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Some New Conformal Covariants

V. Wünsch

Abstract. By means of a certain conformal covariant differentiation process explicit formulae
are derived for

(i) a conformally invariant generalized Bach tensor in dimension 6
(ii) conformally invariant differential operators acting on weighted functions, especially one

with leading term 4

(iii) conformal covariants on symmetric, trace-free p-tensor bundles, especially one with
leading term 2

(iv) conformal covariants on differential forms.

Furthermore, theorems for uniqueness, existence and non-existence of conformal covariants, in
particular in dimension 4, are given.
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1. Introduction

The theory of conformal transformations of a pseudo-Riemannian manifold (M, g) plays
a fundamental role in questions of geometry and physics. The investigation of confor-
mally invariant differential operators and tensors on a conformal manifold is an active
area of research (see, e.g., [2 - 7, 11, 12, 14, 16, 18 - 23, 25, 27, 29, 31, 34, 36, 37, 40,
41]). More generally, by a conformal covariant, we shall mean a universal polynomial
expression in covariant derivatives with coefficients depending polynomially on the met-
ric, its inverse, the curvature tensor, and its covariant derivatives which acts between
conformally weighted tensor bundles and is unchanged when the metric is scaled. The
Bach tensor in dimension 4 [1, 25, 37] and the conformally invariant Laplacian [43] are
the most basic non- trivial examples. The polynomial conformal covariants have a great
variety of applications, for example, in the representation theory of the conformal group
(see, e.g., [9, 31]), in the ”conformal extension” of the heat equation [10], in spectral
theory [8, 9], for Lagrangian formulation of both general relativity and conformal field
theories [1, 2, 16, 18, 40, 41], in describing massless fields and wave propagation in
curved space-times [2, 13, 25, 30, 32, 39, 42]. It is an important problem to give a
survey of all conformal covariants or, with less pretension, to give a method for gener-
ating special classes of conformal covariants. Some of these procedures and conformal
covariants are well known (see, e.g., [2, 5, 16, 19, 22, 40]). The existence of a family of
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conformal covariants on weighted functions with the leading part being a power of the
Laplacian is proved in [23].

In this paper we present a relatively simple derivation of explicit formulae for some
conformal covariants using a method given in [38], in particular, the notation ”conformal
covariant derivative” is fundamental. Most but not all invariant operators in flat space
admit a curved generalization.The basic reason for the non-existence in dimension 4 is an
obstructing Bach tensor expression. For example, a curved version of 3 in dimension
n ≥ 5 was found in [38], but there is no curved version of 3 in dimension 4 (see [24]).
By means of our method we simplify essentially the proof of this result and give further
examples for the non-existence of curved analogues of flat operators.

The paper is organized as follows. In Section 2, the basic ideas and results of [27,
38] are presented. In Section 3 we give an extension of the conformally invariant Bach
tensor to dimension 6, some remarks on Euler-Lagrange tensors and state two unsolved
problems. In Section 4 we investigate the general structure of conformal covariants
with leading terms k acting on weighted functions by means of which one can derive
explicit formulae for these operators without excessive calculation. In particular, a
curved version of 4, two second-order conformal covariants and a proof of the non-
existence of a curved analogue of 4 in dimension 6 are given. Furthermore, a generating
system for the set of all conformal covariants with leading term 3 is introduced.
Conformal covariants acting on symmetric, trace-free p-tensors bundles are generated

in Section 5. In particular, we derive a fourth-order operator
s

D(4,p) with leading term
2. For this operator the obstructing Bach tensor expression occuring in dimension 4

can be substituted by means of a suitable second-order operator. Finally, in Section
6 we consider conformal covariants acting on differential forms. A second-order and
fourth-order conformal covariant with leading terms and 2, respectively, was found
by Branson [5] and the present author [40]. We present a new second-order conformal
covariant and prove that there is no conformal covariant on 2-forms with leading term

2 in dimension 4.

2. Conformal covariants

Let (M, g) be a pseudo-Riemannian C∞ manifold of dimension n (n ≥ 4) and

gab

gab

∇a

Rabcd

Rab := R c
a·cb

R

Cabcd

the local components of the covariant metric tensor

the local components of the contravariant metric tensor

the Levi Civita connection

the curvature tensor

the Ricci tensor

the scalar curvature tensor

the Weyl curvature tensor.

In the following we use the sign convention according to

∇[a∇b]Tc = −1
2
R d

abc.Td . (2.1)
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We consider linear differential operators acting on a space T of C∞ tensor fields of
a certain type with (possibly) some list of symmetry conditions. Suppose that the
coefficients of these operators are polynomials in gab and the partial derivatives of gab

up to a certain order.
Let Dk be the set of all polynomial operators of order less than k and D :=

⋃
k Dk.

Then obviously D is an algebra [27, 40].
An operator D(g) ∈ D is said to be of conformal weight ω if under a uniform

dilatation of the metric ḡab = e2φgab with φ = const, D(g) transforms according to
D(g) = e2ωφD(g). Let D(ω) be the set of all operators of conformal weight ω. Then
D = ⊕ωD(ω).

