb or ac = bc, respectively, implies a = b. A
cancellative semigroup is both a left and a right cancellative semigroup.

Equivalently, a left or right cancellative semigroup is defined by the condition that
for arbitrary a, b ∈ C the equation a · x = b or x · a = b, respectively, has at most one
solution (if any). We hope that the readability of the paper will be better if we use the
notion c-semigroup to denote a cancellative semigroup. We also use the notion of a c-set
C (which is weaker than c-semigroup) by allowing the multiplication (a, b) 7→ ab on C
be defined only on a proper subset of C × C.

Definition 3.2. An element e is called a (left, right) source of a (left, right) c-
semigroup C if both equations (the first equation, the second equation) x · e = b,
e · x = b do (does, does) have a (unique) solution for any b ∈ C.

Obviously, a (left, right) identity on C will be a (left, right) source.
We still denote the unique-if-exist solutions to equations xa = b and ax = b by

[ba−1] and [a−1b], respectively. Here the braces stress that both [ba−1] and [a−1b] are
monosymbols and just “a−1” is not defined in general. Let us also assume that all
c-semigroups under consideration can be equipped by an invariant measure db, namely
db = d(ab) for all a ∈ C. We will not discuss herein conditions for its existence or
possible modifications of our constructions for the case of quasi-invariant measures.

C-semigroups were investigated as an algebraic object in connection with groups. It
is particularly known that any commutative c-semigroup can be embedded in a group,
but this is not necessary true for a non-commutative c-semigroup [3: Section IV.1.1].
Our motivation in this object is the following. If we have a group G, then the important
associated object is the right regular (linear) representation by “shifts” πgf(h) = f(hg)
in Lp(G, dµ). Then one can introduce their linear span – convolutions:

Kf(h) =
∫

G

k(g)πg dg f(h) =
∫

G

k(g)f(hg) dg. (3.1)

Thus one may consider the composition of convolutions K2K1 with two kernels k1, k2 ∈
L1(G):

K2K1f(h) =
∫

G

k2(g2)
∫

G

k1(g1)f(hg2g1) dg1dg2

=
∫

G

(∫

G

k2(g2) k1(g−1
2 g) dg2

)
f(hg) dg

where g = g2g1. Thereafter it again is a convolution with the kernel

k(g) =
∫

G

k2(g2) k1(g−1
2 g) dg2. (3.2)
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An important role in the consideration is played by the unique solvability of equation
g1g2 = g with respect to g1. For an algebraic structure weaker than a group, if the
inverse g−1 is not defined, one can try to define a composition of convolutions by the
formula

(k1 ∗ k2)(h) =
∫∫

g1g2=h

k1(g1) k2(g2) dg1dg2. (3.3)

However, such a definition generates problems with the understanding of the set double
integral (3.3) is taken over and the corresponding measure. These difficulties disappear
for left c-semigroups: for given b and a there is at most one such x = [a−1b] that ax = b.
Thus we can preserve for a c-semigroup C definition (3.2) with the small modification

(k2 ∗ k1)(b) =
∫

C

k2(a) k1([a−1b]) da. (3.4)

To avoid problems with the definition of convolution we make the agreement that
for any function f

f([a−1b]) = 0 when [a−1b] does not exist in C (3.5)

(i.e., the equation ax = b does not have a solution). Our agreement is equivalent to the
introduction of an incidence algebra of functions f(a, b), such that f(a, b) = 0 for a > b
for a poset (see Example 3.7).

Remark 3.3. As soon as one passes directly to convolution algebras and aban-
don points of c-semigroups themselves, future generalizations in the spirit of non-
commutative geometry [6] are possible.

We give several examples of c-semigroups now.

Example 3.4 (Principal). The main source of c-semigroups is the following con-
struction. Let us have a set S with an additional structure A. Then the set of all
mappings from S into S, which preserve A, forms a right c-semigroup.

Example 3.5. If one considers in Example 3.4 only mappings S onto S, then they
give us a definition of groups. Moreover, a large set of c-semigroups can be constructed
from groups directly. Namely, let C be a subset of a group G such that C ·C ⊂ C. Then
C with multiplication induced from G will be a c-semigroup. In such a way we obtain
the c-semigroup of positive real (natural, rational) numbers with the usual addition.
Positive entire numbers with multiplication also form a c-semigroup. If C contains the
identity e of G, then e is a source of C. Particularly, entire group G is also a c-semigroup.
We should note that even for groups some of our technique will be new (for example
tokens), at least up to the author knowledge.

The last example demonstrates that we have many c-semigroups with (left, right)
invariant measures such that Fubini’s theorem holds. This follows from corresponding
constructions for groups.

We sign out the most important for the present paper example from the described
family and his alternative realization.
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Proposition 3.6. The algebra of formal power series in a variable t is topologically
isomorphic to the convolution algebra C(N+) of continuous functions with point-wise
convergence over the c-semigroup of non-negative integers N+ with the discrete topology.
The subalgebra of polynomials in one variable t is isomorphic to the convolution algebra
C0(N+), which is dense in C(N+), of compactly supported functions on N+.

The proof is hardly needed. Note that “puzzling questions” about convergence of
formal power series and continuity of functionals on them correspond to the natural
topology on C(N+).

A less obvious family of examples can be constructed from a structure quite remoted
(at least at the first glance) from groups.

Example 3.7. Let P be a poset (i.e. partialy ordered set ) and let C denote the
subset of the Cartesian square P ×P such that (a, b) ∈ C if and only if a ≤ b (a, b ∈ P ).
We can define a multiplication on C by the formula

(a, b)(c, d) =
{

undefined if b 6= c
(a, d) if b = c. (3.6)

One can see that C is a c-set. If P is locally finite, i.e. for any a ≤ b (a, b ∈ P ) the
number of z between a and b (i.e. a ≤ z ≤ b) is finite, then we can define a measure
d(a, b) = 1 on C for any (a, b) ∈ C. With such a measure (3.4) defines a correct
convolution on C:

h(a, b) =
∫

C

f(c, d) g([(c, d)−1(a, b)]) d(c, d) =
∑

a≤z≤b

f(a, z) g(z, b). (3.7)

The constructed algebra is the fundamental incidence algebra in combinatorics [7].
Our present technique can be successfully applied only to c-semigroups, not to c-

sets. Thus it is an important observation that the reduced incidence algebra construction
[7: Section 4] contracts c-sets to c-semigroups in many important cases (however, not
in general). Particularly, all combinatorial reduced incidence algebras listed in [7: Ex-
amples 4.5 - 4.9] are convolution algebras over c-semigroups. However, the incidence
coefficients should be better understood.

