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On Convolution Operators
in the

Spaces of Almost Periodic Functions and Lp Spaces

G. Bruno and A. Pankov

Abstract. We consider convolution operators generated by L1 functions in Lp spaces and
various spaces of almost periodic functions. It turns out to be that if such an operator is
invertible in one of these spaces, then it is invertible in all the spaces we consider. Further, we
prove that any convolution has identical norms in many natural couples of function spaces.
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1. Introduction

We consider convolution operators acting in the spaces Lp and in the spaces of Bohr,
Stepanov, and Besicovich of almost periodic functions. We prove that in all the spaces
we consider the invertibility for convolutions take place, or do not take place, simulta-
neuously.

Next, we study norms of convolutions in natural couples of function spaces: Lp and
Bp, BSp and Sp, Cb and CAP . We prove that convolution operators have identical
norms in each of two members of any such couple.

Our study is motivated by the results of M. Shubin [11, 12]. In those papers results
on norms and invertibility (spectra) were proved for a wide class of almost periodic
pseudo-differential operators, but only in the L2-B2 setting. The case p 6= 2, as well
as the case of Stepanov spaces, are not considered there. We attempt here to enlarge
the range of spaces in which such “coincidence” results take place. However, since Lp-
theory and, all the more, Bp- and Sp-theories of pseudo-differential operators are not
well-developed, we restrict ourself to the case of convolutions only. Even in this case
a rich picture appears. We remark also that Lp-Bp setting was studied in [3, 4] for
nonlinear differential operators. However, in these works the value of p depends on the
structure of operators under consideration and plays the same role as p = 2 in the linear
theory. In a quite different situation, for a class of Wiener-Hopf operators on a half-
axis, Yu. Karlovich and I. Spitkovsky [6] proved that invertibility in L2 is equivalent to
invertibility in B2, and implies the same in all Lp and Bp.
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In the present paper we deal with convolutions defined on the real line only. Nev-
ertheless, all the results and techniques may be extended to the case of convolutions on
Rn without any difficulties.

2. Preliminaries

We use the standard notations Lp and Lp
loc (1 ≤ p ≤ ∞) for the Lebesgue spaces and

local Lebesgue spaces, respectively, of complex-valued measurable functions on the real
line R. Let ϕ ∈ L1 and λ ∈ C. It is well-known [6] that the operator A defined by the
formula

Au = λu + ϕ ∗ u, (1)

where ∗ stands for the convolution operation, acts continuously in each space Lp (1 ≤
p ≤ ∞). All such operators form an algebra which is denoted by A.

Now we introduce other spaces in which operator (1) will be considered. Let us
denote by Cb the closed subspace of L∞ formed by all bounded continuous functions.
Futhermore, for any p ≥ 1 let us denote by BSp the space of all functions f ∈ Lp

loc for
which

‖f‖Sp = sup
t∈R

[∫ t+1

t

|f(x)|pdx

] 1
p

< ∞. (2)

This is the space of Stepanov bounded functions (with exponent p). The closure in BSp

of the set of all trigonometric polynomials

∑

finite

akeiξkx (ak ∈ C, ξk ∈ R)

is denoted by Sp. It consists of all Stepanov almost periodic functions (with the exponent
p). Similarly, the closure of all trigonometric polynomials in the space Cb consists of all
Bohr almost periodic functions. The last space is denoted by CAP . For any f ∈ CAP
the mean value

M{f} = lim
T→∞

1
2T

∫ T

−T

f(t) dt

is well defined. As a consequence, for any f ∈ CAP one can define the norm

‖f‖Bp =M{|f |p} 1
p .

We define the space Bp of Besicovich almost periodic functions (with the exponent
p) as the completion of CAP with respect to the norm ‖ · ‖Bp . For more details on
almost periodic functions we refer to [4, 5, 7, 8]. We remark only that all the spaces
just introduced are Banach spaces and the continuous and dense embeddings Cb ⊂
BSp (p ≥ 1) and CAP ⊂ Sp ⊂ Sq, CAP ⊂ Bp ⊂ Bq (p ≥ q) take place.

Now we show that the algebra A acts naturally in all spaces we introduced.
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Lemma 1. Let A ∈ A. Then:

1) A acts continuously in Cb.

2) A acts continuously in CAP .

Proof. The first part of the statement is well-known. Let us prove the second one.
Since CAP is a closed subspace in Cb, one need only to show that Au ∈ CAP provided
u ∈ CAP . By the Bochner criterion, u ∈ CAP if and only if the family {u(· + y)}y∈R
is precompact in Cb. Now let u ∈ CAP . Since A is translation invariant, we have
(Au)(· + y) = A[u(· + y)] (y ∈ R). By continuity of A in Cb, we see that the family
{(Au)(·+ y)}y∈R is precompact

Lemma 2. Any operator A ∈ A acts continuously in BSp (1 ≤ p < ∞) and leaves
the subspace Sp invariant.