Definition 2.1. An operator D(g) ∈ D(ω) is said to be conformally invariant of
conformal weight (ω, ω0) on T (or shortly a conformal covariant) if a real number ωo

exists such that under a conformal change of the metric

ḡab = e2φgab, φ ∈ C∞(M) (2.2)

D(g) transforms according to

D(ḡ)[e2ω0φu] = e2(ω+ω0)φD(g)[u] (2.3)

for all u ∈ T .

Remark 2.1. A zeroth-order conformal covariant is called a conformally invariant
tensor.

Examples.
(i) The conformal Laplacian

D(2) := ∇a∇a − n− 2
4(n− 1)

R (2.4)

is a second-order conformal covariant on functions with ω = −1, ω0 = 1
4 (2− n) [43].

(ii) The Bach tensor

Bi1i2 := ∇a∇bC
a b
.i1i2. +

n− 3
n− 2

Ca b
.i1i2.Rab (2.5)

is a conformally invariant tensor of weight ω = −1 if n = 4 [1, 14, 25, 37, 39].

If D(g) ∈ D(ω), then under the conformal change (2.2) D(g) has a transformation
law of the form

D(ḡ)[e2ω0φu] = e2(ω+ω0)φ

{
D(g) +

m∑

k=1

Pk(ω0, g, φ)
}

[u] (u ∈ T ) (2.6)

where the operators Pk(ω0, g, φ) are k-homogeneous in the derivatives of φ up to a
certain order [27, 40]. D(g) is conformally invariant if and only if the conformal vari-
ation P1(ω0, g, φ) vanishes, i.e., for constructing conformal covariants it is sufficient to
calculate only ”to the first order in derivatives of φ” [27, 40].
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Let ϑ(ω) be the set of those elements of D(ω) which contain only first order deriva-
tives of φ in their transformation law. Furthermore, let ϑ := ⊕ωϑ(ω) and ϑ0 be the
subset of zeroth-order operators (i.e. tensors) of ϑ. Then D(g) is an element of ϑ if and
only if P1(ω0, g, Φ) has the form

P1(ω0, g, φ) := ∇γφXγD. (2.7)

Definition 2.2. The linear operator Xγ defined on ϑ by (2.7) is called the in-
finitesimal generator of D.

It is easy to show that Xγ is a derivation, i.e. Xγ obeys the Leibniz rule and
commutes with contractions.

Corollary 2.1. D ∈ D is a conformal covariant if and only if D ∈ ϑ and XγD = 0.

If D ∈ ϑ, then we have in general ∇aD /∈ ϑ.

Definition 2.3. For D ∈ ϑ the operator

c

∇aD := ∇aD + PakXkD, (2.8)

where

Pab :=
1

n− 2

(
Rab − 1

2(n− 1)
Rgab

)
(2.9)

is called the conformal covariant derivative of D.

The following theorem holds (see [27, 40]):

Therorem 2.1.

(i) The conformal covariant derivative
c

∇a a derivation.

(ii)
c

∇a : ϑ → ϑ.

(iii) The ”Ricci identity” for
c

∇a has the form

c

∇[a

c

∇b]D(u) := (C, D[u])ab +
1

2(n− 3)
∇uC u

abγ. X
γD[u] (2.10)

where u ∈ T and (C, D[u])ab is the term one obtains from the right-hand side of the
usual Ricci identity ∇[a∇b]D(u) := (R,D[u])ab by substitution of R by C.

(iv) For D ∈ ϑ(ω)

[Xγ ,
c

∇a]D[u] := {Xγ ,
c

∇a −
c

∇aXγ}D[u] = 2(ω + ω0)δγ
aD[u] + ∆γ

aD[u] (2.11)

is valid where

∆γ
a(T km...

ij... ) = ∆γk
ab T bm...

ij... + ∆γm
ab T kb...

ij... + . . .

−∆γb
ai T

km...
bj... −∆γb

ajT
km...

ib... − . . .
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and
∆km

ai := δk
aδm

i + δk
i δm

a − gaig
km .

(v) The algebra ϑ0 is generated by the tensors

gab, gab,
c

∇(i1 . . .
c

∇ir
Ca b

.ir+1ir+2).
(r ∈ N). (2.12)

(vi) Every operator D ∈ ϑ can be represented in the form

D =
m∑

k=0

B(k) ⊗
c

∇(k) (2.13)

where
c

∇(k) denotes {
c

∇(i1 . . .
c

∇ik)} and B(k) ∈ ϑ0 (k = 0, . . . ,m).

Examples. We have (see [27, 40])

XγCabcd = 0, Xγ
c

∇aCa
.bcd = (n− 3)Cγ

.bcd,
c

∇aCbdef = ∇aCbdef (2.14)
c

∇au = ∇au, Bi1i2 =
c

∇a

c

∇bC
a b
.i1i2. , XγBi1i2 = 2(n− 4)∇aCa γ

.i1i2. (2.15)

Xγ
c

∇au = 2ω0δ
γ
au + ∆γ

au,
c

∇a

c

∇bu = ∇a∇bu + PaγXγ
c

∇bu (2.16)
c

:=
c

∇a
c

∇a = ∇a∇a +
ω0

n− 1
R on ω0-weighted functions (2.17)

Xγ
c

= (4ω0 + n− 2)
c

∇γ = 0 ⇐⇒ 4ω0 = 2− n. (2.18)