Example 3.8. Any groupoid (see [22] and references herein) is a c-set.

After the examples given, it is reasonable to expect an applicability of c-semigroups
to combinatorics. We describe applications in the next section explicitly.

Now we point out some basic properties of c-semigroups, trying to be as near as
possible to their prototype – groups. All results will be stated for left c-semigroups.
Under agreement (3.5) we have

Lemma 3.9 (Shift invariance of integrals). For any function f we have
∫

C

f(c) dc =
∫

C

f([a−1b]) db ∀a ∈ C. (3.8)

Proof. It follows from the observation that the integrals in both sides of (3.8) are
taken over the whole C and that the measure db is invariant
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One should be warned that
∫

C
f(c) dc 6= ∫

C
f(ab) db for c-semigroups (unlike for

groups) in general as well as Lemma 3.9 is false for c-sets. Another very useful property
(which c-semigroups possess from groups) is a connection between linear functionals
and shift invariant operators. Again unlike in the group case we should make the right
choice of shifts.

Definition 3.10. We define a left shift operator λa on the space of function L1(C)
by the formula [λaf ](b) = f(ab). A linear operator S is (left) shift-invariant if Sλa =
λaS for all a ∈ C. The augmentation ε associated to a right source e is the linear
functional defined by ε(f) = f(e).

Proposition 3.11. Let C be a c-semigroup with a right source e. The following
three spaces are in one-to-one correspondence:

1. The space B(L) of liner functionals on the space of functions L(C).
2. The space B(S) of shift invariant operators.
3. The algebra of convolutions C with functions from L∗(C).

The correspondences are given by the formulas
(
l ∈ L∗(C), S ∈ S, k ∈ C, f ∈ L(C)

)

l → S

S → l

k → l

k → S

where [Sf ](a) = 〈l, λaf〉
where lf = ε(Sf)

where lf =
∫

C
k(c)f(c) dc

where Sf(a) =
∫

C
k(c)f(ac) dc.

Proof. Let us have a linear shift invariant operator S. Clearly, its composition
lf = εSf = [Sf ](e) with the augmentation is a linear functional. By the definition of
distributions [9: Section III.4] such a linear functional can be represented as integral
lk =

∫
C

k(c)f(c) dc with a (probably generalized) function k from the dual space. For
any function f we have f(a) = λ[ae−1]f(e), thus by the shift-invariance of S, Sf(a) =
[λ[ae−1]Sf ](e) = [Sλ[ae−1]f ](e) or, by the definition of l, Sf(a) = 〈l, λ[ae−1]f〉. The
integral form of the last identity is Sf(a) =

∫
C

k(c)f(ac) dc, which coincides with (3.1)

An essential rôle in all three approaches (operators, Hopf algebras, semantics) to
umbral calculus is played by linear functionals (and thus associated linear shift-invariant
operators). Connections between linear functionals and shifts can be greatly simplified if
we are able to express shifts via some “linear coefficients” of functions. The known tool
to do that is the Fourier transform. An alternative tool for c-semigroups is presented
in the next section.

3.2 Tokens: Definition and Examples. We formalize identity (2.1) in the following
notion, which will be useful in our consideration and seems to be of interest for the
representation theory. The main usage of this notion is t-transform defined in the next
subsection.

Definition 3.12. Let C1 and C2 be two c-semigroups. We will say that a function
t(c1, c2) on C1 × C2 is a token from C1 to C2 if for any c′1 ∈ C1 and any c2, c

′
2 ∈ C2 we

have ∫

C1

t(c1, c2) t([c−1
1 c′1], c

′
2) dc1 = t(c′1, c2c

′
2). (3.9)
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Remark 3.13. We derive this definition “experimentally” from (2.1) (see also the
examples bellow). However, one can discover it “theoretically” as well. We already
know from Proposition 3.11 that a shift-invariant operator S can be represented as a
combination of a shift and a linear functional: [Sf ](a) = 〈l, λaf〉. This suggests to
represent a function f as a linear combination

f(b) =
∫

e(b, c) f̂(c) dc (3.10)

of elementary components e(b, c), which behave simply under shifts. Here “simply”
means do not destroy linear combination (3.10).

A way to achieve this is provided by the Fourier transform. Here e(b, c) = eibc and
the action of a shift λa reduces to multiplication:

λae(b, c) = e(b + a, c) = eiace(b, c). (3.11)

This probably is the simplest solution but not the only possible one. More general
transformation of this sort is given by abstract wavelets (or coherent states):

λae(b, c) = e(b + a, c) =
∫

k(a, c, c1) e(b, c1) dc1 (3.12)

where we can particularly select k(a, c, c1) = eiacδ(c − c1) to get the rule of exponents
(3.11) and k(a, c, c1) = e(c−1

1 c, a) to get the token property (3.9). Then shifts act on
functions defined via (3.10) as

λaf(b) = λa

∫
e(b, c) f̂(c) dc

=
∫∫

k(a, c, c1) e(b, c1) dc1 f̂(c) dc

=
∫

e(b, c1)
(∫

k(a, c, c1) f̂(c) dc

)
dc1.

Thus it again looks like (3.10) where the action of a shift reduced to an integral operator
on the symbol f̂(c). In the case of token shifts affect in the way (3.9), which stand
between the extreme simplicity of (3.11) and the almost unaccessible generality of (3.12).
This analogy with the Fourier transform will be employed in the next subsection for the
definition of t-transform.

Remark 3.14. Relationships between harmonic analysis (group characters) and
token-like structures (polynomial of binomial type) was already pointed in [5]. Note
that tokens are a complementary (in some sense) tool for the exponent eibc. While
both are particularly useful in the investigation of shift invariant operators they work
in different ways. The Fourier transform maps shift-invariant operators to operators
of multiplication. t-transform defined in the next subsection by means of tokens maps
shift-invariant operators on one c-semigroup to shift-invariant operators on another c-
semigroup.