Proof. Without loss of generality we can assume that λ = 0. Let u ∈ BSp (p > 1)
and p′ the dual exponent, i.e. 1

p′ + 1
p = 1. Using the Hölder inequality, we have the

inequalities

∫ τ+1

τ

∣∣∣∣
∫

R
ϕ(t)u(x− t)dt

∣∣∣∣
p

dx

≤
∫ τ+1

τ

[∫

R
|ϕ(t)| 1

p′ |ϕ(t)| 1p |u(x− t)| dt

]p

dx

≤
∫ τ+1

τ

[∫

R
|ϕ(t)| dt

] p

p′
[∫

R
|ϕ(t)| |u(x− t)|pdt

]
dx

≤ C

∫ τ+1

τ

[∫

R
|ϕ(t)| |u(x− t)|pdt

]
dx

= C

∫

R

[
|ϕ(t)|

∫ τ+1

τ

|u(x− t)|pdx

]
dt

≤ C ‖ϕ‖L1‖u‖p
Sp

where the constant C > 0 does not depend on u. Thus, ‖Au‖Sp ≤ C ‖u‖Sp and the
operator A acts continuously in BSp (p > 1).

The case p = 1 may be considered in the similar way; it is even simpler. The proof
of the second part of the lemma may be carried out exactly as in Lemma 1, using the
version of Bochner criterion for Stepanov almost periodic functions

Lemma 3. Let A ∈ A and p ≥ 1. Then there exists a constant C = Cp(A) > 0
which depends only on A and p such that ‖Au‖Bp ≤ C ‖u‖Bp for all u ∈ CAP .

Proof. It goes along the same lines as in the proof of the first statement of Lemma
2

Lemma 3 permits us to extend, by continuity, any operator A ∈ A to an operator
acting in Bp. Such the extension is still denoted by A.
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Remark 1. It is easy to see that the norms of all the operators we consider are
estimated by C ‖ϕ‖L1 .

Remark 2. It is well-known that, given A ∈ A, the adjoint operator A∗ in the
sense of the scale Lp also belongs to A. Moreover, a simple calculation show us that the
extension of A∗ to Bp is in fact the adjoint operator of A in the sense of the scale Bp.

3. Invertibility of convolutions

To any operator A ∈ A of form (1) one can associate its symbol a(ξ) defined by the
formula

a(ξ) = λ + ϕ̂(ξ) (3)

where ϕ̂ is the Fourier transform of ϕ. It is well-known (see, e.g., [9]) that a(ξ) is a
continuous function on R and limξ→∞ a(ξ) = λ. Therefore, a(ξ) may be regarded as
a continuous function on R, the one-point compactification of the real line. The set A
is a commutative algebra with the natural involution A 7→ A∗. The map A 7→ a(ξ)
is a homomophism A → C(R) of algebras with involution. Here the algebra C(R)
of continuous functions on R is endowed with the natural involution, i.e. complex
conjugation.

Theorem 1. Let A ∈ A. The following statements are equivalent:

(i) a(ξ) is nowhere vanishing on R̄;
(ii′) A is invertible in Lp0 for some p0 ∈ [1,∞).
(ii) A is invertible in Lp for all p ∈ [1,∞).

(iii′) A is invertible in Bp0 for some p0 ∈ [1,∞).
(iii) A is invertible in Bp for all p ∈ [1,∞).
(iv) A is invertible in Cb.
(v) A is invertible in CAP .

(vi′) A is invertible in BSp0 for some p0 ∈ [1,∞).
(vi) A is invertible in BSp for all p ∈ [1,∞).

(vii′) A is invertible in Sp0 for some p0 ∈ [1,∞).
(vii) A is invertible in Sp for all p ∈ [1,∞).

Proof. Assume that a(ξ) 6= 0 for all ξ ∈ R. By the classical Wiener theorem the
function b(ξ) = 1

a(ξ) is of the form b(ξ) = 1
λ + ψ̂(ξ) where ψ ∈ L1. Hence the operator

Bu = 1
λu + ψ ∗ u acts in all the spaces we consider and is the inverse to A. Thus, (i)

implies all other statements listed above. Moreover, it is easy to see that statement (ii′)
with p0 = 1 implies statement (i).

Now let us suppose that statement (ii′) is fulfilled. Without loss of generality, we
may assume p0 > 1. Consider the operators Tu = ū and (J(u))(x) = u(−x). It is
obvious that T 2 = J2 = I, J is linear and T is antilinear. A direct calculation shows
that

A = JTA∗TJ. (4)
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Since A∗ is invertible in Lp′0 , p′0 being the dual exponent, (4) implies that A is invertible
in Lp′0 . By the Riesz-Thorin theorem, A is invertible in L2. Since (Âu)(ξ) = a(ξ)û(ξ),
we have proved statement (i).