3. On the generalization of the Bach tensor

When Latin indices with subindices (e.g. i1, . . . , ir) appear in the sequel, we assume
that symmetrization has been carried out over the indices. We denote the trace-free
symmetric part of a tensor T by TS(T ). Let Sr(ω, n) be the set of all conformally
invariant, symmetric, trace-free tensors with weight ω and covariant rank r. There is a
natural generalization B

(k)
i1i2

∈ S2(ω, n) of the Bach tensor B
(0)
i1i2

:= Bi1i2 in dimension
four to any even dimension n with ω = 2−n

2 = −(k + 1), k ∈ N0 (see [3,19]). The tensor

B
(k)
i1i2

has only the linear leading term
c

(k)Bi1i2 (see [28]). Because of Theorem 2.1/(v)
the Weyl curvature correction terms

T
(k)
i1i2

:= B
(k)
i1i2

− c
(k)Bi1i2

are generated by the tensors (2.12). Obviously, we cannot expext the uniqueness of the

extension of
c

(k)Bi1i2 to a conformally invariant tensor for k > 0 (in the case of k = 0
see [37]).
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Problem A. Find correction terms T
(k)
i1i2

for k > 0.

Theorem 3.1. The tensor

B
(1)
i1i2

: =
c

Bi1i2

+
{

2(n− 4)
(n− 3)

∇aCa bc
.i1.. ∇dC

d
.i2bc −∇aCabc

. . .i1∇dC
d
.bci2

}

+ 2C ab
i1..i2Bab

(3.1)

is an element of S2(−2, 6).

Proof. The Ricci identity (see (2.10))

∇[a∇b]Tc := −1
2
C d

abc. Td − 1
2(n− 3)

∇uCu
.γabX

γTc (3.2)

and the Bianchi identity

∇[aCbc]ij +
1

n− 3

[
gj[a∇|uCu

.i|bc] − gi[a∇|uCu
.j|bc]

]
= 0 (3.3)

imply

(n− 3)
[

c
Cbaij + 2

c

∇[a|
c

∇uCu
.|b]ij − CudbaCud

. .ij − 4C d
ub[i|.C

u
.a|j]d

]

+2
c

∇[j|
c

∇uCu
.|i]ba + 4g[i[aBj]b] = 0

(3.4)

and
c

∇u

c
Cu b

.i1i2. =
c c

∇uCu b
.i1i2. + 2∇aC k

aui1C
u b
.(ki2).

+∇aC bk
au.. C

u
.i1i2k + 4C k

aui1.∇aCu b
.(ki2).

+ 2C bk
au..∇aCu

.i1i2k +
1

n− 3
∇lC

l
.kauXk(∇aCu b

.i1i2. ).

(3.5)

Hence, on account of (2.11) and (2.15),

Xγ(
c

Bi1i2) = [Xγ ,
c

∇a]
c

∇aBi1i2 +
c

∇a[Xγ ,
c

∇a]Bi1i2

= (n− 10)
c

∇γBi1i2 + 4
c

∇i1B
γ

i2. +
c

XγBi1i2

= (n− 6)[3
c

∇γBi1i2 − 2
c

∇i1B
γ

i2
]−Xγ(T (1)

i1i2
).

Consequently,

Xγ(B(1)
i1i2

) = (n− 6)[3
c

∇γBi1i2 − 2
c

∇i1B
γ

i2
]. (3.6)

Remark 3.1. In dimension 6, the conformal tensor B
(1)
i1i2

has been already derived
in [28]. A generating system for S2(−2, n) is also given in [28, 39]. In [39] one can find
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applications of the tensor B
(1)
i1i2

to the theory of Huygens’ principle in dimension 6 (see
also [36]).

Supposing a Lagrangian L to be an element of S0(−n
2 , n), by the action

δ

∫
L

√
|det(gab)|dx =:

∫
Eab(L)δgab

√
|det(gab)| dx = 0 (3.7)

an Euler-Lagrange tensor Eab(L) is defined, which has the properties [15,39]

Eab(L) ∈ S0

(
− n

2
+ 1, n

)
, E[ab](L) = 0, gabEab(L) = 0, ∇aEab(L) = 0. (3.8)

Example. n = 4, Eab(CijklC
ijkl) = cBab (c ∈ R \ {0}) (see, e.g., [39]).

A conformal tensor T is called trivial if it is generated by {gab, g
ab, Cabcd}.

In [28, 39] a generating system of S0(−3, n) was found. The only non-trivial con-
formal tensors from S0(−3, n) are multiples of

S0(−3, n) :=
10− n

2

[
∇uCabcd∇uCabcd − 4(n− 2)

(n− 3)2
∇uCuabc

.... ∇vCv
.abc

]

− 2
(

− 2
n− 1

R

)
CabcdC

abcd.

(3.9)

Independently, the conformal invariance of S0(−3, n) was verified also in [19]. The
tensor B

(1)
i1i2

given by (3.1) is not an Euler-Lagrange tensor, however in six dimensions

an Euler-Lagrange tensor Eab(S0(−3, n)) is a linear combination of B
(1)
i1i2

and further
conformal tensors of S0(−2, 6) (see [39]).

Problem B. Find non-trivial conformal tensors of S0(ω, n) if ω < −3.