We present examples of tokens within classical objects.
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Example 3.15. Let C1 be the c-semigroup of non-negative natural numbers N+

and C2 be the c-semigroup (a group in fact) of real numbers, both equipped by addition.
Let t(n, x) = pn(x), where pn is a polynomial sequence of binomial type. Then the
characteristic property of a sequence (2.1) is equal to the definition of token (3.9) read
from the right to the left.

Example 3.16. We exchange C1 and C2 from the previous example, they are
real numbers and non-negative natural numbers, respectively. Let us take a shift-
invariant operator L. Any its power Ln is again a shift-invariant operator represented
by a convolution with a function l(n, x) with respect to the variable x. The identity
Ln+k = LnLk can be expressed in the term of the correspondent kernels of convolutions:

∫

R
l(n, x) l(k, y − x) dx = l(n + k, y). (3.13)

The first two examples with their explicit duality generate a hope that our develop-
ment can be of some interest for combinatorics. But before working out this direction
we would like to present some examples of tokens outside combinatorics.

Example 3.17. Let C1 = Rn and C2 = Rn×R+ – the “upper half space” in Rn+1.
For the space of harmonic functions in C2 there is an integral representation over the
boundary C1:

f(v, t) =
∫

C1

P (u; v, t)f(u) du (u ∈ C1, (v, t) ∈ C2).

Here P is the celebrated Poisson kernel P (u; v, t) = 2
|Sn|

t

(|u−v|2+t2)
n+1

2
with the property

usually referred as a semigroup property [2: Chapter 3/Prob. 1]

P (u; v + v′, t + t′) =
∫

C1

P (u′; v′, t′)P (u− u′; v, t) du′.

We meet the token in analysis.

Example 3.18. We preserve the meaning of C1 = Rn and C2 = Rn × R+ from
the previous example and define the Weierstrass (or Gauss-Weierstrass) kernel by the
formula

W (z;w, τ) = 1
(
√

2πτ)n
e−

|z−w|2
2τ = 1

(2π)n

∫

Rn

e−
τ
2 |u|2e−(u,z−w) du

where z ∈ C1 and (w, τ) ∈ C2. The function W is the fundamental solution to the heat
equation [8: Section 2.3]. We again have [2: Chapter3, Prob. 1]

W (z; w + w′, τ + τ ′) =
∫

C1

W (z′; w′, τ ′)W (z − z′; w, τ) dz.

Thus we again meet a token.

Examples 3.17 and 3.18 open a huge list of integral kernels [2] which are tokens of
analysis. We will see the role of tokens for analytic function theory and reproducing
kernels later.

We finish the subsection by the following elementary property of tokens.
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Lemma 3.19. Let the c-semigroup C2 has a left source e2. Then k(c1) = t(c1, e2)
has the reproducing property

t(c′1, c2) =
∫

C1

k(c1) t
(
[c−1

1 c′1], [e
−1
2 c2]

)
dc1

for all c′1 ∈ C1 and c2 ∈ C2. Particularly, if e2 ∈ C2 is a left unit, then

t(c′1, c2) =
∫

C1

k(c1) t
(
[c−1

1 c′1], c2

)
dc1

for all c′1 ∈ C1 and c2 ∈ C2.

Proof. We apply the characteristic property of a token (3.9) for particularly se-
lected elements in C:

t(c′1, c2) = t(c′1, e2[e−1
2 c2])

=
∫

C1

t(c1, e2)t
(
[c−1

1 c′1], [e
−1
2 c2]

)
dc1

=
∫

C1

k(c1)t
(
[c−1

1 c′1], [e
−1
2 c2]

)
dc1

and the statement is proved

3.3 t-transform. We would like now to introduce a transformation associated with
tokens (t-transform). t-transform is similar to the Fourier and wavelet transforms.
The main difference – we do not insist that our transformation maps convolutions to
multiplications. We will be much more modest – our transformation maps convolutions
to other convolutions, eventually more simple or appropriate.

Having a function f̂(c1) on C1 we can consider it as coefficients (or a symbol) and
define the function f(c2) on C2 by means of the token t(c1, c2):

f(c2) =
∫

C1

f̂(c1) t(c1, c2) dc1. (3.14)

We will say that f(c2) ∈ A(C2) if in (3.14) f̂(c1) ∈ C0(C1) – the space of continuous
functions on C1 with compact support. So we can consider the token t(c1, c2) as a
kernel of an integral transform C0(C1) → A(C2). The use of the notation reserved for
the Fourier transform (“hat”) is justified (at least partially) by Remark 3.13.

We would like to mention the following

Corollary 3.20. The reproducing property of k(c1) from Lemma 3.19 can be ex-
tended by linearity to A(C1):

f(c′1) =
∫

C1

k(c1) f([c−1
1 c′1]) dc1.
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Example 3.21. We continue with a polynomial sequence of binomial type pk(x),
which was presented as a token p(k, x) in Example 3.15. Having few numbers â1, â2, . . .,
which are interpreted as a function â(k) in C0(N+), we can construct a polynomial

a(x) =
∫

N+

â(k) p(k, x) dk =
∑

k

âkpk(x),

that is a function on R.

Example 3.22. Let δ(k) be a token from R to N+ (Example 3.16). Then for a
smooth at point 0 function f the integral transformation f (k)(0) =

∫
R f(x) δ(k)(x) dx

produces a function on N+.

Example 3.23. Let a real-valued function f be defined on C1 = Rn. Then we can
define the function Pf on C2 = Rn × R+ by means of the Poisson integral:

Pf(v, t) =
∫

C1

P (u; v, t)f(u) du = 2
|Sn|

∫

Rn

t

(|u− v|2 + t2)
n+1

2

f(u) du.

The image is a harmonic function solving the Dirichlet problem (see [20: Appendix/Sec-
tion 2] and [8: Subsection 2.2.4]).

Example 3.24. Similarly we define the Weierstrass transform

Wf(w, τ) =
∫

C1

W (z;w, τ)f(z) dz = 1
(
√

2πτ)n

∫

Rn

e−
|z−w|2

2τ f(z) dz.