The rest of the proof is simple. For example, assume statement (v) to hold. Let
eξ(x) = exp(iξx) (ξ ∈ R). Then Aeξ = a(ξ)eξ and ‖eξ‖CAP = 1. If there exists a
bounded inverse operator A−1, then we easily have 1 ≤ |a(ξ)| ‖A−1‖ (ξ ∈ R). By
continuity of a(ξ), the same inequality holds for all ξ ∈ R. Hence, a(ξ) 6= 0 for all ξ ∈ R
and statement (v) implies statement (i). The same argument proves that each of the
statements (iii′), (iv), (vi′), (vii′) implies statement (i) and the proof is complete

Remark 3. The implications (i) ⇔ (ii)′ ⇔ (ii) are well-known (see, e.g., [10]). We
have included here the proof for the sake of completeness.

4. Norms of convolutions

Now we want to study connections between norms of convolution operators acting in
various function spaces. As usual, L(E) stands for the space of all bounded linear
operators in a Banach space E.

We start with the spaces BSp and Sp. We need the following additional continuity
property of convolutions.

Lemma 4. Let A ∈ A. If uk is bounded in BSp and uk → u in Lp
loc, then Auk →

Au in Lp
loc.

Proof. Without loss of generality, we may assume that λ = 0 and u = 0. Fix
x0 > 0. By assumption, ∫ x0

−x0

|uk(x− t)|pdx ≤ C (5)

where the constant C > 0 is independent on k and t. As in the proof of Lemma 2, we
have ∫

|x|≤x0

|Auk(x)|pdx ≤ C

∫

|x|≤x0

[∫

R
|ϕ(t)| |uk(x− t)|pdt

]
dx.

Then, for any t0 > 0,
∫

|x|≤x0

|Auk(x)|pdx ≤ C

[∫

|t|≥t0

+
∫

|t|≤t0

][
|ϕ(t)|

∫

|x|≤x0

|uk(x− t)|pdx

]
dt

=: I1 + I2.

Let ε > 0. Due to (5),

I1 ≤ C

∫

|t|≥t0

|ϕ(t)| dt

and I1 ≤ ε if t0 is choosen large enough. Now

I2 ≤ C

∫

|t|≤t0

|ϕ(t)| dt

∫

|y|≤x0+t0

|uk(y)|pdy ≤ C‖ϕ‖L1

∫

|y|≤x0+t0

|uk(y)|pdy.

Since uk → 0 in Lp
loc, we see that I2 ≤ ε if k is large enough. The proof is complete
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Remark 5. It is easy to verify that if uk is bounded in BSp and uk → u in Lp
loc,

then u ∈ BSp and lim inf ‖uk‖Sp ≥ ‖u‖Sp .

Theorem 2. Let A ∈ A. Then for any p ∈ [1,∞)

‖A‖L(BSp) = ‖A|Sp‖L(Sp). (6)

Proof. Let a and b stand for the left- and right-hand sides of (6), respectively.
Since Sp is a closed subspace of BSp, we have b ≤ a, and we need only to prove that

a ≤ b. (7)

By definition,
a = sup

{‖Au‖Sp : u ∈ BSp with ‖u‖Sp ≤ 1
}

b = sup
{‖Av‖Sp : v ∈ Sp with ‖v‖Sp ≤ 1

}
.

Let u ∈ BSp. Given T > 0, let uT be the 2T -periodic extension of u|[−T,T ] to R. It
is easy to verify that ‖u‖Sp = limT→∞ ‖uT ‖Sp and ‖uT ‖Sp ≤ ‖u‖Sp ≤ 1. Also, it is
obvious that uT → u in Lp

loc as T →∞. Since A is a bounded operator, we see that AuT

is uniformly bounded in BSp and 2T -periodic (hence, almost periodic). By Lemma 4,
AuT → Au in Lp

loc. By Remark 3, lim infT→∞ ‖AuT ‖Sp ≥ ‖Au‖Sp . This implies (7),
and we conclude

Remark 5. A similar approach was used in [11: Proof of Proposition 2.2].

In the same way, using uniform convergence on compact sets instead of Lp
loc-conver-

gence, one can prove the following

Theorem 3. Let A ∈ A. Then

‖A‖L(Cb) = ‖A|CAP ‖L(CAP ) = ‖A|C0‖L(C0)

where C0 = {u ∈ Cb : limx→∞ u(x) = 0} is a closed subspace of Cb.

Now we consider the spaces Lp and Bp.