Conjecture A. For every even n (n ≥ 4) there is an conformal Euler-Lagrange

tensor W
(k)
i1i2

∈ S0(−n
2 + 1, n) (k = n−4

2 ∈ N0) with the linear leading term
c

kBi1i2 .

4. Conformal covariants acting on weighted functions

Let T0 be the set of all C∞ scalar ω0-weighted functions and = ∇a∇a,
c

=
c

∇a
c

∇a.
The following theorem was proved in [23].

Theorem 4.1. If n is odd, then there is for each k ≥ 1 a conformal covariant D(2k)

of order (2k) with ω = −k, 4ω0 = 2k − n and leading term k. If n is even, then the
same result is true with the restriction 1 ≤ k ≤ n

2 .

Using the notions and results of Section 2 here we analyze the general structure of
D(2k) and present an algorithm for an explicit construction of D(2k), which simplifies
those given in [23]. Relation (2.11) implies

Xγ
c

k = [Xγ ,
c

∇a]
c

∇a
c

k−1 +
c

∇a[Xγ ,
c

∇a]
c

k−1

= bk

c

∇γ
c

k−1 +
c

Xγ
c

k−1
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where bk := 4ω0 − 4k + n + 2. Hence, by induction,

Xγ
c

k = bk

c

∇γ
c

k−1 + bk−1

c c

∇γ
c

k−2 + . . . + b1

c
k−1

c

∇γ

= ak

c

∇γ
c

k−1 + ak−1[
c

,
c

∇γ ]
c

k−2

+ ak−2

c
[

c
,

c

∇γ ]
c

k−3 + . . . + a1

c
k−2[

c
,

c

∇γ ]

(4.1)

where [
c

,
c

∇γ ] :=
c c

∇γ −
c

∇γ
c

and

am =
m∑

r=1

br = m(4ω0 + n− 2m) (m = 1, . . . , k). (4.2)

We obtain by means of (2.10)

[
c

,
c

∇γ ]
c

m =
1

n− 3
[
Bγ

.a − 2(
c

∇uCu.bγ
.a )

c

∇b

]
Xa

c
m =:

1
n− 3

F γ
.aXa

c
m (4.3)

if m ≥ 1 and [
c

,
c

∇γ ]
c

m = 0 if m = 0.
Choosing a flat metric as a test metric we get from (4.1)

Lemma 4.1. Necessary for D(2k) to be a conformal covariant is

ak = k(4ω0 + n− 2k) = 0. (4.4)

In the case 4ω0 = 2k − n (see Lemma 4.1) one has

am = 2m(k −m) (m = 1, . . . , k). (4.5)

Thus we have proved

Lemma 4.2. For every k ≥ 1 and 4ω0 = 2k − n there holds

Xγ
c

k =

{
2

∑k−1
m=2 m(k −m)

c
k−m−1[

c
,

c

∇γ ]
c

m−1 if k ≥ 3
0 if k ≤ 2.

(4.6)

Now from (2.8), Theorem 2.1 and
c

∇aBa
.b = 0 we imply immediately

Lemma 4.3. The coefficients of all Weyl curvature correction terms of D(2k)− k

which are linear with respect to the conformal covariant derivatives of the Weyl tensor
are up to real numbers conformal covariant derivatives of the Bach tensor of order p
with 0 ≤ p ≤ k − 2.

Conjecture B. For every n and k with 2k ≤ n and n ≥ 4 there is a conformal
covariant D(2k), which reduces to k for an Einstein metric.

Examples.
(i) The operator

D(2) ≡
c

= − n− 2
4(n− 1)

R (4.7)
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is the only second order conformal covariant on T0 with ω = −1, ω0 = 2−n and leading
term (see, e.g., [40, 43]).

(ii) If k = 2, then we get Xγ
c

2 = 0 from Lemma 4.2. Consequently, a fourth-
order conformal covariant on T0 with ω = −2, 4ω0 = 4−n and leading term 2 has the
form

D(4) :=
c

2 + c0CabcdC
abcd (c0 = const). (4.8)

The operator
c

2 is exactly that conformal covariant which S. Paneitz introduced in
1983 [33]. The proof of the uniqueness is very easy (see, e.g., [40]).

(iii) If k = 3, then because of

Xγ
c

= (4ω0 + n− 2)
c

∇γ = 4
c

∇γ

XγTS(
c

∇i1

c

∇i2) = (4− n)TS(δγ
i1

c

∇i2)



 (4.9)

we have
Xγ(

c
3) = 4[

c
,

c

∇γ ]
c

=
16

n− 3
[
Bγa − 2

c

∇uCuabγ
c

∇b

] c

∇a

=
16

n− 3

[
Bγa − 1

n− 4
Xγ(Bab)

c

∇b

] c

∇a

= − 16
(n− 3)(n− 4)

Xγ(Bab
c

∇b

c

∇a).