The image is a function satisfying the heat equation.

Let K be a convolution on C2 with kernel k. Then it acts on a function f defined
by (3.14) as

[Kf ](c2) =
∫

C2

k(c′2)f(c2c
′
2) dc′2

=
∫

C2

k(c′2)
∫

C1

f̂(c′1)t(c
′
1, c2c

′
2) dc′1dc′2

=
∫

C2

k(c′2)
∫

C1

f̂(c′1)
∫

C1

t(c1, c2)t([c−1
1 c′1], c

′
2) dc1dc′1dc′2 (3.15)

=
∫

C1

∫

C1

∫

C2

k(c′2) t([c−1
1 c′1], c

′
2) dc′2 f̂(c′1) dc′1 t(c1, c2) dc1

=
∫

C1

∫

C1

∫

C2

k(c′2) t(c′′1 , c′2) dc′2 f̂(c1c
′′
1) dc′′1 t(c1, c2) dc1 (3.16)

=
∫

C1

(∫

C1

[T k](c′′1)f̂(c1c
′′
1) dc′′1

)
t(c1, c2) dc1 (3.17)

where
[T k](c′′1) =

∫

C2

k(c′2) t(c′′1 , c′2) dc′2. (3.18)

We used in (3.15) the characteristic property of tokens (3.9) and the change of variables
c′′1 = [c−1

1 c′1] in (3.16). Note that big brasses in (3.17) contain a convolution on C1 with
kernel (3.18). So transformation (3.14) maps convolutions on C2 to convolutions on C1.

The mapping deserves a special name.
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Definition 3.25. t-transform is a linear integral transformation C(C2) → C(C1)
defined on kernels by the formula

[T k](c1) =
∫

C2

t(c1, c2) k(c2) dc2. (3.19)

According to Lemma 3.9 we have

[T k](c1) =
∫

C2

t(c1, [c−1
2 c′2]) k([c−1

2 c′2]) dc′2 ∀ c2 ∈ C2. (3.20)

The t-transform is more than just a linear map:

Theorem 3.26. t-transform is an algebra homomorphism of the convolution alge-
bra C(C2) to the convolution algebra C(C1), namely

[T (k1 ∗ k2)] = [T k1] ∗ [T k2] (3.21)

where ∗ in the left-hand side denotes the composition of convolutions on C2 and in the
right-hand side on C1.

Proof. We silently assume that the conditions of Fubini’s theorem are fulfilled. It
turns to be that Fubini’s theorem will be our main tool, which is used in almost all
proofs. Thereafter we assume that it fulfils through the entire paper. We have:

[T (k2 ∗ k1)](c′1)

=
∫

C2

t(c′1, c
′
2)

∫

C2

k2(c2) k1([c−1
2 c′2]) dc2 dc′2

=
∫

C2

∫

C2

∫

C1

t(c1, c2) t([c−1
1 c′1], [c

−1
2 c′2]) dc1k2(c2) k1([c−1

2 c′2]) dc2 dc′2 (3.22)

=
∫

C1

∫

C2

t(c1, c2) k2(c2) dc2

∫

C2

t([c−1
1 c′1], [c

−1
2 c′2]) k1([c−1

2 c′2]) dc′2 dc1

=
∫

C1

[T k2](c1) [T k1]([c−1
1 c′1]) dc1. (3.23)

Of course, we use in transformation (3.22) the characteristic property of the tokens (3.9)
and conclusion (3.23) is based on (3.20)

Knowing the connection between shift invariant operators and convolutions (Propo-
sition 3.11) we derive

Corollary 3.27. t-transform maps left shift-invariant operators on C2 to left shift-
invariant operators on C1.
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4. Shift invariant operators

In this section we present some results in terms of c-semigroups, tokens and t-transforms
and illustrate them by examples from combinatorics and analysis.

4.1 Delta families and basic distributions. This subsection follows the paper [17]
with appropriate modifications.

Definition 4.1. Let C1 and C2 be two c-semigroups, and let e1 be a right source
of C1. We will say that linear shift-invariant operators Q(c1) (c1 ∈ C1) on A(C2) over
a c-semigroup C2 form a delta family if

1. for a token t(c1, c2), Q(c1) t(c1, c2) = t(e1, c2) for all c2 ∈ C2

2. the semigroup property Q(c1)Q(c′1) = Q(c1c
′
1)

hold.

Example 4.2. Let C1 and C2 be as in Examples 3.15 and 3.21. Let also t(n, x) =
xn

n! . Then the family of positive integer powers of the derivative Q(n) = Dn forms a
delta family. Other delta families for given C1 and C2 are listed in [12: Section 3].
They are positive integer powers of difference, backward difference, central difference,
Laguerre, and Abel operators.

Example 4.3. For the Poisson kernel from Example 3.17 we can introduce a delta
family as Euclidean shift operators Q(x) f(v, t) = f(v + x, t) (x ∈ Rn).

Proposition 4.4. Let q(c1, c2) be the kernel corresponding to a delta family Q(c1)
as a convolution over C2. Then q(c1, c2) is a token from C2 to C1. Namely,

q(c1c
′
1, c

′
2) =

∫

C2

q(c1, c2) q(c′1, [c
−1
2 c′2]) dc2.

Proof. This is a simple restatement in terms of kernels of the semigroup property
Q(c1)Q(c′1) = Q(c1c

′
1)

Definition 4.5. A function t(c1, c2) is called the basic distribution for a delta family
Q(c1) if

1. t(c1, e2) = k(c1) has the reproducing property from Lemma 3.19 over C1 (par-
ticularly, if k(c1) = δ(c1))

2. Q(c1) t(c′1, c2) = t([c−1
1 c′1], c2).

Example 4.6. For the classic umbral calculus this conditions turn to be p0(x) = 1,
pn(0) = 0 (n > 0) and Qpn = pn−1.