Theorem 4. Let A ∈ A. Then

‖A‖L(Lp) = ‖A‖L(Bp). (8)

Proof. First we give a separate proof for the case p = 1, since it clarifies the duality
between this case and Theorem 3. Then we consider the general case. It is well-known
(see, e.g, [6] or [12]) that

‖u‖L1 = sup
{ |(u, v)|
‖v‖L∞

: 0 6= v ∈ L∞
}

.

By the classical Lusin Theorem (see [6] or [12]) one can replace here L∞ by Cb. There-
fore,

‖A‖L(L1) = sup
{ |(Au, v)|
‖u‖L1‖v‖Cb

: 0 6= u ∈ L1 and 0 6= v ∈ Cb

}
. (9)
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Now we recall that B1 and CAP are naturally isomorphic to L1(RB) and C(RB), re-
spectively, where RB is the so-called Bohr compactification [4, 5] and L1(RB) is regarded
with respect to the Haar measure on RB . Hence, we have as above

‖A‖L(B1) = sup
{ |(Au, v)B |
‖u‖B1‖v‖CAP

: 0 6= u ∈ B1 and 0 6= v ∈ CAP

}
. (10)

Since (Au, v) = (u,A∗v) and (Au, v)B = (u, A∗v)B , we conclude that ‖A‖L(L1) =
‖A∗‖L(Cb) and ‖A‖L(B1) = ‖A∗‖L(CAP ), and Theorem 3 implies the required.

Now we consider the general case assuming for definiteness that p > 1. For the sake
of brevity, let us denote by a and b the left- and right-hand sides of (8), respectively.
We have

a = sup
{‖Au‖Lp

‖u‖Lp

: 0 6= u ∈ C with supp u ⊂⊂ R
}

b = sup
{‖Av‖Bp

‖v‖Bp

: 0 6= v ∈ CAP

}

where ”X ⊂⊂ Y ” means that X is a compact subset of Y . Since compactly supported
continuous functions are dense in L1, we can choose a sequence ϕn of such functions such
that ϕn → ϕ in L1. By Remark 1, ‖An‖L(Bp) → ‖A‖L(Bp) and ‖An‖L(Lp) → ‖A‖L(Lp),
where An stands for the operator generated by ϕn. Therefore, we can assume that the
kernel ϕ itself is continuous and compactly supported.

Now let u ∈ C and supp u ⊂ [−T0, T0]. For T ≥ T0 we denote by ūT the 2T -periodic
extension of u|[−T0,T0] to R and set uT = (2T )

1
p ūT . It is easy to verify that

‖uT ‖Bp = ‖u‖Lp . (11)

Since ϕ is compactly supported, we see that A(uT ) = (Au)T , provided T is large enough.
Due to (11) we have

‖AuT ‖Bp = ‖Au‖Lp (12)

for such T . Now using (11) and (12), we have ‖Au‖Lp = ‖AuT ‖Bp ≤ b‖uT ‖Bp = b‖u‖Lp

for T being large enough. This implies that a ≤ b.

Now let us prove that b ≤ a. For any T > 0, let χT be the characteristic function
of the interval [−T, T ]. For v ∈ CAP it is easy to see that

lim
T→∞

1
2T ‖χT v‖p

Lp = ‖v‖p
Bp . (13)

We want to show that
lim

T→∞
1

2T ‖A(χT v)‖p
Lp = ‖Av‖p

Bp . (14)

In view of (13), to do this it suffices to prove that

lim
T→∞

1
2T ‖χT Av −A(χT v)‖p

Lp = 0. (15)
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First of all, we observe that BT = χT A − AχT is an integral operator with the kernel
ϕT (x, t) = χT (x)ϕ(x − t) − ϕ(x − t)χT (t). Moreover, BT acts in L∞ and is uniformly
(with respect to T ) bounded in this space. In particular, we see that for κ ∈ (0, 1)

lim
T→∞

1
2T

∫

T−T κ≤|x|≤T+T κ

|BT v(x)|pdx = 0 (16)

since the domain of integration has Lebesgue measure of order Tκ. Now we have

∫

|x|≥T+T κ

|BT v(x)|pdx ≤
∫

|x|≥T+T κ

dx

[∫

|t|≤T

|ϕ(x− t)| |v(t)| dt

]p

where |x − t| ≥ Tκ. Since the support of ϕ is compact, we see that in the right-hand
side ϕ(x− t) = 0 if T is large enough. Hence

1
2T

∫

|x|≥T+T κ

|BT v(x)|pdx = 0. (17)

Similarly,

1
2T

∫

|x|≤T−T κ

|BT v(x)|pdx = 0. (18)

Puting together (16) - (18), we get (15) and, hence, (14). Now

‖Av‖p
Bp = lim

T→∞
1

2T ‖A(χT v)‖p
Lp ≤ ap lim

T→∞
1

2T ‖χT v‖p
Lp = ap‖v‖p

Bp .

Therefore, b ≤ a. Hence, a = b
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