(4.10)

Hence, the sixth-order operator found by the present author in [40]

D0
(6) :=

c
3 +

16
(n− 3)(n− 4)

Bab
c

∇a

c

∇b (4.11)

is for n > 4 a conformal covariant on T0 with ω = −3, 4ω0 = 6−n and leading term 3.
If n = 4, then Bab∇a∇b is a second-order conformal covariant on T0. On account of
Lemma 4.3 it is easy to see that cBab∇a∇b with c = const is the only possible curvature
correction term of D0

(6) with a linear coefficient. As a conclusion, there is no operator
D(6) such that

Xγ(D(6) −
c

3) = −16
[
Bγa − 2

c

∇uCuabγ
c

∇b

] c

∇a

in dimension 4. Thus, by means of the method given in Section 2, we obtain a simple
proof of the following theorem due to Graham [24].

Theorem 4.1. If n = 4, then there is no conformal covariant on T0 with the leading
term 3.

Theorem 4.2. The following operators are second-order conformal covariants on
T0 with ω = −3 and 4ω0 = 6− n (n ≥ 4) :

D1
(2) =

c

∇a

[{
Ca

.defCbdef − 1
4
gabCgdefCgdef

}
c

∇b

]

+
(n− 4)(n− 6)

4(n− 3)2
∇aCadef∇bC

b
.def (4.12)

D2
(2) = 2(n− 10)

c

∇a[CbdefCbdef

c

∇a] + (n− 6)
c

[CabdeC
abde]. (4.13)
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Proof. From (2.11) and (4.9), it follows after a straight computation

Xγ

{
c

∇a

[{
Ca

.defCbdef − 1
4
gabCgdefCgdef

}
c

∇b

]}

= − (n− 4)(n− 6)
2(n− 3)

∇aCadefCγ
.def

= − (n− 4)(n− 6)
2(n− 3)2

Xγ
[∇aCa

.def∇bC
bdef

]
,

hence XγD1
(2) = 0. The proof of XγD2

(2) = 0 is analogous

Corollary 4.1. Every sixth-order conformal covariant on T0 with ω = −3, 4ω0 =
6− n (n > 4) and leading term 3 has the form

D(6) = D0
(6) + c1D

1
(2) + c2D

2
(2) + S (4.14)

with
S = d1S0(−3, n) + d2C

aebfCacdfC cd
e. . b + d3C

ab
..cdC

cd
..efCef

..ab (4.15)

were c1, c2 ∈ R and d1, d2, d3 ∈ R.

Proof. It is easy to see that the operator D0
(6) −D(6) can only contain the (linear

independent) curvature monomials from D1
(2), D

2
(2) and S. Now, from Lemma 4.3, The-

orem 4.2 and the fact that S0(−3, n) is generated by the monomials of (4.15) (see [18,
28, 39]) the assertion follows

Theorem 4.3. The following operator is for n ≥ 5, n 6= 6 a conformal covariant
on T0 with ω = −4, 4ω0 = 8− n and leading term 4 :

D(8) : =
c

4

+
96

(n− 3)(n− 4)
[
Bab

c

∇a

c

∇b

c
+ (

c

∇aBbd)
c

∇a

c

∇b

c

∇d

]

+
48

(n− 3)(n− 6)
(

c
Bab)

c

∇a

c

∇b

− 192
(n− 3)2(n− 6)

[ c

∇uCueda
. . . .

c

∇νCν b
.ed. −

c

∇uCuaed
. . . .

c

∇νCνb
..ed

] c

∇a

c

∇b

− 96(n− 8)
(n− 3)(n− 4)(n− 6)

Caedb
. . . . Bed

c

∇a

c

∇b − 96
(n− 3)2

Bbd(
c

∇uCu a
. bd . )

c

∇a

− 24(n− 2)(n− 8)
(n− 3)2(n− 4)2

BabBab .

Proof. Supposing (4.4), i.e. 4ω0 = 8 − n, from Lemma 4.2 and (4.3), (4.5) there
follows

Xγ
c

4 = 8
c

[
c

,
c

∇γ ]
c

+ 6[
c

,
c

∇γ ]
c

2

=
2

n− 3
[
4

c
(F γ

.aXa
c

) + 3F γ
.aXa

c
2
]

=
48

n− 3
[ c

(F γa
c

∇a) + F γa
c

∇a

c ]
.
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Now, we have to compute the action of Xγ on all Weyl curvature correction terms of
D(8), using relation (2.11). For example, we obtain

Xγ(Bab
c

∇a

c

∇b

c
)

= Xγ(Bab)
c

∇a

c

∇b

c
+ Bab

[
[Xγ ,

c

∇a]
c

∇b

c
+

c

∇a[Xγ ,
c

∇b]
c

+
c

∇a

c

∇bX
γ

c ]

= 2(n− 4)∇uCu(ab)γ
c

∇a

c

∇b

c
+ (2− n)Bγa

c

∇a

c
+ 6Bab

c

∇a

c

∇b

c

∇γ .

Substituting
c

Bab by B
(1)
ab (see (3.1)) and using (3.6), one finds

Xγ(B(1)
ab

c

∇a
c

∇b) = (n− 6)
[
3

c

∇γBab − 2∇(aBb)γ
] c

∇a

c

∇b + (6− n)B(1)γ
a

c

∇a.

In an analogous manner one computes the other actions. Using successively identity
(2.10), for example

TS
[ c c

∇i1

c

∇i2 −
c

∇i1

c c

∇i2

]

=
2(5− n)
n− 3

∇aC k
ai1i2.

c

∇k − 2Ca k
.i1i2.

c

∇a

c

∇k − n− 8
2(n− 3)

Bi1i2 ,

one verifies after length straight computations the assertion XγD(8) = 0

Corollary 4.2.