Example 4.7. For the Poisson integral the reproducing property can be obtained
if we consider a generalized Hardy space H2(Rn+1

+ ) of L2-integrable functions on Rn,
which are limit value of harmonic functions in the upper half space Rn×R+. Then the
kernel k(u− u′) is defined as a distribution given by the limit of integral on H2(Rn):

f(u) =
∫

Rn

k(u− u′) f(u′) du′

= 2
|Sn| lim

(v,t)→(0,0)

∫

Rn

t

(|(u− u′)− v|2 + t2)
n+1

2

f(u′) du′.
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This follows from the boundary property of the Poisson integral (see [20: Appendix/Sec-
tion 2] and [8: Subsection 2.2.4]).

Theorem 4.8. Let C1 and C2 be c-semigroups.
1. If t(c1, c2) is a basic distribution for some delta family Q(c1) (c1 ∈ C1), then

t(c1, c2) is a token from C1 to C2.
2. If t(c1, c2) is a token from C1 to C2, then it is a basic distribution for some delta

family Q(c1) (c1 ∈ C1).

Proof. Let t(c1, c2) be a basic distribution for Q(c1) and let q(c2, c1) be a kernel
of the operator Q(c1) as a convolution on C2. This means that

〈
q(c2, c1), t(c′1, c2)

〉
= k([c−1

1 c′1])

has a reproducing property due to Lemma 3.19 and Corollary 3.20. Thus we can trivially
express t(c′1, c

′
2) as integral t(c′1, c

′
2) =

∫
C1

t(c1, c
′
2)

〈
q(c2, c1), t(c′1, c2)

〉
dc1. By linearity

we have a similar expression f(c′2) =
∫

C1
t(c1, c

′
2)

〈
q(c2, c1), f(c2)

〉
dc1 for any function in

A(C2). In particular,

t(c′1, c
′′
2c′2) =

∫

C1

t(c1, c
′
2)

〈
q(c2, c1), t(c′1, c

′′
2c2)

〉
dc1.

But 〈
q(c2, c1), t(c′1, c

′′
2c2)

〉
= Q(c1)λc′′1 t(c′1, c2)

∣∣
c2=e2

= λc′′2 Q(c1)t(c′1, c2)
∣∣
c2=e2

= λc′′2 t([c−1
1 c′1], c2)

∣∣
c2=e2

= t([c−1
1 c′1], c

′′
2)

and therefore
t(c′1, c

′′
2c′2) =

∫

C1

t
(
c1, c

′
2) t([c−1

1 c′1], c
′′
2

)
dc1,

that is, the distribution t(c1, c2) is a token.
Suppose now that t(c1, c2) is a token. We define a family of operators Q(c1) on

A(C2) by identities Q(c1) t(c′1, c2) = t([c−1
1 c′1], c2) and extend it to the whole A(C2) by

linearity. The semigroup property Q(c1)Q(c2) = Q(c1c2) follows automatically. The
main point is to show that Q(c1) are shift invariant. We may trivially rewrite the
characteristic property of the token as

t(c′1, c
′
2c2) =

∫

C1

t(c1, c
′
2)Q(c1) t(c′1, c2) dc1

which can be extended by linearity as f(c′2c2) =
∫

C1
t(c1, c

′
2)Q(c1) f(c2) dc1 to any

function in A(C2). Now replace f by Q(c′1)f to get

Q(c′1)f(c′2c2) =
∫

C1

t(c1, c
′
2) Q(c′1c1) f(c2) dc1.
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But the left-hand side of the previous identity is nothing else as [λc′2Q(c′1)f ](c2) and the
right-hand side is

∫

C1

t(c1, c
′
2)Q(c′1c1) f(c2) dc1 = Q(c′1)

(∫

C1

t(c1, c
′
2)Q(c1)f(c2) dc1

)

= Q(c′1)(f(c′2c2))

= [Q(c′1)λc′2f ](c2),

i.e. Q is shift-invariant

The following Lemma is obvious.

Lemma 4.9. Let q(c2, c1) be the kernel of Q(c1) as a convolution on C2. Then the
t-transform for the token q(c2, c1) is a right inverse operator for the t-transform (3.19)
with respect to t(c1, c2).

The above results justify the following definition.

Definition 4.10. Let t(c1, c2) be the basic distribution for a delta family Q(c1).
Then we call t(c1, c2), which is a token by Theorem 4.8, and the kernel q(c2, c1) of Q(c1),
which is a token by Proposition 4.4, dual tokens.

Example 4.11. The polynomials t(n, x) = xn

n! and distributions q(n, x) = δ(n)(x)
(which are kernels of derivative operators D(k)) are canonical dual tokens.

As the reader may see in Theorem 4.8 we almost do not change proofs of [17: Section
2/Theorem 1]. So we give our version of the next two results without proofs.

Theorem 4.12 (First Expansion Theorem). Let S be a shift-invariant operator on
A(C2) and let Q(c1) (c1 ∈ C1) be a delta family with basic distribution t(c1, c2). Then

S =
∫

C1

a(c1)Q(c1) dc1

with a(c1) =
〈
s(c2), t(c1, c2)

〉
c2

= S t(c1, c2)
∣∣
c2=e2

.

Theorem 4.13 (Isomorphism Theorem). Let Q(c1) (c1 ∈ C1) be a delta family
with basic distribution t(c1, c2). Then a mapping which carries a shift-invariant operator
S to a function

s(c2) =
∫

C1

a(c1) q(c2, c1) dc1

with a(c1) = 〈s(c2), t(c1, c2)〉c2 = S t(c1, c2)
∣∣
c2=e2

is an isomorphism of an operator
algebra to a convolution algebra on C2.

Example 4.14. For a sequence of binomial type pn and the associated delta op-
erator Q we can decompose a shift invariant operator S on the space of polynomials
as

S =
∞∑

k=0

akQk, where ak = [Spk(x)]x=0.
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Example 4.15. Let a shift invariant operator S on H2(Rn+1
+ ) be given by a kernel

s(v, t):

[Sf ](v, t) =
∫

Rn+1
+

s(v′, t′)f(v + v′, t + t′) dv′dt′.

Then we can represent S by means of the delta family Q(u) (u ∈ Rn) from Example
4.3 as

S =
∫

Rn

a(u) Q(u) du where a(u) =
∫

Rn+1
+

s(v, t)P (u; v, t) dvdt.