(i) If n = 6, then

B
(1)
ab

c

∇a
c

∇b (4.15)

is a second-order conformal covariant on T0 with ω = −4 and ω0 = 1
2 (see (3.1)).

(ii) If n = 6, then there is no conformal covariant D(8) on T0 with leading term 4.

Proof. Assertion (i) follows multiplying D(8) by (n − 6), using (3.1). In order
to prove assertion (ii) we remember that by Lemma 4.3 the linear coefficients of the
correction terms of any operator D∗

(8) are conformal covariant derivatives up to second
order of the Bach tensor. It is easy to see that the operator D(8) of Theorem 4.3
contains all possible conformal covariant derivatives of Bab (including the zeroth order
derivatives). The real coefficients of all monomials of D(8) are determined uniquely. In
particular, the term

48[(n− 3)(n− 6)]−1(
c

Bab)
c

∇a

c

∇b

cannot be substituted by other ”linear” terms. Consequently, we obtain assertion (ii)

Conjecture C. There is no conformal covariant on T0 with leading term k in
even dimension n with n < 2k and k ≥ 2.
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5. Conformal covariants acting on symmetric, trace-free

tensor fields

Let
s

T p be the space of all symmetric, trace-free C∞-tensor fields of covariant rank p.
In [40] the following theorem was proved.

Theorem 5.1. The operator
s

D(2,p) defined on
s

T p by

(
s

D(2,p)[u])i1...ip
:=

c
ui1...ip

− 4p

n + 2p− 2

c

∇i1

c

∇kuki2...ip

+
4p(p− 1)

(n + 2p− 2)(n + 2p− 4)
gi1i2

c

∇k
c

∇mukmi3...ip

(5.1)

is a second-order conformal covariant with ω = −1 and 4ω0 = 2 + 2p− n (n ≥ 4).

Remark 5.1. Explicitly, we have

c
ui1...ip =

(
− n− 2

4(n− 1)
R

)
ui1...ip

c

∇i1

c

∇kuki1...ip = ∇i1∇kuki2...ip +
n + 2p− p

2
P k

i1uki2...ip .

Theorem 5.2. If n + 2p > 6, the operator
s

D(4,p) defined on
s

T p by

(
s

D(4,p)[u])i1...ip

:= TS

[
c

2ui1...ip + a1

c c

∇i1

c

∇auai2...ip + a2

c

∇i1

c

∇i2

c

∇a
c

∇buabi3...ip

+ Ca b
.i1i2.

{
a3

c
uabi3...ip + a4

c

∇a

c

∇kukbi3...ip

}
+ a5C

abk
i1. . .

c

∇i2

c

∇kuabi3...ip

+
c

∇uCuab
...

{
a6

c

∇aubi2...ip + a7

c

∇buai3...ip + a8

c

∇i2uabi3...ip

}

+ a9

c

∇uCu a
.i1i2.

c

∇kukai3...ip + a10B
a
i1uai2...ip

]

with

a1 =
−8p

n + 2p

a2 =
−16p(p− 1)

(n + 2p)(n + 2p− 2)

a3 = −1
2
a5 =

−4p(p− 1)
n + 2p− 6




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a4 =
−8p(p− 1)(n + 2p− 12)

(n + 2p)(n + 2p− 6)

a6 =
4p(n− 2p− 2)

(n− 3)(n + 2p− 6)

a7 =
a8

(1− p)
=

−4p(n− 4)
(n− 3)(n + 2p− 6)

a9 =
−4p(p− 1)(n2 + 2np− 12n + 24)

(n− 3)(n + 2p)(n + 2p− 6)

a10 =
2p(n− 6)

(n− 3)(n + 2p− 6)





is a fourth-order conformal covariant with ω = −2 and 4ω0 = 4 + 2p− n.

Proof. In the following the relation T1
∗=T2 means TS(T1 − T2) = 0. From (2.11)

there follows (see also [35] and [40: p. 277])

Xγ
( c

2ui1...ip

)

∗=
(
[Xγ ,

c

∇a]
c

∇a +
c

∇a[Xγ ,
c

∇a]
) c

+
c (

[Xγ ,
c

∇a]
c

∇a +
c

∇a[Xγ ,
c

∇a]
)}

ui1...ip

= 2(4ω0 − 2p + n− 4)
c

∇γ
c

ui1...ip − 4p
c (

δγ
i1

c

∇dudi2...ip −
c

∇i1u
γ
.i2...ip

)

+ (4ω0 − 2p + n− 2)
{ c c

∇γ −
c

∇γ
c }

ui1...ip − 2p
{ c c

∇i1 −
c

∇i1

c }
uγ

.i2...ip

+ 2pδγ
i1

{ c c

∇d −
c

∇d
c }

udi2...ip ,

Xγ
( c c

∇i1

c

∇aua
.i2...ip

)

∗=
(
[Xγ ,

c

∇a]
c

∇a +
c

∇a[Xγ ,
c

∇a]
) c

∇i1

c

∇dudi2...ip +
c

Xγ
c

∇i1

c

∇kuki2...ip

∗= (2ω0 − p− 1)δγ
i1

c c

∇kuki2...ip

+ (2ω0 + n− 2)
c c

∇i1u
γ
.i2...ip

− 2(p− 1)δγ
i1

c

∇i2

c

∇a

c

∇bu
ab
..i3...ip

+ 2(p− 1)
c

∇i1

c

∇i2

c

∇ku γ
k.i3...ip

+ (4ω0 − 2p + n− 4)
c

∇γ
c

∇i1

c

∇kuk
.i2...ip

− 4(p− 1)δγ
i1

c

∇[l

c

∇i2]

c

∇kukl
..i3...ip

− 2(
c

∇γ
c

∇i1 −
c

∇i1

c

∇γ)
c

∇kuk
.i2...ip

.

and

Xγ(
c

∇i1

c

∇i2

c

∇a

c

∇bu
ab
..i3...ip

)

∗= (4ω0 − 4p + n− 2)δγ
i1

c

∇i2

c

∇a

c

∇bu
ab
..i3...ip

+ (4ω0 + 2p + n− 6)
c

∇i1

c

∇i2

c

∇kukγ
..i3...ip

.

Now we have to compute the action of Xγ on all Weyl curvature correction terms of
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s

D(4,p), using relation (2.11). For instance, we obtain

Xγ(Ca b
.i1i2.

c
uabi3...ip

)
∗= Ca b

.i1i2.

[
(4ω0 − 2p + n− 2)

c

∇γuabi3...ip
− 4δγ

a

c

∇kuk
.bi3...ip

+ 4
c

∇au γ
b.i3...ip

− 2(p− 2)δγ
i3

c

∇kuk
.abi4...ip

+ 2(p− 2)
c

∇i3u
γ
.abi4...ip

]
.

In an analogous manner one computes the other actions. Using 4ω0 + n − 2p − 4 = 0
and successively identity (2.10), for instance

( c c

∇γ −
c

∇γ
c )

ui1...ip
= 2

( c

∇[a

c

∇γ]

c

∇a +
c

∇a
c

∇[a

c

∇γ]

)
ui1...ip

= −2pC ab
γ. .ii

c

∇aubi2...ip +
p(n− 2)
n− 3

c

∇uCu
.γai1u

a
.i2...ip

,

one verifies after lengthy straight computations the assertion Xγ
s

D(4,p) = 0

Theorem 5.3. If n + 2p > 6, the operator
s

D∗
(2,p) defined on

s

T by

(
s

D∗
(2,p)[u])i1...ip := TS

[
C abd

i1. . .

( c

∇a

c

∇budi2...ip − 2b1

c

∇i2

c

∇duabi3...ip

)

+ b1C
a b
.i1i2

( c
uabi3...ip − 2

c

∇a

c

∇kukbi3...ip

)

+
c

∇uCuab
. . . i1

(
b2

c

∇i2uabi3...ip + b3

c

∇aubi2...ip + b4

c

∇buai2...ip

)

+ b2

c

∇uCu a
.i1i2.

c

∇kukai3...ip + b5B
a
i1uai2...ip

]

with
β0 = (n + 2p− 6)−1

β1 = [4(n− 3)]−1β0

}

and
b1 = (1− p)β0

b2 = 4(p− 1)(n− 4)β1

b3 = 2(n− 4)(n + 2p− 2)β1

b4 = −4(n− 4)(n + 2p− 5)β1

b5 = (n− 6)(n + 2p− 4)β1





is a second-order conformal covariant with ω = −2 and 4ω0 = 4 + 2p− n.

Proof. The operator
s

D∗
(2,p) is a linear combination of the Weyl curvature terms of

s

D(4,p) and the term TS[C abd
i1. . .

c

∇a

c

∇budi2...ip ]. Using 4ω0 + n− 2p− 4 = 0 we obtain

Xγ
(
C abd

i1. . .

c

∇a

c

∇budi2...ip

) ∗=(p− 1)
[
δγ
i1

C abd
i2. . .

c

∇duabi3...ip − Ca b
.i1i2.

c

∇auγ
.bi3...ip

]

+ (n− 3)C abγ
i1. . .

c

∇aubi2...ip −
n

2
C abγ

i1. . .

c

∇bu.ai2...ip

and after lengthy straight computations one verifies the result Xγ
s

D∗
(2,p) = 0
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Remark 5.2. The operator
s

D∗
(2,1) has been found already by Graham [24]. Only

if n = 4 and p = 1, Bach tensor expressions obstruct the existence of
s

D(4,1) and
s

D∗
(2,1).

However, by means of
s

D∗
(2,1) one can substitute the Bach tensor expression of

s

D(4,1)

such that one obtains a conformal covariant also in the critical case n = 4 and p = 1 by

a suitable linear combination of
s

D(4,1) and
s

D∗
(2,1) (see also [24]).

Lemma 5.1. The operators TS
[ c

∇i1 . . .
c

∇ik
uik+1...ik+p

]
are conformal covariants on

s

T p with ω = 0 and 2ω0 = 2p + k − 1.

The proof is a direct consequence of (see [42])

XγTS
[ c

∇i1 . . .
c

∇ik
uik+1...ik+p

]
= k[2ω0 − 2p− k + 1]TS

[
δγ
i1

c

∇i2 . . .
c

∇ik
uik+1...ik+p

]
.