And a similar representation is true for the Weierstrass kernel.

The following result has a somewhat cumbersome formulation and a completely
evident proof. In the classic umbral calculus case the formulation turns to be very
natural, but the proof is more hidden (see the next example).

Theorem 4.16. Let t1(c1, c2) and t2(c1, c2) be two tokens from C1 to C2, let the
c-semigroup C1 be equipped with a partial order relation > and, moreover, let

t2(c1, c2) =
∫

C1

a(c1, c
′
1) t1(c′1, c2) dc′1 (4.1)

where a(c1, c1) = 0 whenever c1 > c′1. Let Q2(c1) be a delta family associated to t2(c1, c2)
and let supt1(f) ∈ C1 denotes the support of t-transform of a function f(c2) with respect
to t1(c1, c2). Then for any function f(c2) and c1 ∈ C1

λc1

(
sup
t1

(Q2(c1)f)
)
⊂ sup

t1

(f).

Proof. It is a direct consequence of the shift invariance of the delta family Q2(c1)
as operators on C2 and Corollary 3.27

Example 4.17. The c-semigroup N+ of natural numbers is naturally ordered. By
the very definition [17: Section 3], for any polynomial sequence of binomial type, p(k, x)
is exactly of degree k for all k. Thus for any two such sequences p1(k, x) and p2(k′, x)
we have

p1(k, x) =
k∑

k′=1

a(k, k′) p2(k′, x),

i.e. (4.1) is satisfied. Let now Q2(k) = Qk be the delta family associated to p2(k, x).
Then by Theorem 4.16 the polynomial Q2(k)p1(k′, x) if of degree k′−k. This gives [17:
Section 2/Propositions 1 and 2].

Generally speaking, an order on a set of combinatorial numbers allows to consider
some recurrence relations, which express a combinatorial number via smaller numbers
of the same kind. We will return to this subject in Subsection 4.3 in connection with
generating functions.

4.2 Generating functions and umbral functionals. It is known that generat-
ing functions are a powerful tool in combinatorics. We try to interpret the notion of
generating functions in our terms. Particularly, we will treat [7: Examples 4.5 - 4.9]
accordingly.
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Definition 4.18. Let the function f(c1) represents a set of combinatorial quantities
indexed by points of a c-semigroup C1 (a combinatorial function for short). Let C2 be
another c-semigroup and t(c1, c2) be a token between them. The t-transform

f̂(c2) =
∫

C1

f(c1) t(c1, c2) dc1

of f(c1) is called generating function for f(c1) (with respect to C2 and t(c1, c2)).

Following [14] an exceedingly useful method for defining a function f(c1) is to apply
an umbral linear functional l to a token t(c1, c2):

f(c1) = 〈l, t(c1, c2)〉 :=
∫

C2

l(c2) t(c1, c2) dc2. (4.2)

If we now consider the generating function f̂(c2) with respect to the token q(c2, c1),
which is dual to t(c1, c2), then we will found that

f̂(c2) =
∫

C1

f(c1) q(c2, c1) dc1

=
∫

C1

∫

C2

l(c′2) t(c1, c
′
2) dc′2 q(c2, c1) dc1

=
∫

C2

l(c′2)
∫

C1

t(c1, c
′
2) q(c2, c1) dc1 dc′2

=
∫

C2

l(c′2) δ(c′2, c2) dc′2

= l(c2).

So we found the following simple connection between umbral functionals and generating
functions:

Theorem 4.19. The generating function f̂(c2) for a combinatorial function f(c1)
with respect to a token q(c2, c1) is the kernel of the umbral functional for f(c1) with
respect to the token p(c1, c2) dual to token q(c2, c1).

Example 4.20. Let {fn}∞n=0 be the sequence of Fibonacci numbers and let F be
the generating function associated to {fn}∞n=0 by the token q(k, x) = δ(k)(x):

F (x) =
∞∑

k=0

fn δ(k)(x)
[
= 1

2π

∫ ∞

−∞

1
1− (iξ)− (iξ)2

e−iξx dξ

]

= 1√
5

e
1−√5

2 x
(
1 + (e

√
5 x − 1)χ(−x)

)

where χ is the Heaviside function, i.e. χ(x) =
{

0 if x < 0
1 if x ≥ 0.

Then F is the kernel of an

umbral functional, which generates the sequence {fn}∞n=0 from the polynomial sequence
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t(n, x) = xn

n! which is dual to q(k, x) = δ(k)(x) (Example 4.11): fn =
∫∞
−∞ F (x) xn

n! dx.
In this way we obtain a constructive solution for the classic moment problem [1].

4.3 Recurrence operators and generating functions. We are looking for reasons
why some generating functions are better suited to handle given combinatorial functions
than others. The answer is given by their connections with recurrence operators.

We will speak on combinatorial functions here that are functions defined on c-
semigroups. Different numbers (Bell, Fibonacci, Stirling, etc.) known in combinatorics
are, of course, combinatorial functions defined on the c-semigroup N+.

Definition 4.21. An operator R on C1 is said to be a recurrence operator with
respect to a token t(c1, c2) for a combinatorial function f(c1) if

[Rf ](c1) = t(c1, e2). (4.3)

Particularly, [Rf ](c1) has a reproducing property from Lemma 3.19.

If we consider an algebra of convolutions of combinatorial functions, then by the
general property of t-transforms it is isomorphic to convolution algebra of their gener-
ating function, which occasionally can be isomorphic to an algebra with multiplication
(multiplication of formal power series, exponential power series, Dirichlet series, etc.).
This was already observed by other means in [7].

The following theorem connects generating functions and recurrent operators.

Theorem 4.22. Let C1, C2 be c-semigroups with a token t(c1, c2) between them,
let q(c2, c1) be its dual token and f(c1) a combinatorial function with corresponding
recurrence operator R defined by its kernel r(c1, c

′
1) as [Rf ](c1) =

∫
C1

r(c1, c
′
1) f(c′1) dc′1.

Then the generating function f̂(c1) satisfies the equation

[R̃f̂ ](c2) = t(e1, c2) (4.4)

where R̃ is defined by the kernel

r̃(c2, c
′
2) =

∫

C1

∫

C1

t(c′′1 , c2) r(c′′1 , c′1) q(c′1, c
′
2) dc′1dc′′1 . (4.5)

Proof. We start from the observation that
∫

C2

r̃(c2, c
′
2) t(c1, c

′
2) dc′2 =

∫

C1

t(c′′1 , c2) r(c′′1 , c1) dc′′1 (4.6)

which follows from application to both sides of (4.5) the integral operator with kernel
t(c1, c

′
2) and the identity

∫
C2

q(c′1, c
′
2) t(c′2, c1) dc′2 = δ(c′1, c1). Then

[R̃f̂ ](c2) =
∫

C2

r̃(c2, c
′
2) f̂(c′2) dc2

=
∫

C2

r̃(c2, c
′
2)

∫

C1

f(c1) t(c1, c
′
2) dc1dc2

=
∫

C1

∫

C2

r̃(c2, c
′
2) t(c1, c

′
2) dc2 f(c1) dc1
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and, further on,

[R̃f̂ ](c2) =
∫

C1

∫

C1

t(c′′1 , c2) r(c′′1 , c1) dc′′1 f(c1) dc1

=
∫

C1

t(c′′1 , c2)
∫

C1

r(c′′1 , c1) f(c1) dc1dc′′1

=
∫

C1

t(c′′1 , c2)δ(c′′1) dc′′1

= t(e1, c2)

(4.7)

where we deduce (4.7) from (4.6)

In fact, our calculation just says that R̃g = Tδ for g = Tf and operator R̃ = TRT−1

if Rf = δ. A touch of non-triviality appears when we use special properties of functions
t(c1, c2) and q(c2, c1) be a pair of dual tokens:

Corollary 4.23. If under the assumptions of Theorem 4.22 the operator R is shift-
invariant on C1, i.e. has a kernel of the form r(c1, c

′
1) = r(c′−1

1 c1), then the operator R̃
is also shift-invariant on C2 with a kernel of the form r̃(c2, c

′
2) = r(c′−1

2 c2).

Proof. It follows from the property of t-transforms to map a shift-invariant oper-
ator on C1 to a shift-invariant operator on C2

Remark 4.24. The above corollary clearly indicates what type of generating func-
tions is reasonable: a simple generating function can be constructed with respect to a
token t(c1, c2) such that the recurrence operator R is shift-invariant with respect to it.

As it usually occurs, a simple fact may have interesting realizations.

Example 4.25. Let fn be the Fibonacci numbers. Their known recursion fn =
fn−1 + fn−2 should be stated in a more accurate way with the help of agreement (3.5)
as fn − fn−1 − fn−2 = δn,0 (n ≥ 0). Then the recurrence operator is given by R =
I − S − S2, where S is a backward shift Sf(n) = f(n − 1) on N+, particularly, R
is shift-invariant with respect to the token t(x, n) = xn. The corresponding kernel is
r(n, i) = δn,i − δn−1,i − δn−2,i which is a function of n− i. For the pair of dual tokens

t(x, n) = xn and q(i, y) = δ(i)(y)
i! we obtain a transformed kernel:

r̃(x, y) =
∞∑

n=0

∞∑

i=0

t(x, n) r(n, i) q(i, y)

=
∞∑

n=0

∞∑

i=0

xn (δn,i − δn−1,i − δn−2,i)
δ(i)(y)

i!

=
∞∑

n=0

xn(1− x− x2)
δ(n)(y)

n!

= (1− x− x2)
∞∑

n=0

xn δ(n)(y)
n!

. (4.8)
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From the Taylor expansion the sum in (4.8) obviously represents an integral kernel of
the identity operator, therefore the transformation R̃ is the operator of multiplication by
1−x−x2 and the generating function f̂ should satisfy R̃f(x) = (1−x−x2)f̂(x) = x0 = 1.
Thus

f̂(x) =
∞∑

n=0

fn xn =
1

1− x− x2
.

Note that the operator R̃ of multiplication by (1 − x − x2) is “shift-invariant” – it
commutes with the operator of multiplication by x (both these operators are certain
convolutions under Fourier transform).

An attempt to construct a transformation R̃ with respect to a similar pair of dual
tokens t1(x, n) = xn

n! and q1(i, y) = δ(i)(y) will not enjoy the above simplicity.

Example 4.26. Let Bn be the Bell numbers (see [14] or [18: Section 3]). The
known recursion for them [18: Section 3] can again be restated as

Bn −
n−1∑

k=0

(n− 1
k

)
Bk = δn,0 (n ≥ 0). (4.9)

Such a recurrence identity is shift-invariant with respect to W defined by the identity
Wf(n) = f(n−1)

n on N+. In other words, it is shift-invariant with respect to the token
t(x, n) = xn

n! . The kernel r(n, i) corresponding to the recurrence operator R in (4.9) is

r(n, i) = δn,i −
n−1∑

k=0

(n

k

)
δk,i.

We apply a transformation with respect to a pair of dual tokens t(x, n) = xn

n! and
q(i, y) = δ(i)(y) by

r̃(x, y) =
∞∑

n=0

∞∑

i=0

t(x, n) r(n, i) q(i, y)

=
∞∑

n=0

∞∑

i=0

xn

n!

(
δn,i −

n−1∑

k=0

(n− 1
k

)
δk,i

)
δ(i)(y)

=
∞∑

n=0

∞∑

i=0

xn

n!
δn,i δ(i)(y)−

∞∑
n=0

∞∑

i=0

xn

n!

n−1∑

k=0

(n− 1
k

)
δk,i δ(i)(y)

=
∞∑

n=0

xn

n!
δ(n)(y)−

∞∑
n=0

n−1∑

i=0

xn

n!
(n− 1)!

i! (n− 1− i)!
δ(i)(y)

=
∞∑

n=0

xn δ(n)(y)
n!

−
∞∑

n=0

n−1∑

i=0

1
n

xn δ(i)(y)
i! (n− 1− i)!

=
∞∑

n=0

xn δ(n)(y)
n!