Corollary 5.1. A symmetric, trace-free tensor Ei1...ik+p
from ϑ0 is conformally

invariant if and only if the operator

Ei1...ik+p
c

∇i1 . . .
c

∇ik
uik+1...ik+p

(5.2)

is a conformal covariant with 2ω0 = 2p + k − 1.

Proof. The first part is a consequence of Lemma 5.1. Conversely, since the deriva-
tives of ui1...ip at any fixed point can be chosen arbitrarily, the assertion XγEi1...ik+p = 0
follows from the conformal invariance of (5.2)

Corollary 5.2. The nonlinear operators T(k,p) defined on Tp by

T(k,p)[u] :=
(
TS

[ c

∇i1 . . .
c

∇ikuik+1...ik+p
])[ c

∇i1 . . .
c

∇ik
uik+1...ik+p

]

are conformal covariants with 2ω0 = 2p + k − 1.

6. Conformal covariants acting on differential forms

Let Λp(p ≥ 1) denote the space of all p-forms of class C∞. When α1, . . . , αp appear in
the sequel, we assume that alternation has been carried out over these indices. Branson
found in [5] a second-order conformal covariant D2,p on Λp with ω = −1, 4ω0 = 2+2p−n
and a fourth-order conformal covariant D4,p on Λp with ω = −2, 4ω0 = 4 + 2p−n (n >
4). The operator D4,p differs only by a real factor to the conformal covariant D(4,p)

constructed by the present author in [40] by means of the method given in Section 2.

We have D(4,1) = −n+2
4

s

D(4,1) (see Theorem 5.2).

As for D(6) and
s

D(4,1), a Bach tensor expression of the form

c(n, p)
n− 4

B k
α1.ukα2...αp with c(n, p) ∈ R \ {0} (6.1)

obstructs the existence of D(4,p) in dimension 4 (if p = 1, see Remark 5.2).
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Problem C. Is there a fourth-order conformal covariant on Λ2 with the leading
term 2 in dimension 4?

The proof of the following theorem is analogous to the proofs of Theorems 5.2 and
5.3.

Theorem 6.1. Suppose that n > 4, 2p 6= n + 6 or p = 2, n = 4. Let D∗
(2,p) be the

operator defined on Λp by

(D∗
(2,p)[u])α1...αp

: = C abd
α1. . .

( c

∇a

c

∇budα2...αp
+ 2c1

c

∇α2

c

∇aubdα3...αp

)

+ c1C
ab

α1α2. .

( c
uabα3...αp

+ 2
c

∇a

c

∇kukbα3...αp

)

− 4c1

c

∇α1C
abd

α2. . .

c

∇aubdα3...αp
+ c2

c

∇α1

( c

∇uCu ab
. α2. .uabα3...αp

)

+ c3

( c

∇uCu ab
.α2..

c

∇α2uabα3...αp +
c

∇uCua
. . α1α2

c

∇kukaα2...αp

)

+
c

∇uCuab
. . . α1

(
c4

c

∇buaα2...αp + c5

c

∇aubα2...αp

)

+ c6B
a

α1.uaα2...αp + c7C
ab

α1α2

c

∇α3

c

∇kukabα4...αp

where

c1 =
3(p− 1)

2(n− 2p + 6)

c2 =
2(n− 2)
n− 3

c1

c3 =
n

n− 3
c1

c4 =
6(1− p) + (3− n)(n− 2p + 6)

(n− 3)(n− 2p + 6)

c5 =
n

2(n− 3)

c6 =
(n− 2)[12(p− 1) + (n− 6)(n− 2p + 6)]

4(n− 3)(n− 4)(n− 2p + 6)
c7 = 0.





Then D∗
(2,p) is a second-order conformal covariant with ω = −2 and 4ω0 = 4 + 2p− n.

Remark 6.1. As expected there holds D∗
(2,1) =

s

D∗
(2,1). As already noted, one can

annihilate the obstructing Bach tensor expression of D(4,1) in dimension 4 by means

of
s

D∗
(2,1). If p = 3, then we have an analogous situation. If p = 2, we have c6 =

n(n−2)
4(n−3)(n+2) . Hence, the operator D∗

(2,2) is a regular operator in the important case
p = 2 and n = 4. Consequently, the obstructing Bach tensor expression (6.1) of D(4,2)

cannot be substituted by D∗
(2,2).

Theorem 6.2. If n = 4, there is no conformal covariant on Λ2 with leading term
2.
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Proof. Under consideration of (3.2) and (3.3), it is easy to see that the operator
D∗

(2,p) contains all possible curvature monomials if ω = −2 and 4ω0 = 4 + 2p − n

(modulo trivial order zero actions of the Weyl tensor). Furthermore, the real coefficients
of D∗

(2,1) and D(4,p) (see [40]: p. 279]) are determined uniquely. Now the fact that the
obstructing Bach tensor expression (6.1) of D(4,2) cannot be substituted by D∗

(2,2) implies
the assertion
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[18] Erdmenger, J.: Conformally covariant differential operators: properties and applications.
Class. Quantum Grav. 14 (1997), 2061 – 2084.

[19] Fefferman, C. and C. R. Graham: Conformal invariants. Èliie Cartan et les Mathémati-
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