−
∞∑

n=0

x

n

n−1∑

i=0

xn−i−1

(n− 1− i)!
xi δ(i)(y)

i!
. (4.10)



Umbral Calculus and Cancellative Semigroup Algebras 335

One verifies that integration of a function f(y) with sum
∑n−1

i=0
xn−i−1

(n−1−i)!
xi δ(i)(y)

i! in
(4.10) produces the (n − 1)-th term in the Taylor expansion of the product exf(x).
Thus the entire expression in (4.10) is a kernel of the operator: R̃ = I − ∫

ex where I is
the identity operator and

∫
is the operator of the anti-derivation fixed by the condition

[
∫

g](0) = 0, particularly
∫

xn

n! = xn+1

(n+1)! . So the generating function b̂ should satisfy the

equation (I − ∫
ex)b̂(x) = x0 = 1. Taking the derivative from both sides we found the

differential equation (D − ex)b̂(x) = 0. With the obvious initial condition b̂(0) = 1 it
determines that b̂(x) = exp(exp(x)− 1).

One may interpret (4.3) as if f(c1) is the fundamental solution to operator R. This
is indeed a right way of thinking if one can found a group action such that R is shift-
invariant. Then the convolution h(c1) = [g ∗ f ](c1) will give a solution to the equation
[Rh](c1) = g(c1).

5. Models for the umbral Calculus

We present realizations (models) for different descriptions of the umbral calculus men-
tioned in Section 2.

5.1 Finite operator description: a realization. As was mentioned in Subsection
2.1, the main ingredients of the approach are polynomial sequences of binomial type and
shift invariant operators. As was already pointed in Examples 3.15 and 3.21, the notion
of token is a useful refinement of polynomial sequences of binomial type. It is much
more useful if we consider it together with shift invariant operators on c-semigroups not
just groups. The next subsections contains some details of this.

5.2 Hopf algebra description: a Realization. We describe some applications of
c-semigroups and tokens. First we can add new lines to Proposition 3.11:

Proposition 5.1. Let C2 be a c-semigroup with a right source e, let C1 be another
c-semigroup and t(c1, c2) be a token between them. Then the list in Proposition 3.11 for
C2 can be extended via t-transforms by

4. the subspace of convolutions over C1

5. the subspace of linear functionals over C(C1).

Proof. By Theorem 3.26 the space of convolutions over C2 can be mapped to the
space of convolutions over C1 via a t-transform. A backward mapping from convolutions
over C1 to convolutions over C2 is given by the dual token q(c2, c1) of the associated
delta family Q(c1)

We establish the correspondence of four mentioned sets as linear spaces. However,
two of them (convolutions over C1 and C2) have isomorphic structures as convolution
algebras. This allows us to transfer also their multiplication law on the space of linear
functionals.
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Definition 5.2. The product l = l1 ∗ l2 of two functionals l1 and l2 is again a linear
functional corresponding to the convolution S = S1 ∗S2 where the convolutions S1 and
S2 correspond to l1 and l2. It acts on a function p(c1) as

〈l, p(c′1, ·)〉 =
∫

C1

〈l1, p(c1, ·)〉〈l2, p([c−1
1 c′1], ·)〉 dc1.

Example 5.3. We return to the notations of Examples 3.15 and 3.21. For a linear
functional l on C2 = R we introduce its t-transform [T l](n) as its action (with respect
to the x variable) on the token t(n, x) = pn(x) given by a sequence of polynomial type
pn: [T l](n) = lT (n, x) = lpn(x). Then the product l of two functionals l1 and l2 are
defined by the convolution on N+:

[T l](n) =
∫

N+

l1(k) l2([k−1n]) dn =
n∑

k=0

l1(k) l2(n− k). (5.1)

The above definition of a product can be found in [16]. The c-semigroup algebra
over N+ can be naturally realized as the multiplicative algebra of a formal power series
of one variable t (see Proposition 3.6). So we obtain one more face an umbral algebras
as follows:

Corollary 5.4 (see [16]). The algebra of linear functionals on R with Hopf multi-
plication (5.1) is in a natural correspondence {ln}∞n=0 7→

∑∞
n=o lntn with the algebra of

formal power series in one variable t.

5.3 The semantic description: a realization. We start from the c-semigroup S,
which is the direct product of many copies of the c-semigroup N+. Different copies of N+

are labelled by letters of an alphabet A, which is denoted by Greek letters. An element
k of a copy N+ labelled by a letter α can be written interchangeably as kα or αk. In
this sense any function p(kα, lβ , . . .) in C0(S) can be identified with the polynomial

p(α, β, . . .) =
∑

kα,lβ ,...

p(kα, lβ , . . .)αkβl · · · .

More over this identification send the convolution p∗q of two functions p, q ∈ C0(S) over
S to the product of polynomials pq. So we will not distinguish a function p(kα, lβ , . . .)
and the corresponding polynomial p(α, β, . . .) any more as well as the convolution alge-
bra C0(S) and polynomial ring D[A] over the alphabet A.

A linear functional eval is defined as

eval(p) =
∫

S

p(kα, lβ , . . .) ds

via a measure ds on S such that ds(1α) = 1 for any α ∈ A. Because every p has
compact (i.e. finite) support in S the integration does not generate any difficulties.
Equality (2.4) expresses the fact that S is the direct sum of N+’s and the measure ds is
the direct product of corresponding measures dsα.
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In spirit of 2.1.4 we require that the measure dsε on the copy N+ labelled by the
distinguished umbra ε is defined by the sequence (1, 0, 0, 0, . . .).

Now eval defines an equivalence relation – umbral equivalence on C0(S), namely
f ' g (f, g ∈ C0(S)) if (f − g) belongs to the kernel of eval (i.e. eval(f − g) =
0). Because eval is additive but not multiplicative we see that umbral equivalence is
invariant under addition but multiplication (unlike the support of functions belongs to
different components in the direct product of N+).

Finally, we will define n · β as a function

β1 ⊗ β0 ⊗ · · · ⊗ β0 + β0 ⊗ β1 ⊗ · · · ⊗ β0 + β0 ⊗ β0 ⊗ · · · ⊗ β1

in the n-th tensor power ⊗n
k=1N+(β) of a copy of N+ labelled by β (this means that

eval has identical distribution on all of them).
This gives a realization for classical umbral calculus described via a semantic ap-

proach in [18, 19].
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